Human Behavior and Optimization

Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering Ecole Polytechnique Fédérale de Lausanne

September 21, 2021

EPFL

1/111

September 21, 2021

Michel Bierlaire (EPFL)

Human Behavior and Optimization

Outline

Introduction

- 2 Microeconomics
- 3 The logit model
- 4 Profit optimization, facility location
- 5 Activity-based models

A D N A B N A B N A B N

Motivation

Human dimension in

- engineering
- business
- marketing
- planning
- policy making

Need for

- behavioral theories
- quantitative methods
- operational mathematical models

< ⊒ >

Motivation

Concept of demand

- marketing
- transportation
- energy
- finance

Concept of choice

- brand, product
- mode, destination
- type, usage
- buy/sell, product

September 21, 2021 4 / 111

< ⊒ >

Focus

- Individual behavior (vs. aggregate behavior)
- Theory of behavior which is
 - descriptive (how people behave) and not normative (how they should behave)
 - general: not too specific
 - operational: can be used in practice for forecasting
- Type of behavior: choice

5/111

September 21, 2021

Microeconomics in a nutshell

Microeconomics _____

Logit and MEV models

ED21

э

イロン イ理 とく ヨン イ ヨン

EPFL

э

<ロト <回ト < 回ト < 回ト < 回ト -

<ロト <回ト < 回ト < 回ト < 回ト -

э

Outline

1 Introduction

Microeconomics

- 3 The logit model
- 4 Profit optimization, facility location
- 5 Activity-based models

7/111

A D N A B N A B N A B N

Decision rule

Homo economicus

Rational and narrowly self-interested economic actor who is optimizing her outcome

Utility

$$U_n: \mathcal{C}_n \longrightarrow \mathbb{R}: a \rightsquigarrow U_n(a)$$

- captures the attractiveness of an alternative
- measure that the decision maker wants to optimize

Behavioral assumption

- the decision maker associates a utility with each alternative
- the decision maker is a perfect optimizer
- the alternative with the highest utility is chosen

Michel Bierlaire (EPFL)

Human Behavior and Optimization

Microeconomic consumer theory

Continuous choice set

• Consumption bundle

$$Q = \begin{pmatrix} q_1 \\ \vdots \\ q_L \end{pmatrix}; p = \begin{pmatrix} p_1 \\ \vdots \\ p_L \end{pmatrix}$$

Budget constraint

$$p^T Q = \sum_{\ell=1}^L p_\ell q_\ell \leq I.$$

.

• No attributes, just quantities

TRANSP-OR

September 21, 2021 9 / 111

5P5

Preferences

Operators \succ , \sim , and \succeq

- $Q_a \succ Q_b$: Q_a is preferred to Q_b ,
- $Q_a \sim Q_b$: indifference between Q_a and Q_b ,
- $Q_a \succeq Q_b$: Q_a is at least as preferred as Q_b .

Rationality

• Completeness: for all bundles a and b,

$$Q_a \succ Q_b$$
 or $Q_a \prec Q_b$ or $Q_a \sim Q_b$.

• Transitivity: for all bundles a, b and c,

if $Q_a \succeq Q_b$ and $Q_b \succeq Q_c$ then $Q_a \succeq Q_c$.

• "Continuity": if Q_a is preferred to Q_b and Q_c is arbitrarily "close" to Q_a , then Q_c is preferred to Q_b . Michel Bierlaire (EPFL) Human Behavior and Optimization September 21, 2021 10/113

Utility

Utility function

• Parameterized function:

$$\widetilde{U} = \widetilde{U}(q_1, \ldots, q_L; \theta) = \widetilde{U}(Q; \theta)$$

• Consistent with the preference indicator:

$$\widetilde{U}(Q_{a}; heta) \geq \widetilde{U}(Q_{b}; heta)$$

is equivalent to

$$Q_a \succeq Q_b.$$

• Unique up to an order-preserving transformation

RANSP-OR

September 21, 2021

11/111

EP!

