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=PFL  Motivation

= Common element: behavior
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£PFL  Introduction

= Question:
« How can we jointly model energy and transportation demand from
behavioral first principles?
= Proposed solution:
 Activity-based approach to model complex individual behaviors
= Capture relationships between participations in various activities.
= Model high-level demand as the result of the interactions of multiple agents.

= Can represent complex behaviors within a city or region to test more flexible
scenarios and policies.
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Research questions

What are the essential components to integrate transport and energy
demand models?

» General framework

How to?incorporate in-home and out-of-home activity scheduling in a single

model”

« Scheduling (in/out-of-home activities) model based on first-principles

How to operationalize integrated simulation of transportation and energy

demand?

* Incorporating the proposed scheduling model for simulation of agent-based energy
model

How to account for wider interactions and correlations that affect individuals’

activity scheduling?

- Extending the daily scheduling model to account for interactions and correlations; inter-
household interactions/ day-to-day scheduling correlations.



£PFL  Research Plan

WP1: Problem definition
WP2: Daily scheduling model (joint in- and out-of-home activities)

WP3: Model application and scenario-testing

WP4: Extended scheduling model with interactions



£PFL  Research Plan

= WP1: Problem definition



=PFL  Research plan :
WP1: Problem definition S

This workpackage aims to answer research question 1, i.e. “What are the essential
components to integrate transport and energy demand models?”.

Literature review on transportation and energy demand modelling

Establish the state-of-research in transport and energy demand modelling

|dentify suitable approach for joining the two domains

General framework
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Framework
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Literature review

= What approaches have been used to (independently) model transportation and
building energy demand?

= How have the links between in-house and transportation energy demand been
analyzed in the literature?

= To what extent has activity-based modeling been applied to analyze urban-scale
energy demand?
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EPFL  Limitations of the current models )

= Contextual:

» Transportation and energy demand has not been considered in a single framework
together
« The human behavior element is frequently neglected in the energy demand literature
« The current approaches to simulate the activity patterns focus on either
time-use in home or out-of-home activities and not both

» Thus, the interactions between in- and out-of-home activities (e.g., squeezing in-home activities
when spending more time on out-of-home activities) are not considered

= Methodological:

« Empirical rule-based or randomized sequential process to determine individuals’ activity
scheduling
» Hard-coded and cannot be generalised to situations not seen in the data

» Do not represent the nature of scheduling process and cannot capture complex trade-offs and
household interaction



=PFL  Key advantages of the proposed framework @ "

1. Integrates the human behavior to the models Can be generalized to complex scheduling and
by including activity scheduling in the core mobility situations

2. CaptureS the tra.d.e.'Offs between in-home and - Captures their Corresponding energy demand
out-of-home activities

3. Provides a detailed activity scheduling as an
input to building energy demand simulators
rather than using building occupancy profiles

Address the limitations of occupancy-based models
in which behavior of individuals is lost

4. Based on the activity-based modeling A significant new opportunity for the development of
paradigm = bottom-up urban energy demand models
(Sola et al. 2020)
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Research Plan

WP2: Daily scheduling model (joint in- and out-of-home activities)
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4:02am

MEDIUM FASTy

The simulation kicks in, based on
data from the American Time Use
Survey.

This is a simulation of 1,000 people's

average day. It's based on 2014 data from
the American Time Use Survey, made way more

m accessible by the ATUS Extract Builder.

