Activity-based models: recent developments in travel demand modeling

Negar Rezvany Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

> SBB Research Fund Meeting November 1, 2024

Outline

Motivation

Intregrated approach

Social groups

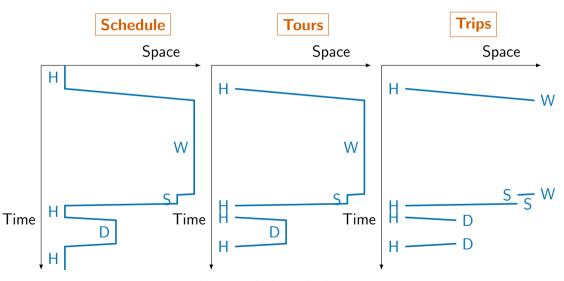
Applications

Introduction

Why do people travel?

- Most of the time, not for the sake of it.
- Activities.
- Spread in space and time.

Activities

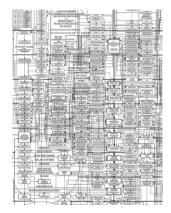

Primary

- home-based,
- work,
- education.

Secondary

- leisure,
- shopping,
- escort,
- business,
- etc.

Travel demand models



H: Home, W: Work, S: Shop, D: Dining out [Source: M. Ben-Akiva]

Activity-based models: literature

Econometric models $\sum_{i,i} = \frac{d}{n} \sum_{i=1}^{n} \frac{d}{1} \qquad \mu(v_i^{\perp} = \cup AR(s_i) + \frac{d}{n!} \sum_{i=1}^{n} (s_i^{\perp} - \tilde{s}_i) \int_{0}^{s} \frac{d}{1} \sum_{i=1}^{n} \frac{d}{1} \sum_$

Rule-based models

Research question: can we combine the two?

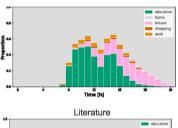
	Econometric	Rule-based
Micro-economic theory	Х	
Parameter inference	Х	
Testing/validation	Х	
Joint decisions		Х
Complex rules		Х
Complex constraints		Х

Outline

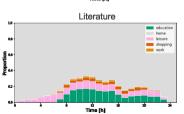
Motivation

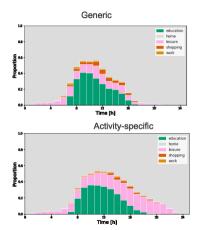
Intregrated approach

Social groups


Applications

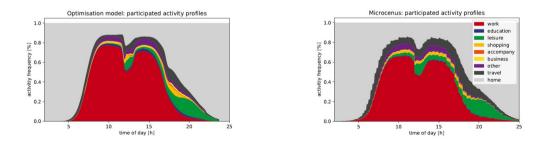
Integrated approach


Mathematical optimization


- Each individual is solving an optimization problem.
- Simultaneous decisions: activity participation, activity location, activity scheduling, travel mode, etc.
- Objective function: utility (to be maximized).
- Constraints: complex rules.

Visual validation

Data



10 / 33

OPTIMs

OPTimization of Individual Mobility **S**chedules,[Manser et al., 2022]

- Collaboration with Swiss Federal Railways.
- Integration of the optimization framework into their long-term travel demand forecasting tool (SIMBA MOBi).

Outline

Motivation

Intregrated approach

Social groups

Applications

Social groups

- Groups of individuals imply additional constraints.
- Coordination, joint activities.
- Group decision making
- Service to the group, maintenance.
- Resource constraints.
- Escorting.

Objective function: utility of the group

Group decision making

- Function of the utility of each member. But which function?
- Lack of consensus in the literature.
- Additive: the (weighted) sum of the utility of each member.
- Autocratic: the utility of the "strongest" member.
- Egalitarian: the utility of the "weakest" member.
- Important for our framework: must be easy to linearize.

Coordinated activities

- a is an activity that must be performed by all members of the group.
- Dining out.
- Family gathering.
- Sport events.
- ► Activity participation of the group: w_{agr}.

$$\sum_{n \in g} w_{anr} = N_g w_{agr}.$$

Distributed activities

- a is an activity that must be performed for the group.
- Maintenance.
- Grocery shopping.
- Meal preparation.
- Accounting of the sport club.

$$\sum_{n \in g} w_{anr} \ge 1.$$

Resource constraints

- One car per household.
- One meeting room in a shared office space.
- Modeling approach: treat the resource as an individual.
- "The car is a member of the family".
- It is associated with "activities" and a schedule.
- We can then introduce "coordinated activities" constraints.

Escorting a child to school

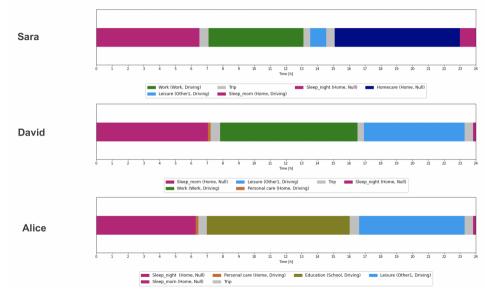
- Specific instance of a resource constraint.
- ► The person escorting becomes a resource.
- As individuals and resources are modeled in the same way, coordinated activities constraints can be applied.

