Fast Algorithms for (Capacitated) Continuous Pricing with Discrete Choice Demand Models

Tom Haering Robin Legault Fabian Torres Michel Bierlaire
Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne
16th Workshop on Discrete Choice Models
June 6-8, 2024

Outline

- Introduction
- Methodology
- Experimental Results
- Conclusions

TRANSP-OR

The Continuous Pricing Problem (CPP)

CPP

- Supplier offers J products for sale. Goal: determine optimal price for each product to maximize total profit.
- There always exists an opt-out option (competition, etc).
- Demand for each product is modeled using a discrete choice model (DCM).

The Continuous Pricing Problem (CPP)

Pre-estimated DCM

- Utility of alternative i for customer n :

$$
U_{i n}=V_{i n}+\beta_{i n}^{p} p_{i}+\varepsilon_{i n}
$$

- $V_{i n}$: deterministic utility (exogenous)
- $\beta_{\text {in }}^{p}$: price sensitivity parameter (exogenous)
- p_{i} : price of alternative i (endogenous)
- $\varepsilon_{\text {in }}$: stochastic error term

Objective function

- maximize expected revenue $=\sum_{n} \sum_{i} P_{n}(i) p_{i}$

The Continuous Pricing Problem (CPP)

- Probability that customer n chooses alternative i :

$$
P_{n}(i)=\mathbb{P}\left(U_{i n} \geqslant U_{j n} \forall j \in J\right)
$$

- Logit $\left(\varepsilon_{i n} \sim\right.$ i.i.d. $\left.\operatorname{Gumbel}(0,1)\right)$:

$$
P_{n}(i)=\frac{e^{V_{i n}}}{\sum_{j \in C_{n}} e^{V_{j n}}}
$$

- Mixed Logit (Logit $+\beta_{k} \sim F\left(\beta_{k} \mid \theta\right)$):

$$
P_{n}(i)=\int \frac{e^{V_{i n}\left(\beta_{k n}\right)}}{\sum_{j \in C_{n}} e^{V_{j n}\left(\beta_{k n}\right)}} f\left(\beta_{k} \mid \theta\right) d \beta_{k}
$$

Literature

Integrating Logit into...

- Revenue Management [Shen and Su, 2007, Korfmann, 2018]

Integrating Nested Logit into...

- Toll setting [Wu et al., 2012]
- Pricing [Gallego and Wang, 2014, Müller et al., 2021]

Integrating Mixed Logit into...

- Toll setting [Gilbert et al., 2014]
- Pricing [Marandi and Lurkin, 2020, van de Geer and den Boer, 2022]

Literature

Integrating general DCM into optimization problems

- Formulation as a mixed-integer-linear program (MILP) using Monte-Carlo simulation [Paneque et al., 2021]
- Heuristic based on Lagrangian decomposition and grouping of scenarios [Paneque et al., 2022]
- Exact method based on spatial Branch-and-Benders decomposition (B\&BD) + low-dimensional polynomial algorithm (BEA) (without capacity constraints) [Haering et al., 2023]

New contribution:

- Extend BEA to deal with capacity constraints, develop heuristic (with and without capacities) to handle higher dimensions, use it to speed up B\&BD.

Outline

- Introduction

- Methodology
- Experimental Results
- Conclusions

TRANSP-DR

Base layer: Monte Carlo Simulation

- Simulate R scenarios (draws), each with deterministic utilities $U_{i n r}$:

$$
\begin{aligned}
U_{i n r} & =V_{i n}+\beta_{i n r}^{p} p_{i}+\varepsilon_{i n r} & & \forall n \in \mathcal{N}, i \in C_{n}, r \in \mathcal{R} \\
& =c_{i n r}+\beta_{i n r}^{p} p_{i} & & \forall n \in \mathcal{N}, i \in C_{n}, r \in \mathcal{R}
\end{aligned}
$$

Breakpoints: Illustration

- $\mathbf{1}$ customer, $\mathbf{1}$ controlled price + opt-out
- Breakpoint \bar{p}_{1} :

$$
U_{0}=U_{1} \quad \Longrightarrow \quad U_{0}=c_{1}+\beta_{1}^{p} \bar{p}_{1} \quad \Longrightarrow \quad \bar{p}_{1}=\frac{U_{0}-c_{1}}{\beta_{1}^{p}} .
$$

Breakpoints: Illustration

- 3 customers, 1 controlled price + opt-out
- Numbers: how many customers are captured

Breakpoint Exact Algorithm (BEA) [Haering et al., 2023]

Adding capacity constraints

- Evaluating the objective function is not more difficult (assume exogenous priority queue).
- Need to compute breakpoints from not only the utility of the best alternative so far but from all alternative's utilities, due to people no longer always choosing highest utility alternative.
\Longrightarrow Customers may switch from any of the previously introduced alternatives.

