

Intra-household interactions in ABMs: Household-level choice set generation

Negar Rezvany Tim Hillel

Michel Bierlaire

EPFL Outline

- Introduction and motivation
- Background
- Methodological approach and framework
- Case study
- Results and discussion
- To conclude

- Activity-based models (ABMs): Activity-based models portray how people plan their activities and travels over a period of time such as a day.
- Traditional ABMs treat individuals as isolated entities.
- Individuals do not plan their day in isolation from other members of the household.
- Various interactions, time arrangements, and constraints affect the activity schedules of individuals.

Hence, models dealing with individual choices need to be revisited to take account of the intra-household interactions.

Example intra-household interactions

- What are some examples of intra-household interactions?
 - Joint activities:

Joint participation in a recreational activity

A family dinner at home

Coordinate travels:

Escorting children

Sharing a ride

Share responsibilities and resources:

Sharing household maintenance responsibilities

Sharing resources

- 1. How to incorporate **in-home** and **out-of-home activity scheduling** in a **single** scheduling model with **intra-household interactions**? (Rezvany et al. 2023)
 - A framework for joint simulation of in- and out-of-home activities, capturing intra-household interactions

Rezvany, N., Bierlaire, M., & Hillel, T. (2023). Simulating intra-household interactions for in- and out-of-home activity scheduling. Transp. Res. Part C Emerg. Technol., 157.

- A framework to simulate the daily activity schedules of individuals in a household, explicitly accommodating multiple interactions:
 - A mixed-integer utility optimisation approach.
 - Adopts the **Optimisation-based Activity Scheduling Integrating Simultaneous choice dimensions** (**OASIS**) framework (*Pougala et al. 2022*).
 - Simultaneous simulation of different choice dimensions.
 - Group decision-making paradigm.
 - Explicit interactions.
 - Ensures consistency of choices.
 - Multiple interaction dimensions.
 - High level of flexibility.
 - Both in- and out-of-home scheduling are simulated within the same framework.

Motivation: Operationalisation considerations

- Econometric ABMs assume agents schedule activities to maximise utility, explained through discrete choices.
- Using discrete choice models implies the need for calibration of maximum likelihood estimators of the parameters of the utility functions.

$$\hat{\theta} = \arg \max L_n(\theta)$$

$$L_n = \prod_{n=1}^{N} \prod_{i \in C_n} P_n(i)^{y_{in}}$$

8

- Econometric ABMs assume agents schedule activities to maximise utility, explained through discrete choices.
- Using discrete choice models implies the need for calibration of maximum likelihood estimators of the parameters of the utility functions.

- In principle, maximum likelihood estimation requires complete enumeration of the alternatives in the choice set.
- The full choice set of alternatives in activity-based context is combinatorial.

- Econometric ABMs assume agents schedule activities to maximise utility, explained through discrete choices.
- Using discrete choice models implies the need for calibration of maximum likelihood estimators of the parameters of the utility functions.

- In principle, maximum likelihood estimation requires complete enumeration of the alternatives in the choice set.
- The full choice set of alternatives in activity-based context is combinatorial.
- Possible to estimate the parameters using only a sample of alternatives.

Research question 2: Household-level choice set generation

Gap: Defining a **choice set** representative of activity-travel in **household activity pattern problem** is thus, **necessary** for **operationalising household random utility models**.

- Generate choice set of considered schedules to estimate significant and meaningful parameters.
- Efficient exploration of solution space:
 - High probability alternatives to ensure robust parameters estimates.
 - Low probability alternatives to reduce parameter bias.
- Aims to generate behaviourally sensible parameter estimates, estimated on ensemble of schedules with consistent alternatives for all household members → enhance model realism in capturing household dynamics.

Methodology

- Choice set generation technique for household scheduling, generating an ensemble of schedules with consistent alternatives for all household members.
- To **explore** the combinatorial **solution space** of full set of feasible schedules, adopts a **Metropolis-Hastings** based sampling algorithm (*Pougala et al. 2021*).
- Intra-household interactions cause additional choice dimensions, time arrangements, constraints, and group decision-making mechanism, the interactions should be considered in the choice set formation to ensure consistency of generated alternatives.
- Extend this approach to encompass parallel generation for all household agents, household-level choices, and time arrangements.

