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Context and Motivation

Travel demand models
▶ Rapidly evolving mobility patterns.

▶ Travel needs under resource scarcity.

▶ Decision-makers face increasing complexity in mobility [Delhoum et al., 2020].
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Activity-Based Models (ABMs)

Definition
Disaggregate travel demand models that represent each individual/household and
simulate their daily sequence of activities and trips, capturing heterogeneity and
interactions between activities.

Motivation
▶ Represent travel demand as the result of activities in space and time.

▶ Contrast with trip-based models: trips are linked within daily schedules, not
independent.

▶ Capture interdependencies between activities, time constraints, and
household/social interactions.

▶ Provide a richer behavioral representation of travel demand.

[Castiglione et al., 2014], [Rezvany et al., 2024]
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Travel demand models
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Why Synthetic Populations?
Role in ABMs
▶ Long-term structural choices (car ownership, residential location, workplace

choice, etc.)

▶ Scarce longitudinal data tracking individuals and households over years.

▶ Need for individuals and households with consistent socio-demographic
profiles and long-term attributes.

Advantages of Synthetic Data

▶ Realistic travel demand dynamics without causal models.

▶ Provide diverse and detailed datasets for ABMs.

▶ Overcome limitations of survey data: representation gaps, anonymization,
and bias.

▶ Merge multiple sources to generate realistic, privacy-compliant, and
unbiased synthetic datasets. 6 / 35
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Synthetic Populations in Practice: MATSim

Microscopic Simulation Needs

▶ Tools such as MATSim [Axhausen et al., 2016] require a synthetic population as
input.

▶ Demand is modeled at the level of individual synthetic travelers.

▶ Each traveler has a daily activity schedule and behavioral rules.

MATSim Users’ Guide
“MATSim uses a microscopic description of demand by tracing the daily
schedule and the synthetic travelers’ decisions.”
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Iterative Proportional Fitting (IPF)

Goal
▶ Adjust seed table to match target marginals

▶ Attributes: e.g. Age (rows), Income (columns)

▶ Preserve interaction structure

Algorithm

▶ Start with seed matrix X (0)

▶ Row scaling: enforce row totals ri
▶ Column scaling: enforce column totals cj
▶ Alternate row/column updates until convergence

[Deming and Stephan, 1940]; [Beckman et al., 1996]
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IPF Example: Age × Income

Setup

▶ Rows: A1 = 18−39, A2 = 40+

▶ Cols: I1 = Low, I2 = High

▶ Seed totals: row = (100,100), col = (100,100)

▶ Targets: row = (120,80), col = (90,110)

Seed X (0)

Low High Sum
18–39 60 40 100
40+ 40 60 100
Sum 100 100 200

After Row Scaling

Low High Sum
18–39 72 48 120
40+ 32 48 80
Sum 104 96 200

⇓ Continue alternating row/col scaling until targets are matched
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Iterative Proportional Fitting (IPF)

Properties

▶ Converges under mild conditions

▶ Preserves zero cells

▶ Higher dimensions: iterate through dimensions

12 / 35



Limitations of IPF
Data Limitations
▶ Sampling zeros persist

▶ Sensitive to measurement errors in marginals

Modeling Limitations

▶ Many sampling zeros in high dimensions

▶ Only enforces marginal distributions

▶ Cannot capture higher-order interactions directly

▶ No correction for hidden biases in seed data

Practical Issues
▶ Output fractional → may require integerization

▶ Large sparse tables → convergence can be slow
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Bayesian Approach: Population as a Random Vector

Concept

▶ Describe population by a high-dimensional random vector

X = (age, income, household size, . . .)

▶ Distribution of X :
▶ Complex
▶ Unknown

▶ Individuals = instances of X .
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Bayesian Approach: Methodology

Principle

▶ Approximate the unknown distribution of X

▶ Conditionals from: surveys, registers, fitted models (e.g. multinomial/logit)

▶ Use simulation to draw synthetic individuals / households

Simulation Algorithm

▶ Gibbs sampling (Markov Chain Monte Carlo)

▶ Iteratively sample each component of X conditional on the others

▶ Generates correlated samples from the joint distribution

[Farooq et al., 2013], [Kukic et al., 2024]
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Gibbs Sampling with Conditionals (Age × Income)

Algorithm (keywords)

▶ Initialize (Age(0), Income(0))

▶ For k = 0, 1, . . .
▶ Sample Age(k+1) ∼ P(Age | Income(k))
▶ Sample Income(k+1) ∼ P(Income | Age(k+1))

