Intra-household interactions in ABMs: Household-level choice set generation and parameter estimation

Negar Rezvany¹ Tim Hillel² Michel Bierlaire¹

¹Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL) ²Behaviour and Infrastructure Group, University College London (UCL)

June 19, 2024

Overview

- Introduction and motivation
- 2 Background
- Interpretation of the second state of the s
 - 4 Case study
- 5 To conclude

Introduction

- Activity-based models (ABMs): Activity-based models portray how people plan their activities and travels over a period of time.
- Traditional ABMs treat individuals as isolated entities.
- Individuals do not plan their day in isolation from other members of the household.
- Various interactions, time arrangements, constraints, and group decision-making affect the activity schedules of individuals.

Hence, models dealing with individual choices need to be revisited to take into account the intra-household interactions.

Example intra-household interactions

• What are some examples of intra-household interactions?

• Individuals in a household synchronise their schedules to create time window overlaps for **joint activities**.

Joint participation in a recreational activity

A family dinner at home

Example intra-household interactions

• What are some examples of intra-household interactions?

• Household members coordinate their travels as well.

Escorting children

Sharing a ride

✓ □ → < □ → < □ →
 June 19, 2024

Example intra-household interactions

• What are some examples of intra-household interactions?

• The members of a household also **share responsibilities and resources** with each other to satisfy household needs.

Sharing household maintenance responsibilities

Sharing resources

Research question 1

- How to incorporate **in-home** and **out-of-home activity scheduling** in a **single** scheduling model with **intra-household interactions**? (Rezvany et al. 2023)
 - An econometric ABM framework for joint simulation of in- and out-of-home activities, capturing intra-household interactions.

Rezvany, N., Bierlaire, M. Hillel, T. (2023), 'Simulating intra-household interactions for in- and out-of-home activity scheduling', C Transp. Res. Part C Emerg. Technol. 157.'

Household-level OASIS with interactions: Choices in household scheduling

- Econometric ABM, assuming agents choose their schedules such that the utility that the household gains is maximised.
- Activity scheduling is explained as a result of discrete and continuous choices treated jointly (e.g. activity participation, start time, duration, location, transport mode, accompaniment).

Background: Household-level OASIS with interactions

- A mixed-integer utility optimisation approach.
- Objective: Maximise the household utility.

$$\max \sum_{n=1}^{n=N_m} \sum_{a_n \in A^n} w_n \ U_{a_n}$$

- Subject to set of schedule continuity constraints and household-level constraints, such as:
 - Allocation of the resources to household members,
 - Sharing household maintenance responsibilities,
 - Joint participation of household members in activities, and
 - Escorting.

Background: Household-level OASIS with interactions

- Household-level daily schedule **simulation** framework, **explicitly** accommodating **multiple interactions**:
 - Adopts the **Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions (OASIS)** framework (Pougala et al. 2021).
 - Simultaneous simulation of different choice dimensions.
 - Group decision-making paradigm.
 - Explicit interactions.
 - Ensures consistency of choices.
 - Multiple interaction dimensions.
 - High level of **flexibility**.

Motivation: Operationalisation considerations

- Econometric ABMs assume agents schedule activities to **maximise utility**, explained through **discrete choices**.
- Using discrete choice models implies the need for **calibration of maximum likelihood estimators of the parameters** of the utility functions.

$$\hat{\theta} = \arg \max L_n(\theta)$$
 $L_n = \prod_{n=1}^N \prod_{i \in C_n} P_n(i)^{y_{in}}$

< 酉 → < ≡ → < ≡ → June 19, 2024

Motivation: Operationalisation considerations

- Econometric ABMs assume agents schedule activities to **maximise utility**, explained through **discrete choices**.
- Using discrete choice models implies the need for **calibration of maximum likelihood estimators of the parameters** of the utility functions.

$$egin{array}{l} \widehat{ heta} = rg\max L_n(heta) \ L_n = \prod_{n=1}^N \prod_{i \in \mathcal{C}_n} P_n(i)^{y_{in}} \end{array}$$

- Requires complete enumeration of the alternatives in the choice set.
- Full choice set in activity-based context is combinatorial.