Metropolis-Hastings based sampling strategy: A brief synopsis

- A strategy to generate a choice set containing only feasible alternatives.
- Alternatives = full daily schedules.
- Choice set generation modelled as a Markov process.
- Algorithm is initialised with a random state (e.g. reported schedule in the dataset)
 - States are defined as daily schedules with choice dimensions such as activity participation, timings, location, and transportation mode.
- Explore neighbouring states; candidate states generated with operators.
 - Operators are heuristics that modify specific aspects of the schedule.
- Check feasibility of generated state.
- At each iteration of the random walk, candidate state is accepted or rejected with a given acceptance probability defined by the modeller.
- Output: An ensemble of schedules, to estimate significant and meaningful parameters.

Household choice set generation

- 1. The choice set of all individuals in a household generated in parallel.
 - The relation between individuals and their household is lost in individual-level choice-set formations, leading to separate choice set formation procedures with no feedback between them.

"How would the algorithm work now?"

- Initialisation = schedule of all household members.
- An individual is selected as index.
- The combinatorial solution space of index person is explored using the Metropolis-Hastings algorithm.
- Their state is then used as the benchmark for ensuring schedule synchronisations with other agents in the household → ensures schedules compatibility
- Solution space of other household individuals is explored using the MH technique, ensuring being compliant with **household-level**, as well as individual-level **validity constraints**.
- Output: An ensemble containing clusters of schedules for all individuals in a household.

Household choice set generation

2. Move from individual utility function to household utility function.

agent priority parameter $HUF = \sum_{n=1}^{n=N_m} w_n U_n$

Household choice set generation

- **3.** Ensure that the possible interaction aspects are captured in the **utility function**.
- Utility of a schedule: $U_n = \sum_{a_n} \omega_{a_n} U_{a_n}$
 - For individual n, considering activity a_n :

Utility purely associated with participation in activity, irrespective of timing and trips

Duration deviations

$$U_{a_n} = U_{a_n}^{partic} + U_{a_n}^{start} + U_{a_n}^{duration} + \sum_{b_n \in A^n} U_{a_n,b_n}^{travel} + \varepsilon_{a_n}$$
Start time deviations

Travel from activity a_n to b_n

 $U_{a_n}^{partic} = U_{a_n}^{const} +$

Joint activity participation

Escort

Household choice set generation

- 4. Operators to modify choice dimension aspects related to household scheduling, such as activity participation mode (ω_{partic_mode}).
 - Changes the participation mode p_{a_n} of a randomly selected activity a_n for individual n, with a given probability P_{partic_mode} .
 - In case of change in participation mode, the **schedule synchronisation** among agents in the household should be **checked** and the corresponding activity is planned in the schedule of accompanying member(s) with the same timings and participation mode.

EPFL Case study

Utilising MH algorithm to generate the choice sets, we estimate the parameters of Household-level OASIS.

Sample data:

- 2018-2019 UK National Travel Survey (NTS).
- A sample of schedules for 2-membered households of 2 adults.
- A sample of schedules for 500 households is selected.
- Activity participation modes (solo/joint) are extracted from the data, using a set of rules inspired by Ho & Mulley (2013).

MH setup:

- 1'000 iterations
- Choice set size = 100 alternatives
- Initial state: observed schedule from dataset
- Operators: block, assign, swap, partic_mode, metaoperator

Analysis of activity participation modes in NTS data

- Only 0.1% of activities in diaries are performed jointly.
- Among which Leisure activities make a substantial portion (97%) of joint activities.

Distribution of activity participation across different hours of the day in generated sample

- Distinct peak activity times for work.
- Leisure: more spread-out pattern.
 - Reflecting more scheduling flexibility and less constrained feasible activity hours.