▶ After burn-in: draws ≈ P(Age, Income)

Why This Captures Correlation

▶ Each update uses informative conditionals (from data/models)

▶ Complex patterns maintained: age-specific income and income-specific age

▶ Extends to high dimensions: sample each component given the rest
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Gibbs sampling = sequential synthesis of individuals (Age ×
Income)

Gibbs sampler
(individual-by-individual)

1. Initialize one attribute, e.g.
Income(0) ∼ P(Income).

2. For t = 1, . . . ,N (each t creates
one person):

2.1 Draw
Age(t) ∼ P(Age | Income(t−1))

2.2 Draw
Income(t) ∼ P(Income | Age(t))

3. Record synthetic individual t:
(Age(t), Income(t)).

Outcome: a disaggregate synthetic
population where each row is an
individual. After burn-in, the sequence of
pairs approximates the joint
P(Age, Income).

Illustration (first few individuals)
t Income(t−1) Draw Age(t) Draw Income(t) Individual t

1 Low 18–39 (p=0.70) High (p=0.35) (18–39, High)
2 High 40+ (p=0.70) High (p=0.65) (40+, High)
3 High 18–39 (p=0.30) Low (p=0.65) (18–39, Low)
4 Low · · ·
.
.
.
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Bayesian Approach: Advantages

Compared to IPF

▶ Uses marginals but also captures complex correlation structures

▶ Not limited to adjusting contingency tables

Probabilistic Nature
▶ Naturally incorporates uncertainty

▶ Can model measurement errors in data

▶ Produces distributions, not just point estimates
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Synthetic populations

Cross-sectional
▶ Snapshot of the population at a given point in time.

▶ Based on an observed real population (census).

▶ Share the same statistical properties as the real population.

▶ Includes the status of long-term mobility decisions: home and work location,
vehicle ownership, driver’s license ownership, etc.

▶ Feed into activity scheduling models.
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Multiperiod synthetic populations

Challenges

▶ Lack of panel data.

▶ Instead, repeated cross-sectional census data.

▶ Consistency (not necessarily the same individuals).

2010 2015 2020
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Traditional synthetic populations
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Traditional synthetic populations
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Proposed methodology

Variables
▶ Replace time dependent variables by time independent variables.

▶ Events and duration models.

▶ Examples:
▶ age(t). Event: birth. Duration: lifespan.
▶ home location(t). Event: last move. Duration: time until the next move.
▶ driver’s license(t). Event: acquisition of a driver’s license. Duration: time

until revocation.

Motivation
▶ Knowing birth date and lifespan, age(t) can be calculated for any t.

▶ Knowing the date of each move, home location(t) can be calculated for any
t.
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Mapping universal and time dependent variables

Universal variables
▶ Birth date b (continuous).

▶ Lifespan L (continuous).

Time dependent variables

▶ Being alive in 2010 x2010(b, L) (binary).

▶ Being alive in 2015 x2015(b, L) (binary).

▶ Being alive in 2020 x2020(b, L) (binary).

▶ Age in 2010 a2010(b, L) (continuous).

▶ Age in 2015 a2015(b, L) (continuous).

▶ Age in 2020 a2020(b, L) (continuous).
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Bayesian approach

Time independent priors

▶ Age(t): birth date and lifespan.

▶ Income(t): income evolution models [Kaldasch, 2012].

▶ Employment status(t): choice of employment status [Kolvereid, 1996].

▶ Level of education(t): educational choice models [Manzo, 2013].

▶ Home location(t): last location, moving behavior [de Palma et al., 2015].

▶ Work location(t): firm relocation [Bodenmann and Axhausen, 2015].

▶ “Mobility tools” ownership(t): last vehicle, duration model [Gilbert, 1992].

▶ Driver license(t): date of acquisition [Nurul Habib, 2018].

▶ etc.
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Bayesian approach

Cross-sectional data
▶ A: distribution of [time independent]

individuals.

▶ B : data.

▶ We need to draw from A|B .

▶ Pr(A|B) = likelihood · prior.
▶ Prior: previous slide.

▶ Likelihood: mapping time independent
variables with time dependent variables.

Data fusion: MCMC
▶ Gibbs sampling.

▶ Metropolis-Hastings.
28 / 35



Conclusion

Synthetic populations

▶ More and more important in travel demand analysis.

▶ Bayesian approach allows to combine models and data.

▶ From cross-sectional to longitudinal synthetic data.

Future research
▶ Synthetic populations of households.

▶ Integration with activity-scheduling models.
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