Breakpoint Exact Algorithm with Capacities (BEAC)

Breakpoint Heuristic Algorithm (BHA)

Coordinate descent

BHA extended via dynamic line search (DLS)

Escape local optima

Guiding an exact method using the heuristic solution

- Goal is to improve exact spatial Branch \& Benders algorithm.
- Main way to speed up a Branch and Bound algorithm is to improve the bounds.
- Heuristic solution provides strong upper bound (initial feasible solution) \rightarrow Reduces the number of nodes in the tree.
- Improve lower bounds: Valid inequalities.

Valid inequalities

Breakpoints only work if everything but one price is fixed. But...

For each simulated customer (n, r):

- minimal breakpoint $\check{p}_{i}^{n r}$ (assuming strongest competition)
- maximal breakpoint $\hat{p}_{i}^{n r}$ (assuming weakest competition)

$$
\begin{array}{lll}
p_{i} \leqslant \check{p}_{i}^{n r} & \Longrightarrow(n, r) \text { is guaranteed to select } i & \Longrightarrow \omega_{i n r} \geqslant 1 \\
p_{i} \geqslant \hat{p}_{i}^{n r} & \Longrightarrow(n, r) \text { is guaranteed to not select } i & \Longrightarrow \omega_{i n r} \leqslant 0, \eta_{i n r} \leqslant 0
\end{array}
$$

Improving bounds on prices

We can consider:

$$
\begin{aligned}
& \check{p}_{i}:=\min _{n, r} \check{p}_{i}^{n r} \\
& \hat{p}_{i}:=\max _{n, r} \hat{p}_{i}^{n r}
\end{aligned}
$$

knowing that:

$$
\begin{gathered}
p_{i}>\hat{p}_{i} \Longrightarrow \text { no one chooses alternative } i \\
p_{i}<\check{p}_{i} \Longrightarrow \begin{array}{c}
\text { everyone chooses alternative } i \\
\text { (if it is in their choice set) }
\end{array}
\end{gathered}
$$

Improving bounds on prices

We can also say:
$p_{i}>m$-th highest $\hat{p}_{i}^{n r} \Longrightarrow$ at most m simulated customers choose alternative i
$p_{i}<m$-th lowest $\check{p}_{i}^{n r} \Longrightarrow$ at least m simulated customers choose alternative i

- Allows to adapt bounds to aim at specific outcomes.
- We will assume that for each product there should be at least one customer/scenario in which a product is chosen, as else it could be removed from the set of offered products.
- \Longrightarrow Replace p_{i}^{U} by \hat{p}_{i} whenever $\hat{p}_{i}<p_{i}^{U}$.

Outline

- Introduction
- Methodology
- Experimental Results
- Conclusions

TRANSP-OR

Case Study

Parking space operator [lbeas et al., 2014]

- Alternatives: Paid-Street-Parking (PSP), Paid-Underground-Parking (PUP) and Free-Street-Parking (FSP).
- Optimize prices for PSP and PUP, FSP is the opt-out alternative.
- Socio-economic characteristics: trip origin, vehicle age, driver income, residence area.
- Product attributes: access time to parking, access time to destination, and parking fee (price).
- Add more alternatives by increasing access time to destination.
- Choice model is a Mixed Logit, $\beta_{\text {fee }}, \beta_{\text {time_parking }} \sim \mathcal{N}(\mu, \sigma)$.