Home:

- Peak at midnight (common resting period).
- Sharp declines (begin of day, participate in out-of-home activities).
- Gradual increase towards the evening (return to home after the daily activities).

EPFL Results: Operators

Frequency of accepted operator changes

Typology of accepted combinations of Meta-operator

EPFL Results:

Reference: ASC Home = 0

Estimation

•	Model specifications:	

- · Activity-specific constants
- Activity-specific penalties
- For the sake of simplification, travel parameters not estimated to focus solely on activity parameters.

Notes:

- ASC: baseline preference for doing an out-of-home activity
- Shopping > Personal business > Work > Leisure
- ■ penalties

constraining activity.

- Most parameter estimates statistically significant (p-value < 0.05).
- Zero p-value: parameter is highly statistically significant predictor
- Duration parameter for Leisure not significant; not particularly time
- Joint_partic positive and significant; highlight social aspect of leisure.

Parameter	Param. estimate	Rob. std err	Rob. t-stat	Rob. p-value
Leisure: ASC	2.26	0.0874	8.71	0
Leisure: joint_partic	0.259	8.71	-1.84	0
Leisure: early	-0.778	0.0874	-8.9	0
Leisure: late	-0.737	0.0857	-8.6	0
Leisure: long	0.0095	0.0227	-0.416	0.677^{*}
Leisure: short	-0.14	0.216	0.648	0.517^{*}
Personal business: ASC	4.8	0.682	7.03	2.01e-12
Personal business: early	-0.96	0.113	-8.51	0
Personal business: late	-0.775	0.0977	-7.93	2.22e-15
Personal business: long	-0.547	0.165	-3.31	0.000944
Personal business: short	-1.5	0.507	-2.95	0.00316
Shopping: ASC	7.45	0.944	7.89	2.89e-15
Shopping: early	-1.23	0.166	-7.43	1.09e-13
Shopping: late	-0.697	0.0927	-7.52	5.28e-14
Shopping: long	-0.803	0.165	-4.88	1.08e-06
Shopping: short	-3.43	0.789	-4.35	1.36e-05
Education: ASC	1.38	1.07	1.29	8.15e-04
Education: early	-2.36	0.58	-4.06	3.02e-02
Education: late	-0.399	0.174	-2.29	4.24e-02
Education: long	-2.44	0.989	-2.47	1.44e-03
Education: short	-1.52	0.257	-5.88	1.36e-05
Work: ASC	4.28	0.476	8.99	0
Work: early	-0.828	0.108	-7.68	1.58e-14
Work: late	-0.45	0.0975	-4.62	3.92e-06
Work: long	-0.272	0.0438	-6.22	5.03e-10

-0.828

0.13

-6.39

1.7e-10

Work: short

^{*} Not statistically significant at 95%

To conclude

Summary:

- Household-level choice set formation
- Estimate household-level OASIS using sampled choice set

Future work:

- Investigate other household structures
- Estimate relative influence of individuals
- Socio-demographic variables (e.g. as presence of children, family structure, work characteristics of individuals) on schedule choices; interaction with activity participation
- Non-homogenous scheduling preferences across individuals
- Investigate model stability
- Validation techniques

EPFL References

- Ben-Akiva, M. E., & Lerman, S. R. (1985). Discrete choice analysis: theory and application to travel demand. MIT Press.
- Department for Transport. (2022). National Travel Survey, 2002-2021 [data collection]. 16th Edition. UK Data Service. doi: 10.5255/UKDA-SN-5340-1
- Ho, C., & Mulley, C. (2013). Tour-based mode choice of joint household travel patterns on weekend and weekday. Transportation (Amst)., 40 (4), 789–811.
- Pougala, J., Hillel, T., & Bierlaire, M. (2021). Choice set generation for activity-based models. In Proc. 21st swiss transp. res. conf. Ascona, Switzerland.
- Rezvany, N., Bierlaire, M., & Hillel, T. (2023). Simulating intra-household interactions for in- and out-of-home activity scheduling. Transp. Res. Part C Emerg. Technol., 157.

 École polytechnique fédérale de Lausanne