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Introduction

Motivation

Human dimension in

engineering

business

marketing

planning

policy making

Need for

behavioral theories

quantitative methods

operational mathematical models
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Introduction

Motivation

Concept of demand

marketing

transportation

energy

finance

Concept of choice

brand, product

mode, destination

type, usage

buy/sell, product
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Introduction

In this lecture...

Focus

Individual behavior (vs. aggregate behavior)

Theory of behavior which is

descriptive (how people behave) and not normative (how they should
behave)
general: not too specific
operational: can be used in practice for forecasting

Type of behavior: choice
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Microeconomics

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her
outcome

Utility

Un : Cn −→ R : a Un(a)

captures the attractiveness of an alternative

measure that the decision maker wants to optimize

Behavioral assumption

the decision maker associates a utility with each alternative

the decision maker is a perfect optimizer

the alternative with the highest utility is chosen
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Microeconomics Microeconomic consumer theory

Microeconomic consumer theory

Continuous choice set

Consumption bundle

Q =

 q1
...
qL

 ; p =

 p1
...
pL


Budget constraint

pTQ =
L∑
`=1

p`q` ≤ I .

No attributes, just quantities
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Microeconomics Preferences

Preferences

Operators �, ∼, and %

Qa � Qb: Qa is preferred to Qb,

Qa ∼ Qb: indifference between Qa and Qb,

Qa % Qb: Qa is at least as preferred as Qb.

Rationality

Completeness: for all bundles a and b,

Qa � Qb or Qa ≺ Qb or Qa ∼ Qb.

Transitivity: for all bundles a, b and c ,

if Qa % Qb and Qb % Qc then Qa % Qc .

“Continuity”: if Qa is preferred to Qb and Qc is arbitrarily “close” to
Qa, then Qc is preferred to Qb.

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 10 / 111



Microeconomics Utility maximization

Utility

Utility function

Parameterized function:

Ũ = Ũ(q1, . . . , qL; θ) = Ũ(Q; θ)

Consistent with the preference indicator:

Ũ(Qa; θ) ≥ Ũ(Qb; θ)

is equivalent to
Qa % Qb.

Unique up to an order-preserving transformation
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Microeconomics Utility maximization

Optimization

Optimization problem

max
Q

Ũ(Q; θ)

subject to
pTQ ≤ I , Q ≥ 0.

Demand function

Solution of the optimization problem

Quantity as a function of prices and budget

Q∗ = f (I , p; θ)

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 12 / 111



Microeconomics Utility maximization

Example: Cobb-Douglas
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Microeconomics Utility maximization

Example
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Microeconomics Utility maximization

Example

Optimization problem

max
q1,q2

Ũ(q1, q2; θ0, θ1, θ2) = θ0q
θ1
1 qθ2

2

subject to
p1q1 + p2q2 = I .

Lagrangian of the problem:

L(q1, q2, λ) = θ0q
θ1
1 qθ2

2 + λ(I − p1q1 − p2q2).

Necessary optimality condition

∇L(q1, q2, λ) = 0
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Microeconomics Utility maximization

Example

Necessary optimality conditions

θ0θ1q
θ1−1
1 qθ2

2 − λp1 = 0 (×q1)

θ0θ2q
θ1
1 qθ2−1

2 − λp2 = 0 (×q2)
p1q1 + p2q2 − I = 0.

We have
θ0θ1q

θ1
1 qθ2

2 − λp1q1 = 0

θ0θ2q
θ1
1 qθ2

2 − λp2q2 = 0.

Adding the two and using the third condition, we obtain

λI = θ0q
θ1
1 qθ2

2 (θ1 + θ2)

or, equivalently,

θ0q
θ1
1 qθ2

2 =
λI

(θ1 + θ2)
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Microeconomics Utility maximization

Solution

From the previous derivation

θ0q
θ1
1 qθ2

2 =
λI

(θ1 + θ2)

First condition

θ0θ1q
θ1
1 qθ2

2 = λp1q1.