Optimization

Optimization problem

 $\max_{Q} \, \widetilde{U}(Q;\theta)$

subject to

 $p^T Q \leq I, \ Q \geq 0.$

Demand function

- Solution of the optimization problem
- Quantity as a function of prices and budget

$$Q^* = f(I, p; \theta)$$

Example: Cobb-Douglas

Example

 q_2

14/111

September 21, 2021

イロン イロン イヨン イヨン

Example

Optimization problem

$$\max_{q_1,q_2}\widetilde{U}(q_1,q_2;\theta_0,\theta_1,\theta_2)=\theta_0q_1^{\theta_1}q_2^{\theta_2}$$

subject to

$$p_1q_1 + p_2q_2 = I.$$

Lagrangian of the problem:

$$L(q_1, q_2, \lambda) = \theta_0 q_1^{\theta_1} q_2^{\theta_2} + \lambda (I - p_1 q_1 - p_2 q_2).$$

Necessary optimality condition

$$\nabla L(q_1,q_2,\lambda)=0$$

Example

Necessary optimality conditions

$$\begin{array}{rcl} \theta_0 \theta_1 q_1^{\theta_1 - 1} q_2^{\theta_2} & - & \lambda p_1 & = & 0 & (\times q_1) \\ \theta_0 \theta_2 q_1^{\theta_1} q_2^{\theta_2 - 1} & - & \lambda p_2 & = & 0 & (\times q_2) \\ p_1 q_1 + p_2 q_2 & - & I & = & 0. \end{array}$$

We have

$$\begin{array}{rcl} \theta_0\theta_1q_1^{\theta_1}q_2^{\theta_2} & - & \lambda p_1q_1 & = & 0\\ \theta_0\theta_2q_1^{\theta_1}q_2^{\theta_2} & - & \lambda p_2q_2 & = & 0. \end{array}$$

Adding the two and using the third condition, we obtain

$$\lambda I = \theta_0 q_1^{\theta_1} q_2^{\theta_2} (\theta_1 + \theta_2)$$

or, equivalently,

$$heta_0 q_1^{ heta_1} q_2^{ heta_2} = rac{\lambda I}{(heta_1 + heta_2)}$$

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

16/111

Solution

From the previous derivation

$$heta_0 q_1^{ heta_1} q_2^{ heta_2} = rac{\lambda I}{(heta_1 + heta_2)}$$

First condition

$$\theta_0\theta_1q_1^{\theta_1}q_2^{\theta_2}=\lambda p_1q_1.$$

Solve for q_1

$$q_1^* = rac{I heta_1}{p_1(heta_1+ heta_2)}$$

Similarly, we obtain

$$q_2^* = rac{I heta_2}{p_2(heta_1+ heta_2)}$$

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

17/111

Optimization problem

Demand functions

Product 1

$$q_1^* = rac{l}{
ho_1} rac{ heta_1}{ heta_1+ heta_2}$$

Product 2

$$q_2^* = \frac{I}{p_2} \frac{\theta_2}{\theta_1 + \theta_2}$$

Comments

- Demand decreases with price
- Demand increases with budget
- Demand independent of θ_0 , which does not affect the ranking
- Property of Cobb Douglas: the demand for a good is only dependent on its own price and independent of the price of any other good.

Demand curve (inverse of demand function)

Indirect utility

Substitute the demand function into the utility

$$U(I, p; \theta) = \theta_0 \left(\frac{I}{p_1} \frac{\theta_1}{\theta_1 + \theta_2}\right)^{\theta_1} \left(\frac{I}{p_2} \frac{\theta_2}{\theta_1 + \theta_2}\right)^{\theta_2}$$

Indirect utility

Maximum utility that is achievable for a given set of prices and income

In discrete choice ...

- only the indirect utility is used
- therefore, it is simply referred to as "utility"

Microeconomic theory of discrete goods

Expanding the microeconomic framework

- Continuous goods
- and discrete goods

The consumer

- selects the quantities of continuous goods: $Q = (q_1, \ldots, q_L)$
- chooses an alternative in a discrete choice set $i = 1, \ldots, j, \ldots, J$
- discrete decision vector: (y_1, \ldots, y_J) , $y_j \in \{0, 1\}$, $\sum_j y_j = 1$.