Results

Table 1: MILP vs. BEAC in the capacitated case

			MILP			BEAC		
N	n	J		Time (s)	Profit		Time (s)	Profit
50	2	2	4.17	27.61		0.43	27.61	
50	5	2		46.95	26.51		1.72	26.51
50	10	2		180.85	27.06		11.42	27.06
50	25	2		3119.66	27.08		169.08	27.08
50	50	2	>5 hours	$\geqslant 25.15$		1272.68	26.85	
50	100	2	>25 hours	$\geqslant 25.11$		9928.57	26.85	
50	250	2	>45 hours	$\geqslant 23.45$		>45 hours	$\geqslant 25.00$	

Results

Table 2: BHA and DLS vs. MILP and BEAC in the capacitated case

			MILP			BEAC			BHA			

Results

N	R	J	BHA (s)
50	1000	2	15093
50	1000	3	25326
50	1000	4	69134
50	1000	5	112042
50	1000	6	178923
50	2000	2	51637
50	2000	3	84231
50	2000	4	150132
50	2000	5	193233
50	3000	2	164922
50	3000	3	184293
50	3000	4	>259200

Results

Table 3: BHA and DLS vs. B\&BD and BEA in the uncapacitated case

N	R	J	B\&BD		BEA		BHA		DLS	
			Time (s)	Profit						
50	200	1	19	23.96	0	23.96	0.00	23.96	0.02	23.96
50	200	2	1413	26.99	12	26.99	0.00	26.99	0.03	26.99
50	200	3	34340	26.54	39,636	26.54	0.01	26.54	0.05	26.54
20	100	4	12478	10.40	>24 hours	$\geqslant 9.81$	0.00	10.40	0.14	10.40
20	200	4	29213	10.40	>24 hours	$\geqslant 10.40$	0.01	10.40	0.41	10.40
20	300	4	>24 hours	$\geqslant 10.38$	>24 hours	$\geqslant 10.13$	0.02	10.24	0.64	10.24
20	400	4	>24 hours	$\geqslant 9.81$	>24 hours	$\geqslant 9.42$	0.05	10.26	0.78	10.26
20	500	4	>24 hours	$\geqslant 10.01$	>24 hours	≥ 9.67	0.13	10.24	1.37	10.24

Results

Table 4: BHA vs. B\&BD solution quality

N	R	J	BHA	B\&BD	Gap (\%)
20	20	3	10.281	10.281	0
20	20	4	10.271	10.28	0.09
20	20	5	10.283	10.294	0.11
20	20	6	10.290	10.302	0.12
20	20	7	10.292	10.306	0.14
20	20	8	10.330	10.336	0.06
20	20	9	10.329	10.335	0.06
20	20	10	10.293	10.300	0.07

Results

N	R	J	BHA (s)
50	500000	2	56.19
50	500000	3	77.46
50	500000	4	187.41
50	500000	5	163.23
50	500000	6	194.24
50	1000000	2	68.24
50	1000000	3	132.98
50	1000000	4	312.43
50	1000000	5	300.40
50	1000000	6	412.53

Results

Table 5: B\&BD with Guidance - 10\% gap

N	R	J	normal w/out VIs (s)	$\begin{gathered} \text { normal } \\ \text { w VIs (s) } \end{gathered}$	Guided w/out VIs (s)	Guided w VIs (s)	Speedup from just VIs (\%)	Add. Speedup from Sol. (\%)	Total speedup (\%)
50	1000	3	987	1132	731	816	-14.69	27.92	17.33
50	2000	3	2878	3490	2513	2693	-21.26	22.84	6.43
50	3500	3	10325	12919	6390	7454	-25.12	42.3	27.81
50	1000	4	4662	3311	3705	2472	28.98	25.34	46.98
50	2000	4	17599	12068	10868	8288	31.43	31.32	52.91
50	3500	4	48445	31210	40061	29504	35.58	5.47	39.1
50	1000	5	8242	5428	5664	3914	34.14	27.89	52.51
50	2000	5	25842	16641	17420	12268	35.6	26.28	52.53
50	3500	5	114216	81826	85083	58754	28.36	28.2	48.56

Results

Table 6: B\&BD with Guidance - 5% gap

N	R	J	normal w/out VIs (s)	normal w VIs (s)	Guided w/out VIs (s)	Guided w VIs (s)	Speedup from just VIs (\%)	Add. Speedup from Sol. (\%)	Total speedup (\%)
50	1000	3	2372	2454	1933	2245	-3.46	8.52	5.35
50	2000	3	7883	8359	7106	7342	-6.04	12.17	6.86
50	3500	3	51964	57229	42991	47282	-10.13	17.38	9.01
50	1000	4	12062	10668	10490	8934	11.56	16.25	25.93
50	2000	4	43829	36524	36222	32929	16.67	9.84	24.87
50	3500	4	259200	240767	238777	198981	7.11	17.36	23.23
50	1000	5	24371	20590	19519	16930	15.51	17.78	30.53
50	2000	5	84104	60814	70676	48541	27.69	20.18	42.28
50	3500	5	259200	259200	259200	247944	,	-	-

