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§ Domestic energy usage can be considered as being derived from the activity patterns of 
individuals inside the home (Rezvany et al. 2021).

§ Domestic energy usage: energy used in residential buildings including electricity, heating, 
and hot water.

§ As such an activity-based energy demand model that can create in-home energy usage 
profiles from household activity patterns is the key to a better building energy demand 
analysis.
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• Activity-based models portray how people plan their activities and travels over a period of 
time such as a day.

• This approach has been of interest to transport modellers as the demand for travel is 
assumed to be driven by participation in activities which are distributed in space and time.

• However, using ABMs in the domain of domestic energy demand research is still very 
limited and the human behaviour element is frequently neglected in the energy demand 
literature.

4Activity-based models (ABMs)
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High-level research question 6

High-level research question: "How can we simulate the domestic energy demand from 
household activity schedules from first principles?" 



§ In order to achieve this high-level objective, we should answer the following research 
questions:

1. How to incorporate in-home and out-of-home activity scheduling in a single scheduling 
model with intra-household interactions? (Rezvany et al. 2023)

2. How can we create in-home energy usage profiles from household activity patterns?
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A framework for joint simulation of in- and out-of-home activities, capturing intra-household 
interactions (Rezvany et al. 2023)
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§ Goal: find the relation between building energy usage and activity profiles
• Ideal scenario: overlapping energy usage data with activity diary survey data
• Pragmatic scenario: However, there is no data containing information on both

household activity schedules and energy usage.

§ BUT we have detailed data on building energy usage, as well as, detailed time-use-data, 
separately (no overlap between data).
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• New goal: How do we use energy data to enhance existing activity models? 
§ Add functionality to ABM model
§ Generate energy demand profiles
§ Without having overlapping data to train it

• We looked in the literature to see if anyone tried to link energy and activity data to create 
a joint model. 

• Now, however, there are parallels to similar problems in other contexts (e.g. detecting 
pedestrian activity patterns from WiFi signatures)

How can we create activity patterns from in-home energy usage profiles? 10



§ Wifi traces are not accurate; either precise sensors with incomplete coverage or full 
coverage with imprecise sensors.

§ As a result, data are scarce, fuzzy, or both.

§ How this is relevant to our problem? 
• Cooking hob on à We do not know if they are doing another activity on the side (e.g. chopping food 

simultaneously)/ multiple people are helping in the cooking at the same time à not exact indication of 
the start and end time of food preparation process à Noisy representation of activity à need a joint 
probabilistic model

Appliance use ≠ Activity pattern

From Wifi traces to activity episodes 11



§ Goal: extract the possible activity-episode sequences 
performed by pedestrians from digital traces in a 
communication network.

§ Methodology: a Bayesian approach merges measured 
network traces and pedestrian semantically-enriched 
routing graph to compute the likelihood that a given 
sequence of activity episodes has actually generated 
the observed traces.

§ Output: candidate activity schedules associated with 
the likelihood to be the true one.

A Bayesian approach to detect pedestrian destination-sequences from 
WiFi signatures (Danalet et al. 2014)
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Schematic view of our approach
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§ A Bayesian approach merging the measured building energy profiles and semantically-
enriched activity-related energy demand profiles to compute the likelihood that a given 
sequence of activity episodes has actually generated the observed energy profiles.
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Schematic view of our approach
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Energy dataset 
Intelligent Domestic Energy Advice Loop (IDEAL)

(Pullinger et al., 2021; Goddard et al., 2021)

§ Comprises data from 255 homes in Edinburgh and the 
nearby regions.

§ Collected over a 20-month period between August 2016 
and June 2018.

§ Enhanced appliance-level energy monitors in 39 of 255 
homes.
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* Click and drag diary

Time use survey
CaDDI* survey - 2016-2020 UK TUS

(Gershuny and Sullivan, 2021)

§ 4’360 diaries from 2’202 individuals across 4 waves

§ 4 waves (2016 & late May-June, August, November 2020)

§ Contains 1 to 3 time-use diaries per respondent (include 1 
weekday and 1 weekend day)

§ Includes information on socio-demographic variables, 
activities, location, enjoyment, and co-presence
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Toaster:

Kettle:

Cooker:



Exploration of data: Appliance energy profiles

Cooking hob:

Dishwasher:

à looking for a set of patterns and rules…
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Kitchen ambient light:

Electricity usage – cooking hub:
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Distribution of "Preparing food/cooking" activity:

Distribution of "electric oven" usage:
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Distribution of ”Housecare" activity

Distribution of ”vacuum cleaner " usage
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Summary:
§ Joint model of domestic energy and activity profiles
§ Recreate household activity patterns from domestic energy usage profiles
§ Non-overlapping data
§ Probabilistic model - Bayesian approach
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