Solve for q1

q∗1 =
Iθ1

p1(θ1 + θ2)

Similarly, we obtain

q∗2 =
Iθ2

p2(θ1 + θ2)
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Microeconomics Utility maximization

Optimization problem

q1

q2

q∗1

q∗2

I/p1

I/p2
Income constraint
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Microeconomics Utility maximization

Demand functions

Product 1

q∗1 =
I

p1

θ1

θ1 + θ2

Product 2

q∗2 =
I

p2

θ2

θ1 + θ2

Comments

Demand decreases with price

Demand increases with budget

Demand independent of θ0, which does not affect the ranking

Property of Cobb Douglas: the demand for a good is only dependent
on its own price and independent of the price of any other good.
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Microeconomics Utility maximization

Demand curve (inverse of demand function)
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Microeconomics Indirect utility

Indirect utility

Substitute the demand function into the utility

U(I , p; θ) = θ0

(
I

p1

θ1

θ1 + θ2

)θ1
(

I

p2

θ2

θ1 + θ2

)θ2

Indirect utility

Maximum utility that is achievable for a given set of prices and income

In discrete choice...

only the indirect utility is used

therefore, it is simply referred to as “utility”
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Microeconomics Indirect utility

Microeconomic theory of discrete goods

Expanding the microeconomic framework

Continuous goods

and discrete goods

The consumer

selects the quantities of continuous goods: Q = (q1, . . . , qL)

chooses an alternative in a discrete choice set i = 1, . . . , j , . . . , J

discrete decision vector: (y1, . . . , yJ), yj ∈ {0, 1},
∑

j yj = 1.

Note

In theory, one alternative of the discrete choice combines all possible
choices made by an individual.

In practice, the choice set will be more restricted for tractability
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Microeconomics Utility maximization

Utility maximization

Utility

Ũ(Q, y , z̃T y ; θ)

Q: quantities of the continuous good

y : discrete choice

z̃T = (z̃1, . . . , z̃i , . . . , z̃J) ∈ RK×J : K attributes of the J alternatives

z̃T y ∈ RK : attributes of the chosen alternative

θ: vector of parameters
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Microeconomics Utility maximization

Utility maximization

Optimization problem

max
Q,y

Ũ(Q, y , z̃T y ; θ)

subject to
pTQ + cT y ≤ I∑

j yj = 1

yj ∈ {0, 1},∀j .

where cT = (c1, . . . , ci , . . . , cJ) contains the cost of each alternative.

Solving the problem

Mixed integer optimization problem

No optimality condition

Impossible to derive demand functions directly
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Microeconomics Utility maximization

Solving the problem

Step 1: condition on the choice of the discrete good

Fix the discrete good, that is select a feasible y .

The problem becomes a continuous problem in Q.

Conditional demand functions can be derived:

q`|y = f (I − cT y , p, z̃T y ; θ),

or, equivalently, for each alternative i ,

q`|i = f (I − ci , p, z̃i ; θ).

I − ci is the income left for the continuous goods, if alternative i is
chosen.

If I − ci < 0, alternative i is declared unavailable and removed from
the choice set.
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Microeconomics Utility maximization

Solving the problem

Conditional indirect utility functions

Substitute the demand functions into the utility:

Ui = U(I − ci , p, z̃i ; θ) for all i ∈ C.

Step 2: Choice of the discrete good

max
y

U(I − cT y , p, z̃T y ; θ)

Enumerate all alternatives.

Compute the conditional indirect utility function Ui .

Select the alternative with the highest Ui .

Note: no income constraint anymore.
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Microeconomics Utility maximization

Simple example: mode choice

Attributes

Attributes
Alternatives Travel time (t) Travel cost (c)

Car (1) t1 c1

Bus (2) t2 c2

Utility

Ũ = Ũ(y1, y2),

where we impose the restrictions that, for i = 1, 2,

yi =

{
1 if travel alternative i is chosen,
0 otherwise;

and that only one alternative is chosen: y1 + y2 = 1.
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Microeconomics Utility maximization

Simple example: mode choice

Choice set

(1, 0)

(0, 1)

•

•

y 2

y1
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Microeconomics Utility maximization

Simple example: mode choice

Utility functions

U1 = −βtt1 − βcc1,
U2 = −βtt2 − βcc2,

where βt > 0 and βc > 0 are parameters.