ГН, МВ	Household-level choice set generation	

NR, T

(日)

June 19, 2024

Motivation: Operationalisation considerations

- Econometric ABMs assume agents schedule activities to **maximise utility**, explained through **discrete choices**.
- Using discrete choice models implies the need for **calibration of maximum likelihood estimators of the parameters** of the utility functions.

$$\hat{ heta} = rg\max L_n(heta)$$
 $L_n = \prod_{n=1}^N \prod_{i \in C_n^*} P_n(i|C_n^*)^{y_{in}}$

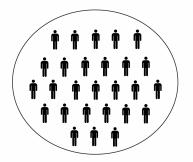
- Requires complete enumeration of the alternatives in the choice set.
- Full choice set in activity-based context is combinatorial.
- Possible to estimate using only a sample of alternatives.

NR, TH, MB

Household-level choice set generation

June 19, 2024 13 / 34

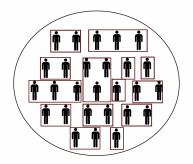
Research question 2


Gap: Defining a representative choice set for household activity pattern problem, necessary for operationalising household RUMs.

- Generate choice set of considered schedules to estimate significant and meaningful parameters.
- Efficient exploration of solution space:
 - High probability alternatives to ensure robust parameters estimates.
 - Low probability alternatives to reduce parameter bias.
- Aims to generate behaviourally sensible parameter estimates, estimated on ensemble of schedules with consistent alternatives for all household members. → enhance model realism in capturing household dynamics.

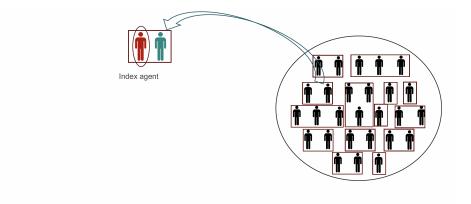
・ロト ・ 同ト ・ ヨト ・ ヨト

Methodology

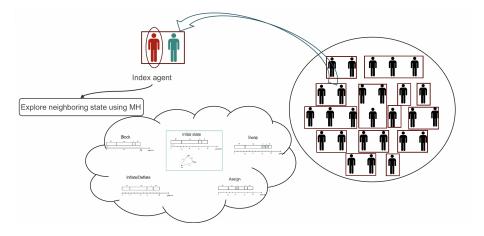

- Parallel generation for all agents.
- Ensures inter-agent validity of alternatives in the choice-set.
- Generates ensemble of **clusters** of schedules with **consistent alternatives** for all agents.
- Adopts a **Metropolis-Hastings** based sampling algorithm to explore the **solution space** (Pougala et al. 2021).

R. 1		

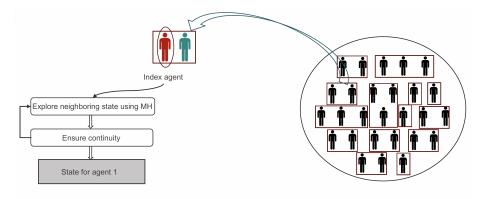
✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 ✓ □→
 <l