Note

- In theory, one alternative of the discrete choice combines all possible choices made by an individual.
- In practice, the choice set will be more restricted for tractability

22/111

Utility

$$\widetilde{U}(Q, y, \widetilde{z}^T y; \theta)$$

- Q: quantities of the continuous good
- y: discrete choice
- $\tilde{z}^{\mathsf{T}} = (\tilde{z}_1, \dots, \tilde{z}_i, \dots, \tilde{z}_J) \in \mathbb{R}^{K \times J}$: K attributes of the J alternatives
- $\tilde{z}^T y \in \mathbb{R}^{K}$: attributes of the chosen alternative
- θ : vector of parameters

Optimization problem

$$\max_{\boldsymbol{Q},\boldsymbol{y}} \, \widetilde{U}(\boldsymbol{Q},\boldsymbol{y}, \tilde{\boldsymbol{z}}^{\mathsf{T}}\boldsymbol{y}; \theta)$$

subject to

$$p^T Q + c^T y \leq I$$

 $\sum_j y_j = 1$
 $y_j \in \{0, 1\}, orall j.$

where $c^T = (c_1, \ldots, c_i, \ldots, c_J)$ contains the cost of each alternative.

Solving the problem

- Mixed integer optimization problem
- No optimality condition
- Impossible to derive demand functions directly

Solving the problem

Step 1: condition on the choice of the discrete good

- Fix the discrete good, that is select a feasible y.
- The problem becomes a continuous problem in Q.
- Conditional demand functions can be derived:

$$q_{\ell|y} = f(I - c^T y, p, \tilde{z}^T y; \theta),$$

or, equivalently, for each alternative i,

$$q_{\ell|i} = f(I - c_i, p, \tilde{z}_i; \theta).$$

- $I c_i$ is the income left for the continuous goods, if alternative *i* is chosen.
- If $I c_i < 0$, alternative *i* is declared unavailable and removed from the choice set.

Solving the problem

Conditional indirect utility functions

Substitute the demand functions into the utility:

$$U_i = U(I - c_i, p, \tilde{z}_i; \theta)$$
 for all $i \in C$.

Step 2: Choice of the discrete good

$$\max_{y} U(I - c^{T}y, p, \tilde{z}^{T}y; \theta)$$

- Enumerate all alternatives.
- Compute the conditional indirect utility function U_i.
- Select the alternative with the highest U_i .
- Note: no income constraint anymore.

Simple example: mode choice

Attributes

	Attributes	
Alternatives	Travel time (t)	Travel cost (<i>c</i>)
Car (1)	t_1	<i>c</i> ₁
Bus (2)	t_2	<i>c</i> ₂

Utility

$$\widetilde{U} = \widetilde{U}(y_1, y_2),$$

where we impose the restrictions that, for i = 1, 2,

$$y_i = \begin{cases} 1 & \text{if travel alternative i is chosen,} \\ 0 & \text{otherwise;} \end{cases}$$

and that only one alternative is chosen: $y_1 + y_2 = 1$.

Simple example: mode choice

Choice set

Simple example: mode choice

Utility functions

$$\begin{array}{rcl} U_1 &=& -\beta_t t_1 - \beta_c c_1, \\ U_2 &=& -\beta_t t_2 - \beta_c c_2, \end{array}$$

where $\beta_t > 0$ and $\beta_c > 0$ are parameters.

Equivalent specification

$$U_1 = -(\beta_t/\beta_c)t_1 - c_1 = -\beta t_1 - c_1 U_2 = -(\beta_t/\beta_c)t_2 - c_2 = -\beta t_2 - c_2$$

where $\beta > 0$ is a parameter.