Equivalent specification

U1 = −(βt/βc)t1 − c1 = −βt1 − c1

U2 = −(βt/βc)t2 − c2 = −βt2 − c2

where β > 0 is a parameter.

Choice

Alternative 1 is chosen if U1 ≥ U2.

Ties are ignored.
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Microeconomics Utility maximization

Simple example: mode choice

Choice

Alternative 1 is chosen if

−βt1 − c1 ≥ −βt2 − c2

or

−β(t1 − t2) ≥ c1 − c2

Alternative 2 is chosen if

−βt1 − c1 ≤ −βt2 − c2

or

−β(t1 − t2) ≤ c1 − c2

Dominated alternative

If c2 > c1 and t2 > t1, U1 > U2 for any β > 0

If c1 > c2 and t1 > t2, U2 > U1 for any β > 0

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 30 / 111



Microeconomics Utility maximization

Simple example: mode choice

Trade-off

Assume c2 > c1 and t1 > t2.

Is the traveler willing to pay the extra cost c2 − c1 to save the extra
time t1 − t2?

Alternative 2 is chosen if

−β(t1 − t2) ≤ c1 − c2

or

β ≥ c2 − c1

t1 − t2

β is called the willingness to pay or value of time

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 31 / 111



Microeconomics Utility maximization

Simple example: mode choice

c1 + βt1 = c2 + βt2

t1 − t2

c1 − c2

Alt. 1 is dominant

Alt. 2 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

β
1

Alt. 1 is chosen
Alt. 2 is chosen

c1 + βt1 = c2 + βt2

t1 − t2

c1 − c2

Alt. 1 is dominant

Alt. 2 is dominant

Alt. 2 is preferred

Alt. 1 is preferred

β
1

�

���

Alt. 1 is chosen

∗∗∗ ∗∗∗∗ ∗∗
∗

∗

∗ ∗ ∗

∗
∗
∗

∗
∗

∗∗ ∗
∗

∗
∗

∗
∗

∗

∗
Alt. 2 is chosen

×

×
×
×

××
×
×

××

×
×

××

×

×
×× ×

×
× ×

×

× ×××

×

×

×

×

×
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Microeconomics Probabilistic choice theory

Behavioral validity of the utility maximization?

Assumptions

Decision-makers

are able to process information

have perfect discrimination power

have transitive preferences

are perfect maximizer

are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is
chosen?
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Microeconomics The random utility model

Random utility model

Probability model

P(i |Cn) = Pr(Uin ≥ Ujn,∀j ∈ Cn),

Random utility

Uin = Vin + εin = βTXin + εin.

Similarity with linear regression

Y = βTX + ε

Here, U is not observed. Only the choice is observed.

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 34 / 111



Microeconomics The random utility model

Derivation

Joint distributions of εn

Assume that εn = (ε1n, . . . , εJnn) is a multivariate random variable

with CDF
Fεn(ε1, . . . , εJn)

and pdf

fεn(ε1, . . . , εJn) =
∂JnF

∂ε1 · · · ∂εJn
(ε1, . . . , εJn).

The random utility model: Pn(i |Cn) =

∫ +∞

ε=−∞

∂Fε1n,ε2n,...,εJn

∂εi
(. . . ,Vin − V(i−1)n + ε, ε,Vin − V(i+1)n + ε, . . .)dε
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Microeconomics The random utility model

Random utility model

The general formulation is complex.

We can derive specific models based on simple assumptions.
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The logit model

Road map

Microeconomics
in a nutshell

Logit and
MEV models

Optimization Discrete choice
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The logit model

Error term

Random utility

Uin = Vin + εin.