Results

Table 7: $\mathrm{B} \& \mathrm{BD}$ with Guidance - 1% gap

N	R	J	normal w/out VIs (s)	normal w VIs (s)	Guided w/out VIs (s)	Guided w VIs (s)	Speedup from just VIs (\%)	Add. Speedup from Sol. (\%)	Total speedup (\%)
50	1000	3	15840	16933	13239	14594	-6.9	13.81	7.87
50	2000	3	42261	45223	35882	37137	-7.01	17.88	12.12
50	3500	3	183696	195743	152833	162594	-6.56	16.93	11.49
50	500	4	47101	46719	47963	43190	0.81	7.55	8.3
50	1000	4	13122	135564	107288	105596	-3.39	22.11	19.47
50	1500	4	229620	230187	203348	202560	-0.25	12	11.78
50	2000	4	259200	259200	259200	259200	-	-	-
50	500	5	139618	125755	115783	109084	9.93	13.26	21.87
50	1000	5	259200	259200	259200	259200	-	-	-

Outline

- Introduction
- Methodology
- Experimental Results
- Conclusions

TRANSP-DR

Conclusions

With capacity constraints

- Exact: BEAC ≈ 20 times faster than MILP (for two prices or less).
- Heuristic: BHA up to 1000x times faster than BEAC (especially in high dim).

Without capacity constraints

- Heuristic: BHA outspeeds other approaches by factors $\geqslant \mathbf{1 0}^{\mathbf{6}}$ but can get stuck in locally.
- Exact: Using the solution of the BHA together with valid inequalities, we can speed up the exact spatial $B \& B D$ algorithm by $\approx \mathbf{2 0 \%}$ (more in the beginning).

Future work

Pricing

- Assortment optimization on top of pricing.
- Could add any constraints for BEA / BHA since they only evaluate objective function.
- Improve escaping local optima.

Extension to other optimization problems

- Facility location, Airline scheduling and fleet assignment.
- Maximum likelihood estimation (utility depending on multiple parameters)
- B\&BD
- BEA X
- BHA $\checkmark \rightarrow$ Tradeoff between large R and optimality gap. Does not require linearity in β.

Appendix - Utility parameters reported in [lbeas et al., 2014]

Parameter	Value
ASC FSP	0.0
ASCPSP	32.0
ASC PUP	34.0
Fee ($€$)	$\sim \mathcal{N}(-32.328,14.168)$
Fee PSP - low income $(€)$	-10.995
Fee PUP - low income ($€$)	-13.729
Fee PSP - resident $(€)$	-11.440
Fee PUP - resident $(€)$	-10.668
Access time to parking (\min)	$\sim \mathcal{N}(-0.788,1.06)$
Access time to destination (\min)	-0.612
Age of vehicle $(1 / 0)$	4.037
Origin $(1 / 0)$	-5.762

MILP formulation [Paneque et al., 2021]

$$
\begin{equation*}
\max _{p, \omega, U, h} \frac{1}{R} \sum_{r \in \mathcal{R}} \sum_{n \in \mathcal{N}} \sum_{i \in C_{n}} p_{i} \omega_{i n r} \tag{o}
\end{equation*}
$$

s.t.

$$
\begin{aligned}
& \sum_{i \in C_{n} \cup\{0\}} \omega_{i n r}=1 \\
& h_{n r}=c_{0 n r} \omega_{0 n r}+\sum_{i \in C_{n}} U_{i n r} \omega_{i n r} \\
& h_{n r} \geqslant c_{0 n r} \\
& h_{n r} \geqslant U_{i n r} \\
& U_{i n r}=c_{i n r}+\beta_{p}^{i n} p_{i} \\
& \omega \in\{0,1\}^{(J+1) N R} \\
& p \in\left[p_{1}^{L}, p_{1}^{U}\right] \times \ldots \times\left[p_{J}^{L}, p_{J}^{U}\right] \\
& U, h \in \mathbb{R}^{J N R}, \mathbb{R}^{N R}
\end{aligned}
$$