16/34

. TH	

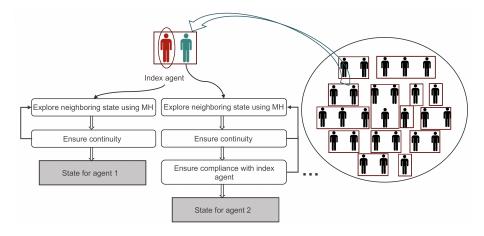

▲ 同 ▶ → 三 ▶ June 19, 2024

< ∃⇒

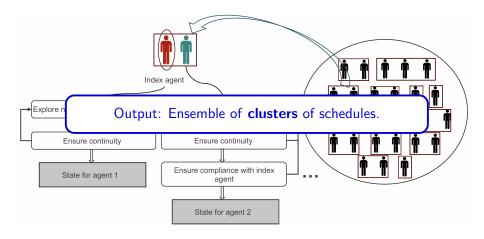

NR		

э

イロト イポト イヨト イヨト


э

(日) June 19, 2024


э

20 / 34

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
 June 19, 2024

3

June 19, 2024

イロト イボト イヨト イヨト

э

1 The choice set of all agents in a household generated in parallel.

• The relation between individuals and their household is lost in individual-level choice-set formations, leading to separate choice set formation procedures with no feedback between them.

Over the provided a set of the provided and the provid

$$HUF = \sum_{n=1}^{n=N_m} w_n \ U_n$$

- Ensure possible interaction aspects are captured in **utility function**.
 - Utility of a schedule:

$$U_n = \sum_{a_n \in A^n} \omega_{a_n} U_{a_n}$$

• For agent *n*, considering activity
$$a_n$$
:
Utility purely associated with
participation in activity,
irrespective of timing and trips Duration deviations

$$U_{a_n} = \boxed{U_{a_n}^{partic}} + \boxed{U_{a_n}^{start}} + \boxed{U_{a_n}^{duration}} + \underbrace{\sum_{b_n \in A^n} U_{a_n,b_n}^{travel}}_{b_n \in A^n} + \varepsilon_{a_n}$$
Start time deviations Travel from activity a_n to b_n

$$U_{a_n}^{partic} = U_{a_n}^{const} + \underbrace{U_{a_n}^{joint}}_{participation} + \underbrace{U_{a_n}^{escort}}_{participation}$$
Joint activity Escort
participation Duration deviations Duration deviations

25 / 34

- Operators to modify choice dimension aspects related to household scheduling, such as activity participation mode (solo/joint).
- Individual and household socio-demographic characteristics are preserved and reported in the generated choice-set.
 - Enables testing model specifications containing socio-demographic variables.

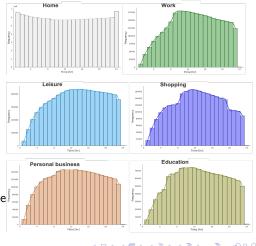
Case study

• Sample data:

- 2018 2019 UK National Travel Survey (NTS).
- Sample of 2-membered households of 2 adults: 3126 households.
- Activity participation modes (solo/joint) extracted from the data, using set of rules inspired by Ho & Mulley (2013).

• MH Choice set generation:

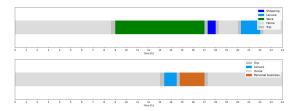
- Generate a choice set of consistent schedules with MH algoritm.
- MH setup: 1'000 iterations, choice set size: 10 alternatives


• Parameter estimation:

- Discrete choice model: specification with interaction of socio-economic attributes.
- Activity-specific constants.
- Activity-specific penalties.

Schedule simulation

Results: Distribution of activity participation across different hours of the day in generated sample


- Distinct peak activity times for work.
- Leisure: more spread-out pattern.
 - Reflect more scheduling flexibility.
- Home:
 - **Peak** at **midnight** (common resting period).
 - **Decline** (begin of day, participate in out-of-home activities).
 - Gradual increase towards the evening (return home after daily activities).