Assumptions about the distribution

Probit: central limit theorem: the sum of many i.i.d. random
variables approximately follows a normal distribution.

Logit: Gumbel theorem: the maximum of many i.i.d. random
variables approximately follows an Extreme Value distribution:
EV(η, µ).
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The logit model

The Extreme Value distribution EV(η, µ)

Probability density function (pdf)

f (t) = µe−µ(t−η)e−e
−µ(t−η)

Cumulative distribution function (CDF)

P(c ≥ ε) = F (c) =

∫ c

−∞
f (t)dt

= e−e
−µ(c−η)
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The logit model

The Extreme Value distribution

pdf EV(0,1)
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The logit model

The Extreme Value distribution

Properties

If
ε ∼ EV(η, µ)

then

E[ε] = η +
γ

µ
and Var[ε] =

π2

6µ2

where γ is Euler’s constant.

Euler’s constant

γ = lim
k→∞

k∑
i=1

1

i
− ln k = −

∫ ∞
0

e−x ln xdx ≈ 0.5772
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The logit model

Logit model

The random utility model: Pn(i |Cn) =

∫ +∞

ε=−∞

∂Fε1n,ε2n,...,εJn

∂εi
(. . . ,Vin − V(i−1)n + ε, ε,Vin − V(i+1)n + ε, . . .)dε

CDF

Assumption: i.i.d. EV distributions:

Fεn(ε1, . . . , εJn) =
Jn∏
i=1

e−e
−µεi .

Logit model

Pn(i |Cn) =
yine

Vin∑J
j=1 yjne

Vjn
.
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The logit model

Logit model

Uin = Vin + εin.

Why “logit”?

If Uin and Ujn are EV distributed, Uin − Ujn follows a logistic distribution.

Availability of alternatives

yin =

{
1 if i ∈ Cn,
0 otherwise.

yin=1 if alternative i is available to individual n.
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The logit model

Logit model

Expected maximum utility

If εin, i = 1, . . . , Jn are i.i.d. EV (0, µ), then

E[max
i

Uin] =
1

µ
ln

J∑
i=1

yjne
µVin .
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The logit model

Example

Two alternatives

V0n = 0

V1n = −10 ∗ price + 3

Choice probability

Pn(1|price) =
e−10∗price+3

e0 + e−10∗price+3
=

e−10∗price+3

1 + e−10∗price+3
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The logit model

Example
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The logit model

Beyond logit

Other distributional assumptions can be used.

Logit is not always consistent with observed behavior.

Trade-off between model complexity and behavioral realism.

Example: Multivariate Extreme Value models
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The logit model

MEV models

Definition

εn = (ε1n, . . . , εJn)

follows a multivariate extreme value distribution if it has the CDF

Fεn(ε1n, . . . , εJn) = e−G(e−ε1n ,...,e−εJn ),

where G : RJn
+ → R+ is a positive function with positive arguments, that

must verify some properties.
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The logit model

MEV models

Choice model

Pn(i) =
eVin+lnGi(eV )∑
j e

Vjn+lnGj(eV )
.

Expected maximum utility

E[max
j∈Cn

Ujn] =
1

µ
(logG (eV1n , . . . , eVJnn) + γ),

where γ is Euler’s constant
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The logit model

Road map

Microeconomics
in a nutshell

Logit and
MEV models

Profit maximization,
facility location

Optimization Discrete choice
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Profit optimization, facility location
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Profit optimization, facility location

A simple example

Data

C: set of movies

Population of N individuals

Utility function:
Uin = βinpin + f (zin) + εin

Decision variables

What movies to propose? yin

What price? pin
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Profit optimization, facility location

Profit maximization

Data

Two alternatives: my theater (m) and
the competition (c)

We assume an homogeneous
population of N individuals

Ucn = 0 + εcn

Umn = βnpm + cmn + εmn

βn < 0

Logit model: εmn i.i.d. EV
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Profit optimization, facility location

Heterogeneous population

Two groups in the population

Umn = βnpm + cmn + εmn

n = 1: Young fans:
2/3

β1 = −10, cm1 = 3

n = 2: Others: 1/3

β1 = −0.9, c1m = 0
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Profit optimization, facility location

Demand
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Profit optimization, facility location

Demand and revenues
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Profit optimization, facility location

Optimization

Profit maximization

Non linear

Non convex

Facility location

Discrete

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 58 / 111



Profit optimization, facility location

The main idea

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 59 / 111



Profit optimization, facility location

The main idea

Linearization

Hopeless to linearize the logit formula (we tried...)

Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability
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Profit optimization, facility location

A linear formulation

Utility function

Uin = Vin + εin =
∑
k

βkxink + f (zin) + εin.

Simulation

Assume a distribution for εin

E.g. logit: i.i.d. extreme value

Draw R realizations ξinr , r = 1, . . . ,R

The choice problem becomes
deterministic
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Profit optimization, facility location

Scenarios

Draws

Draw R realizations ξinr , r = 1, . . . ,R

We obtain R scenarios

Uinr =
∑
k

βkxink + f (zin) + ξinr .

For each scenario r , we can identify the largest utility.

It corresponds to the chosen alternative.
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Profit optimization, facility location

Capacities

Demand may exceed supply

Each alternative i can be chosen by
maximum ci individuals.

An exogenous priority list is available.

Can be randomly generated, or
according to some rules.

The numbering of individuals is
consistent with their priority.
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Profit optimization, facility location

Choice set

Variables

yi ∈ {0, 1} operator decision

ydin ∈ {0, 1} customer decision (data)

yin ∈ {0, 1} product of decisions

yinr ∈ {0, 1} capacity restrictions

Constraints

yin = ydinyi ∀i , n
yinr ≤ yin ∀i , n, r
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Profit optimization, facility location

Utility

Variables

Uinr utility

zinr =

{
Uinr if yinr = 1
`nr if yinr = 0

discounted utility

(`nr smallest lower bound)

Constraint: utility

Uinr =

Vin︷ ︸︸ ︷
βinpin + qd(xd) +ξinr ∀i , n, r
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Profit optimization, facility location

Utility (ctd)

Constraints: discounted utility

`nr ≤ zinr ∀i , n, r
zinr ≤ `nr + Minryinr ∀i , n, r

Uinr −Minr (1− yinr ) ≤ zinr ∀i , n, r
zinr ≤ Uinr ∀i , n, r
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Profit optimization, facility location

Choice

Variables

Unr = max
i∈C

zinr

winr =

{
1 if zinr = Unr

0 otherwise
choice

Constraints

zinr ≤ Unr ∀i , n, r
Unr ≤ zinr + Mnr (1− winr ) ∀i , n, r∑

i

winr = 1 ∀n, r

winr ≤ yinr ∀i , n, r
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Profit optimization, facility location

Capacity

Capacity cannot be exceeded ⇒ yinr = 1

n−1∑
m=1

wimr ≤ (ci − 1)yinr + (n − 1)(1− yinr ) ∀i > 0, n > ci , r

Capacity has been reached ⇒ yinr = 0

ci (yin − yinr ) ≤
n−1∑
m=1

wimr , ∀i > 0, n, r
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Profit optimization, facility location

Family of models

Constraints

Set of linear constraints characterizing choice behavior

Can be included in any relevant optimization problem.

Examples

Profit maximization

Facility location

Difficulties

big M constraints

large dimensions
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Profit optimization, facility location

Profit maximization

Profit

If pin is the price paid by individual to purchase option i , the revenue
generated by this option is

1

R

R∑
r=1

N∑
n=1

pinwinr .

Linearization

If ain ≤ pin ≤ bin, we define ηinr = pinwinr , and the following constraints:

ainwinr ≤ ηinr
ηinr ≤ binwinr

pin − (1− winr )bin ≤ ηinr
ηinr ≤ pin − (1− winr )ain
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Profit optimization, facility location

A case study

Challenge

Take a choice model from the literature.

It cannot be logit.

It must involve heterogeneity.