Results BEA

N	R	J	BEA (s)
50	500	3	117167
50	1000	3	259200
50	1500	3	259200
50	2000	3	259200
50	2500	3	259200
50	3000	3	259200
50	3500	3	259200

Breakpoint Exact Algorithm (BEA) [Haering et al., 2023]

```
Result: optimal solution \(p^{*}\) and profit \(o^{*}\) for CPP.
```

```
p
```

p
o*}\leftarrow
o*}\leftarrow
for s in S do
for s in S do
$p_{s_{j}} \leftarrow 0 \quad \forall j \in\{1, \ldots, J\}$
$h_{n r}^{s_{1}} \leftarrow c_{0 n r} \quad \forall(n, r) \in \mathcal{N} \times \mathcal{R}$
$\eta_{n r} \leftarrow 0 \quad \forall(n, r) \in \mathcal{N} \times \mathcal{R}$
$(\hat{p}, \hat{o}) \leftarrow$ enumerate $\left(s, p, h^{s_{1}}, \eta, 1\right)$
if $\hat{o}>o^{*}$ then
$p^{*} \leftarrow \hat{p} ;$
$o^{*} \leftarrow \hat{o} ;$
end
end

```
Algorithm 1: Breakpoint Exact Algorithm (BEA) to solve the CPP

\section*{Capacity constraints}
\[
\begin{array}{lr}
\omega_{i n r} \leqslant y_{i n r} & \forall i \in C_{n}, \in \mathcal{N}, r \in \mathcal{R} \\
\sum_{m=1}^{n} \omega_{i m r} \leqslant \underset{\substack{\left(c_{i}-1\right) y_{i n r}+\\
(n-1)\left(1-y_{i n r}\right)}}{ } & \forall i \in C_{n}, n>c_{i} \in \mathcal{N}, r \in \mathcal{R} \\
\sum_{m=1}^{n} \omega_{i m r} \geqslant c_{i}\left(1-y_{i n r}\right) & \forall i \in C_{n}, n>1 \in \mathcal{N}, r \in \mathcal{R}
\end{array}
\]

\section*{Compute Objective Value with Priority Queue}
```

Function compute_objective_value_with_priority_queue(}p,c,\mathrm{ prio_queue):
\varsigma\leftarrow(0) i\inC
for idx f prio_queue do
u\leftarrow[UUidx for i\inC]
a}\leftarrow\operatorname{sort(}(u,\mathrm{ descending)
\varphi \leftarrow false
j\leftarrow1
while j\leqslantC-1 and ! }\varphi\mathrm{ do
if }\mp@subsup{\varsigma}{\mp@subsup{a}{j}{}}{}\leqslant\mp@subsup{c}{\mp@subsup{a}{j}{}}{}-1\mathrm{ then
\varsigma}\mp@subsup{\}{j}{}+=
\varphi \leftarrow true
end
else
j+=1
end
end
end
o}\leftarrow\mp@subsup{\sum}{i\inC}{}\mp@subsup{\varsigma}{i}{}\cdot\mp@subsup{p}{i}{
return o
end

```

\section*{Compute Objective Value with Capacities (profit max/min)}
```