Mathematical optimization framework

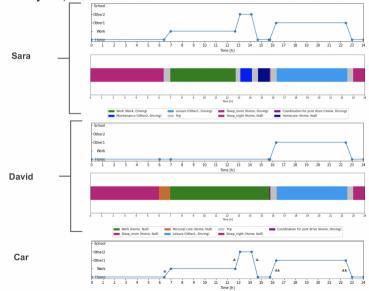
Combining rule-based and econometric approaches

- Works well for the simulation of individuals decisions.
- Can easily be extended for social groups.
- Most "rules" can be translated into relatively simple mathematical constraints.
- ► Main issue: choice of the objective function.

Outline


Motivation

Intregrated approach


Social groups

Applications

Simulation: From isolated individuals...

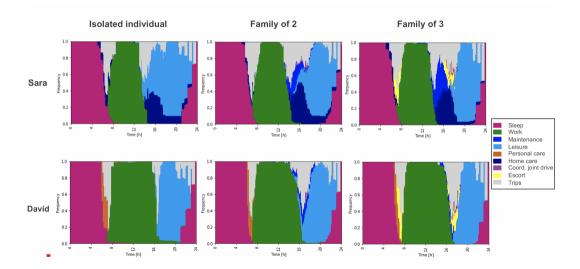
Simulation: To family of 2; 2 adults with no children...

Simulation: Family of 2; 2 adults with no children...

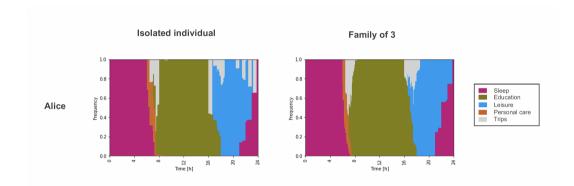
Table: Car location sequence and occupancy in the example of a family of 2

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parked_out indicator	Car occupancy
Home	00:00	6:24	6:24	-	0	0
On the road	6:24	7:00	0:36	1	0	1
Work	7:00	12:41	5:41	1	1	0
On the road	12:41	13:07	0:26	1	0	1
Other2	13:07	14:07	1:00	1	1	0
On the road	14:07	14:40	0:33	1	0	1
Home	14:40	15:45	1:05	-	0	0
On the road	15:45	16:18	0:33	1 & 2	0	2
Other1	16:18	22:27	6:08	1 & 2	1	0
On the road	22:27	23:00	0:33	1 & 2	0	2
Home	23:00	24:00	1:00	-	0	0

Simulation: To family of 3; 2 adults and 1 child...



Simulation: Family of 3; 2 adults with 1 child...


Table: Car location sequence and occupancy in the example of a family of 3

Location	Start time (hh:mm)	End time (hh:mm)	Duration (hh:mm)	Person using	Parkedout indicator	Car occupancy
Home	00:00	7:00	7:00	-	0	0
On the road	7:00	7:33	0:33	2&3	0	2
School	7:33	7:35	0:02	2	0	1
On the road	7:35	8:05	0:30	2	0	1
Work	8:05	16:45	8:40	2	1	0
On the road	16:45	17:11	0:26	2	0	1
School	17:11	17:13	0:02	2	1	1
On the road	17:13	17:46	0:33	2&3	0	2
Home	17:46	24:00	6:14	-	0	0

Distributions

Distributions

Conclusions

Achievements so far

- Formulation of the model.
- Procedure for the estimation of the parameters.
- Simulation of complex and valid activity schedules.
- Simulation of complex resources constraints.
- Simulation of household coordination.
- Application to real case studies.

Future research

Exploiting rich data sets SBB's Continuous Mobility Panel (CMP). Integration with transport simulation MATSIM, SimMobility, etc.

Summary

- Motivation: design operational activity-based models.
- Combine the econometric and the rule-based approaches.
- Methodological contribution: use mathematical optimization and simulation.
- Simulation of activity schedule: [Pougala et al., 2022a].
- ► Application with the Swiss Railways: [Manser et al., 2021].
- Estimation of the parameters: [Pougala et al., 2022b].
- ▶ Household interactions: [Rezvany et al., 2023], [Rezvany et al., 2024].
- Main advantage of the framework: flexibility.

Bibliography I

 Manser, P., Haering, T., Hillel, T., Pougala, J., Krueger, R., and Bierlaire, M. (2021).
Resolving temporal scheduling conflicts in activity-based modelling. Technical Report TRANSP-OR 211209, Lausanne, Switzerland.

 Manser, P., Haering, T., Hillel, T., Pougala, J., Krueger, R., and Bierlaire, M. (2022).
Estimating flexibility preferences to resolve temporal scheduling conflicts in

activity-based modelling.

Transportation.

Accepted on Aug 22, 2022.

Bibliography II

Pougala, J., Hillel, T., and Bierlaire, M. (2022a).
Capturing trade-offs between daily scheduling choices.
Journal of Choice Modelling, 43(100354).
Accepted on Mar 19, 2022.

Pougala, J., Hillel, T., and Bierlaire, M. (2022b). Oasis: Optimisation-based activity scheduling with integrated simultaneous choice dimensions.

Technical Report TRANSP-OR 221124, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Bibliography III

Rezvany, N., Bierlaire, M., and Hillel, T. (2023).
Simulating intra-household interactions for in- and out-of-home activity scheduling.
Transportation Research Part C: Emerging Technologies, 157(104362).
Accepted on Sep 26, 2023.

 Rezvany, N., Hillel, T., and Bierlaire, M. (2024).
Household-level choice-set generation and parameter estimation in activity-based models.
Technical report, Transport and Mobility Laboratory, Ecole Polytechnique

Fédérale de Lausanne, Lausanne, Switzerland.