Show that it can be integrated in a
relevant MILP.

Parking choice

[Ibeas et al., 2014]
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Profit optimization, facility location

Parking choices [Ibeas et al., 2014]

Alternatives

Paid on-street parking

Paid underground parking

Free street parking

Model

N = 50 customers

C = {PSP,PUP,FSP}
Cn = C ∀n
pin = pi ∀n
Capacity of 20 spots

Mixture of logit models

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 72 / 111



Profit optimization, facility location

General experiments

Uncapacitated vs Capacitated case

Maximization of revenue

Unlimited capacity

Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

Reduced price for residents

Two scenarios
1 Subsidy offered by the municipality
2 Operator is forced to offer a reduced price
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Profit optimization, facility location

Uncapacitated vs Capacitated case

Uncapacitated
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Profit optimization, facility location

Computational time

Uncapacitated case Capacitated case
R Sol time PSP PUP Rev Sol time PSP PUP Rev

5 2.58 s 0.54 0.79 26.43 12.0 s 0.63 0.84 25.91
10 3.98 s 0.53 0.74 26.36 54.5 s 0.57 0.78 25.31
25 29.2 s 0.54 0.79 26.90 13.8 min 0.59 0.80 25.96
50 4.08 min 0.54 0.75 26.97 50.2 min 0.59 0.80 26.10

100 20.7 min 0.54 0.74 26.90 6.60 h 0.59 0.79 26.03
250 2.51 h 0.54 0.74 26.85 1.74 days 0.60 0.80 25.93
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Profit optimization, facility location

Facility location

Data

Uin: exogenous,

Ci : fixed cost to open a facility,

ci : operational cost per customer to run the facility.

Objective function

min
∑
i∈Ck

Ciyi +
1

R

∑
r

∑
i

∑
n

ciwinr
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Profit optimization, facility location

Benders decomposition

min
∑
i∈Ck

Ciyi +
1

R

∑
r

∑
i

∑
n

ciwinr

subject to

max
w

Unr =
∑
i

Uinrwinr∑
i

winr ≤ 1

winr ≤ yi

winr ≥ 0

winr , yi ∈ {0, 1}.
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Profit optimization, facility location

Benders decomposition

Customer subproblem: fix y∗i

max
w

Unr =
∑
i

Uinrwinr

subject to ∑
i

winr = 1

winr ≤ y∗i

winr ≥ 0.

Property

Totally unimodular: no integrality constraint is required.
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Profit optimization, facility location

Benders decomposition

Primal

min
w

U = −
∑
i

Uiwi

subject to∑
i

wi = 1

wi ≤ y∗i ∀i
wi ≥ 0.

Dual

max
λ,µ

λ+
∑
i

µiy
∗
i

subject to

λ+ µi ≤ −Ui ∀i
µi ≤ 0 ∀i
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Profit optimization, facility location

Bender decomposition

Ongoing work

Exploit the duality results to generate cuts for the master problem.

Investigate the use of Benders for other problems.

profit maximization,
maximum likelihood estimation of the parameters.
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Profit optimization, facility location

Road map

Microeconomics
in a nutshell

Logit and
MEV models

Profit maximization,
facility location

Activity-based models

Optimization Discrete choice
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Activity-based models

Outline

1 Introduction

2 Microeconomics

3 The logit model

4 Profit optimization, facility location

5 Activity-based models

6 Conclusion
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Activity-based models

Introduction

Travel demand is derived from activity
demand.

Activity demand is influenced by
socio-economic characteristics, social
interactions, cultural norms, basic
needs, etc. [Chapin, 1974]

Activity demand is constrained in space
and time [Hägerstraand, 1970].
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Activity-based models

Literature

Econometric models Rule-based models

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 84 / 111



Activity-based models

State of the art: econometric approach

[Bhat, 2005]

Multiple Discrete Continuous Extreme Value

Based on first principles.

Decision-maker solves an optimization problem, with a time budget.

Several alternatives may be chosen.