Function compute_objective_value_with_capacities ($p, c ; \max$):
$s \leftarrow \operatorname{sortperm}(p)$
$\varsigma \leftarrow(0)_{i \in C}$
$A \leftarrow\}$
for $i d x \in \mathcal{N} \times \mathcal{R}$ do
$u \leftarrow\left[U_{i d x}^{i}\right.$ for $\left.i \in C\right]$
$a \leftarrow \operatorname{sort}(u$, descending)
$A \leftarrow A \cup\{a\}$
if max then
$A \leftarrow \operatorname{sort}(A$, ascending $)$
else
$L A \leftarrow \operatorname{sort}(A$, descending $)$
while $|A| \geqslant 1$ do
$\pi \leftarrow A_{11}$
$A \leftarrow A \backslash\left\{A_{1}\right\}$
if $\pi \geqslant 1$ then
$\varsigma_{s_{\text {next_pref }}}+=1$
if $\varsigma_{S_{\text {next_pref }}}=c_{s_{\text {next_pree }}}$ then
Remove all entries π from A
if \max then
$A \leftarrow \operatorname{sort}(A$, ascending $)$
else
$A \leftarrow \operatorname{sort}(A$, descending $)$

```

\section*{Results}

Table 8: Test 2: Priority queue vs. Max profit vs. Robust Optimization
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{\(N\)} & \multirow[b]{2}{*}{\(R\)} & \multirow[b]{2}{*}{\(J\)} & \multicolumn{2}{|l|}{BEAC} & \multicolumn{2}{|l|}{BEAC-M} & \multicolumn{2}{|l|}{BEAC-R} \\
\hline & & & Time (s) & Profit & Time (s) & Profit & Time (s) & Profit \\
\hline 50 & 2 & 2 & 0.43 & 27.61 & 0.44 & 28.81 & 0.45 & 27.61 \\
\hline 50 & 5 & 2 & 1.72 & 26.51 & 1.78 & 28.44 & 1.82 & 26.46 \\
\hline 50 & 10 & 2 & 11.42 & 27.06 & 12.88 & 28.3 & 12.98 & 27.01 \\
\hline 50 & 25 & 2 & 169.08 & 27.08 & 197.23 & 28.58 & 189.28 & 27.06 \\
\hline 50 & 50 & 2 & 1272.68 & 26.85 & 1513.44 & 28.61 & 1523.89 & 26.85 \\
\hline 50 & 100 & 2 & 9928.57 & 26.85 & 12093.8 & 28.57 & 12494.13 & 26.85 \\
\hline 50 & 250 & 2 & \(>45\) hours & \(\geqslant 25.00\) & \(>45\) hours & \(\geqslant 26.63\) & \(>45\) hours & \(\geqslant 24.34\) \\
\hline
\end{tabular}

\section*{Bibliography I}

目 Gallego, G. and Wang, R. (2014).
Multiproduct price optimization and competition under the nested logit model with product-differentiated price sensitivities.
Operations Research, 62(2):450-461.
居 Gilbert, F., Marcotte, P., and Savard, G. (2014).
Mixed-logit network pricing.
Computational Optimization and Applications, 57:105-127.
Re Haering, T., Legault, R., Torres, F., Ljubic, I., and Bierlaire, M. (2023).
Exact algorithms for continuous pricing with advanced discrete choice demand models. Technical Report TRANSP-OR 231211, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

TRANSP-OR

\section*{Bibliography II}

國 Ibeas, A., Dell’Olio, L., Bordagaray, M., and Ortúzar, J. d. D. (2014).
Modelling parking choices considering user heterogeneity.
Transportation Research Part A: Policy and Practice, 70:41-49.
Korfmann, F. (2018).
Essays on Advanced Discrete Choice Applications.
PhD thesis, Staats-und Universitätsbibliothek Hamburg Carl von Ossietzky.
( Marandi, A. and Lurkin, V. (2020).
An exact algorithm for the static pricing problem under discrete mixed logit demand. arXiv preprint arXiv:2005.07482.
國 Müller, D., Nesterov, Y., and Shikhman, V. (2021).
Dynamic pricing under nested logit demand.


\section*{Bibliography III}Paneque, M. P., Bierlaire, M., Gendron, B., and Azadeh, S. S. (2021).
Integrating advanced discrete choice models in mixed integer linear optimization.
Transportation Research Part B: Methodological, 146:26-49.
(10neque, M. P., Gendron, B., Azadeh, S. S., and Bierlaire, M. (2022).
A lagrangian decomposition scheme for choice-based optimization.
Computers \& Operations Research, 148:105985.
Shen, Z.-J. M. and Su, X. (2007).
Customer behavior modeling in revenue management and auctions: A review and new research opportunities.
Production and operations management, 16(6):713-728.

\section*{Bibliography IV}
van de Geer, R. and den Boer, A. V. (2022).
Price optimization under the finite-mixture logit model.
Management Science, 68(10):7480-7496.
目 Wu, D., Yin, Y., Lawphongpanich, S., and Yang, H. (2012).
Design of more equitable congestion pricing and tradable credit schemes for multimodal transportation networks.
Transportation Research Part B: Methodological, 46(9):1273-1287.```