June 19, 2024

28 / 34

Example generated alternative with joint participation

Figure: Initial schedules for agents in a household

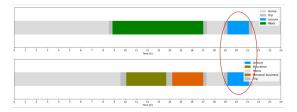
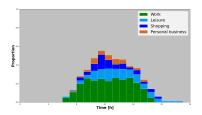


Figure: Example generated schedules for the agents in the household 💿 💿 🔊

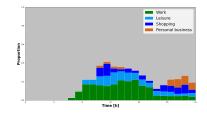
29/34

Estimation

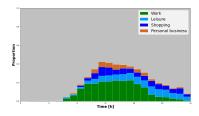
Name	Value	Rob. Std Err	Rob. t-test	p-value
Leisure:joint_partic_noCar	-0.364	0.214	-1.7	0.0885
Leisure:joint partic twomoreCar	-0.262	0.123	-2.13	0.0328
Education:constant	2.35	0.617	3.81	0.000139
Education:early	-2.13	0.645	-3.3	0.000979
Education:late	-0.457	0.166	-2.86	0.00422
Education:long	-1.21	0.224	-5.41	6.14e-08
Education:short	-0.728	0.133	-5.47	4.54e-08
Leisure:constant	3.22	0.146	22	0
Leisure:early	-0.459	0.0324	-14.2	0
Leisure:joint_partic	0.244	0.109	2.25	0.0246
Leisure:late	-0.176	0.0169	-10.4	0
Leisure:long	-0.322	0.0188	-17.2	0
Leisure:short	-0.486	0.0607	-8	1.33e-15
Personal business:constant	3.77	0.239	15.8	0
Personal business:early	-0.75	0.107	-7.03	2.06e-12
Personal business:late	-0.326	0.0492	-6.62	3.51e-11
Personal business:long	-0.533	0.0497	-10.7	0
Personal business:short	-3.6	0.853	-4.22	2.44e-05
Shopping:constant	5.61	0.207	27.1	0
Shopping:early	-1.32	0.13	-10.2	0
Shopping:late	-0.237	0.0395	-6	2.02e-09
Shopping:long	-0.634	0.0438	-14.5	0
Shopping:short	-4.67	0.654	-7.14	9.34e-13
Work:constant	5.67	0.231	24.5	0
Work:early	-0.738	0.0839	-8.8	0
Work:late	-0.423	0.0559	-7.56	4.04e-14
Work:long	-0.747	0.0501	-14.9	0
Work:short	-0.576	0.0426	-13.5	0


Household-level choice set generation

June 19, 2024


▶ < ≣ ▶

3


Simulation outputs: First results

Data

Isolated agent model

Household model イロト イヨト イヨト イヨト э June 19, 2024

NR, TH, MB

Household-level choice set generation

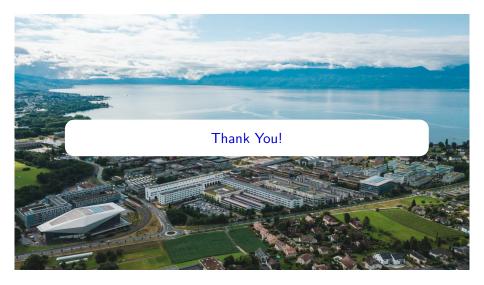
31/34

To conclude

Summary:

- Algorithm for household-level choice set formation.
- Estimate parameters of household-level OASIS using sampled choice set.
- Simulation of daily activities.

Future work:


- Further investigation on simulation.
- Non-homogenous scheduling preferences across individuals.
- Travel related interaction dimensions, travel parameter estimates.
- Validation techniques.

Bibliography I

- Ho, C. & Mulley, C. (2013), 'Tour-based mode choice of joint household travel patterns on weekend and weekday', *Transportation (Amst)*.
 40(4), 789–811.
- Pougala, J., Hillel, T. & Bierlaire, M. (2021), Choice set generation for activity-based models, *in* 'Proc. 21st Swiss Transp. Res. Conf.', Ascona, Switzerland.
- Rezvany, N., Bierlaire, M. & Hillel, T. (2023), 'Simulating intra-household interactions for in- and out-of-home activity scheduling', *Transp. Res. Part C Emerg. Technol.* **157**.

To conclude

▲ ▶ ▲ ▲ ▶ ▲ ▲ ▶ ▲ ▲ ▶
 June 19, 2024