Model derived from KKT conditions.
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Activity-based models

State of practice

Sequence of decisions Source: [Scherr et al., 2020]
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Activity-based models

Research question

Relax the series of discrete choice models approach

The interactions of all decisions is complex.

Sequence of models is most of the time arbitrary.

Integrated approach

Develop a model involving many decisions:

activity participation,

activity location,

activity duration,

activity scheduling,

travel mode,

travel path.
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Activity-based models

Research objectives

Integrated approach based on first
principles.

Theoretical framework: utility
maximization.

Individuals solve a scheduling problem.

Important aspects: trade-offs on activity
sequence, duration and starting time.

Again, we replace the error terms by
draws.
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Activity-based models

Decision variables for individual n and draw r

For each (potential) activity a:

Activity participation: wanr ∈ {0, 1}.
Starting time: xanr ∈ {0, . . . ,T}.
Duration: τanr ∈ {0, . . . ,T}.
Scheduling: zabnr ∈ {0, 1}: 1 if activity b immediately follows a.
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Activity-based models

Objective function

Additive utility

max
∑
a∈A

wanrUanr + θt
∑
a∈A

∑
b∈A

zabnrρ(sa, sb,ma, pa).
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Activity-based models

Constraints

Time budget∑
a∈A

wanrτanr +
∑
a∈A

∑
b∈A

zabnrρ(sa, sb,ma, pa) = T , ∀n, r .

Time windows

0 ≤ γ−a ≤ xanr ≤ xanr + τanr ≤ γ+
a ≤ T , ∀a, n, r .
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Activity-based models

Constraints

Precedence constraints

zabnr + zbanr ≤ 1, ∀a, b, n, r .

Single successor/predecessor

∑
b∈A\{a}

zabnr = wanr , ∀a, n, r ,∑
b∈A\{a}

zbanr = wanr , ∀a, n, r .
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Activity-based models

Constraints

Consistent timing

(zabnr − 1)T ≤ xanr + τanr + tanr − xbnr ≤ (1− zabnr )T , ∀a, b, n, r .

where
tanr =

∑
b∈A

zabnrρ(sa, sb,ma, pa).

Other constraints...

mode of transportation

route

car availability

etc.

see [Pougala et al., 2021] for details
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Activity-based models

Optimization problem

Simulation-based optimization

For each realization of the error terms, we have an optimal schedule.

It includes all the choice dimensions (activity participation, location,
duration, scheduling, and mode and route).

We can generate an empirical distribution of chosen schedules.
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Activity-based models Example

Real data

Dataset

2015 Swiss Mobility and Transport
Microcensus.

Daily trip diaries for 57’000 individuals.

Records of activities, visited location,
mode/path choice.
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Activity-based models Example

Real data

Assumptions

Desired start times and durations are
the recorded ones.

Feasible time windows: percentiles
start and end times from out of sample
distribution.

Only the recorded locations are
considered.

Uniform flexibility profile across
population.
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Activity-based models Example

Individual 1 (weekday)

Optimal schedules generated for random draws of εan
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Activity-based models Example

Individual 2 (weekday)

Optimal schedules generated for random draws of εan
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Activity-based models Example

Individual 3 (weekday)

Optimal schedules generated for random draws of εan
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Activity-based models Example

Validation

Activity profiles for full-time workers, Lausanne area

Simulation Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
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Activity-based models Example

Validation

Activity profiles for individuals older than 65, Lausanne area

Simulation Microcensus

Source: SBB. Acknowledgment to Patrick Manser.

Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 101 / 111



Activity-based models Example

Validation

Activity profiles for students, Lausanne area

Validation Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
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Activity-based models Example

Validation

Activity profiles for primary school pupils, Lausanne area

Validation Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
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Activity-based models Example

Activity-based models

Ongoing work

Synthetic population

Estimation of the parameters

Social interactions
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Conclusion
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Conclusion

Conclusion

Microeconomics
in a nutshell

Logit and
MEV models

Profit maximization,
facility location

Activity-based models

Optimization Discrete choice

Tutorial

Research
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