A day in life of Americans (source: FlowingData)
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=PFL  Scheduling framework

Wiy activity participation (1/0)

Q, = max z WinUin

i

= Build on the scheduling model developed by Pougala et al. (2021):

Utility-based optimisation model
Generate distribution of schedules from which likely schedules can be stochastically drawn

Incorporates simultaneous estimation of multiple scheduling decisions such as activity
participation, and activity scheduling (start time, duration, sequence)

Output: a feasible schedule

= Extend the framework to:

Incorporate joint modelling of time-use in the home alongside activities outside the home
Incorporates estimation of activity location as well as other scheduling decisions



ePFL  Dataset

CaDDI* survey: 2016-2020 UK TUS Pre- and During Covid-19 Social
Restrictions (Gershuny & Sullivan, 2021)

= A sequence of online time-use diary surveys designed to capture daily behavior throughout
the various stages of the pandemic in the UK

4’360 diaries from 2’202 individuals across 4 waves
4 waves (2016 & late May-June, August, November 2020)
,/_  Ta

full lockdown second lockdown
during the easing of social restrictions
Contains 1 to 3 time-use diaries per respondent (include 1 weekday and 1 weekend day)

Includes information on socio-demographic variables, activities, location, device use,
enjoyment, and co-presence

® *Click and drag diary
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=PFL  Data pre-process "’

mainid survey dday econstat pri1 pri2 pri3 pri4 pri5 pri6 .. pri135 pri136 pri137 pri138 pri139 pri140 pri141 pri142 pri143 pri144 loc1 loc2 loc3 loc4 loc5 loc6é .. loci35 loc136 loc137 loc138 loc139 loc140 loc141 loc142 loc143 loc144
[} 47 1.0 3 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
1 47 1.0 6 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 203 203 203 203 203 203 203 203 203 203
2 62 1.0 1 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
3 62 1.0 7 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4 69 1.0 1 10 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4355 41766 4.0 3 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4356 41766 4.0 4 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4357 41769 4.0 7 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4358 41771 4.0 1 3 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201
4359 41772 4.0 5; 5 101 101 101 101 101 101 .. 101 101 101 101 101 101 101 101 101 101 201 201 201 201 201 201 .. 201 201 201 201 201 201 201 201 201 201

mainid dday act_id loc_id location act_label label start_time end_time duration

0 47 3 101 201 Home Sleeping Sleep  4.000000 6.333333 2.333333

1 47 3 103 201 Home Washing, dressing Personal care  6.333333  7.000000 0.666667

2 47 3 121 201 Home Caring for own child Home care  7.000000 8.500000 1.500000

3 47 3 111 203 Other Walking, Jogging Trips  8.500000 10.000000 1.500000

4 47 3 117 202 Work Paid work Work 10.000000 13.000000 3.000000

50345 41772 5 118 201 Home Formal education Study 14.000000 15.000000 1.000000

50346 41772 5 125 201 Home Work,study break Leisure 15.000000 17.000000 2.000000

50347 41772 5 105 201 Home Preparing food, cooking etc Home care 17.000000 21.000000 4.000000
50348 41772 5 127 201 Home Watching tv,video,dvd,music Leisure 22.000000 23.500000 1.500000

50349 41772 5 101 201 Home Sleeping Sleep 23.500000 4.000000 4.500000



=PFL  Data pre-process .

2016-2020
UK TUS

Cleaning the data
\ J

.
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,
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\ dalta J
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A4

Plot the distribution of “start_time” and
“duration” of each activity category

y

Determine the preferences of each activity Scheduling
category for each employment status group preferences
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Data pre-process

20

= Examples of activity schedule distributions for “Employed” individuals:

Sleep(overnight) weekday count by start_time
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Scheduling model

Scheduling
preferences

Feasible
time
windows

Flexibility
profiles

Penalties

Scheduling
model
simulator
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EPFL  Some results:

Employed (weekday)
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EPFL  Some results:

Student (weekday)

x1: location ‘Home’
x2: location ‘Work/Other’

* The grey bars between activities show ‘trips’
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Current challenges

= Limitations of the data:
* No data on the location coordinates =

o Limitations estimating travel times
o Limitations modeling mode choice behavior

24



2PFL  Further research *

o Improve utility specifications
in- and out-of-nome activities)—>— Parameter estimation
Find solution to travel times estimation

= WP2: Daily s
WP3: Model application and scenario-testing

WP4: Extended scheduling model with interactions
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