Choice

- Alternative 1 is chosen if $U_1 \ge U_2$.
- Ties are ignored.
Simple example: mode choice

Choice

Alternative 1 is chosen if	Alternative 2 is chosen if
$-\beta t_1 - c_1 \ge -\beta t_2 - c_2$	$-\beta t_1 - c_1 \leq -\beta t_2 - c_2$
or	or
$-\beta(t_1-t_2)\geq c_1-c_2$	$-\beta(t_1-t_2) \leq c_1-c_2$

Dominated alternative

- If $c_2>c_1$ and $t_2>t_1$, $U_1>U_2$ for any eta>0
- If $c_1 > c_2$ and $t_1 > t_2$, $U_2 > U_1$ for any $\beta > 0$

Michel Bierlaire (EPFL)

STRANSP-OR

< □ → < □ → < □ →
 September 21, 2021

2- F

Simple example: mode choice

Trade-off

- Assume $c_2 > c_1$ and $t_1 > t_2$.
- Is the traveler willing to pay the extra cost c₂ − c₁ to save the extra time t₁ − t₂?
- Alternative 2 is chosen if

$$-\beta(t_1-t_2) \leq c_1-c_2$$

or

$$\beta \geq \frac{c_2 - c_1}{t_1 - t_2}$$

• β is called the *willingness to pay* or *value of time*

TRANSP-OR

Simple example: mode choice

Behavioral validity of the utility maximization?

Assumptions

Decision-makers

- are able to process information
- have perfect discrimination power
- have transitive preferences
- are perfect maximizer
- are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is chosen?

Random utility model

Probability model

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in \mathcal{C}_n),$$

Random utility

$$U_{in} = V_{in} + \varepsilon_{in} = \beta^T X_{in} + \varepsilon_{in}.$$

Similarity with linear regression

$$Y = \beta^T X + \varepsilon$$

Here, U is not observed. Only the choice is observed.

Derivation

Joint distributions of ε_n

Assume that ε_n = (ε_{1n},..., ε_{Jnn}) is a multivariate random variable
with CDF

$$F_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n})$$

and pdf

$$f_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n})=\frac{\partial^{J_n}F}{\partial\varepsilon_1\cdots\partial\varepsilon_{J_n}}(\varepsilon_1,\ldots,\varepsilon_{J_n}).$$

The random utility model: $P_n(i|C_n) =$

$$\int_{\varepsilon=-\infty}^{+\infty} \frac{\partial F_{\varepsilon_{1n},\varepsilon_{2n},\ldots,\varepsilon_{J_n}}}{\partial \varepsilon_i} (\ldots, V_{in} - V_{(i-1)n} + \varepsilon, \varepsilon, V_{in} - V_{(i+1)n} + \varepsilon, \ldots) d\varepsilon$$

September 21, 2021 35 / 111

Random utility model

- The general formulation is complex.
- We can derive specific models based on simple assumptions.

36 / 111

- A - E - N

< ⊒ >

Outline

- 2 Microeconomics
- 3 The logit model
 - Profit optimization, facility location
 - 5 Activity-based models

37 / 111

A D N A B N A B N A B N

Road map

38/111

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

★ ∃ ► < ∃ ►</p>

Error term

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}.$$

Assumptions about the distribution

- Probit: central limit theorem: the sum of many i.i.d. random variables approximately follows a normal distribution.
- Logit: Gumbel theorem: the maximum of many i.i.d. random variables approximately follows an Extreme Value distribution: EV(η, μ).

The Extreme Value distribution $EV(\eta, \mu)$

Probability density function (pdf)

$$f(t) = \mu e^{-\mu(t-\eta)} e^{-e^{-\mu(t-\eta)}}$$

Cumulative distribution function (CDF)

$$P(c \ge \varepsilon) = F(c) = \int_{-\infty}^{c} f(t) dt$$
$$= e^{-e^{-\mu(c-\eta)}}$$

The Extreme Value distribution

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021 41 / 111

The Extreme Value distribution

Properties

lf

 $\varepsilon \sim \mathsf{EV}(\eta,\mu)$

then

$$\mathsf{E}[arepsilon] = \eta + rac{\gamma}{\mu}$$
 and $\mathsf{Var}[arepsilon] = rac{\pi^2}{6\mu^2}$

where γ is Euler's constant.

Euler's constant

$$\gamma = \lim_{k \to \infty} \sum_{i=1}^{k} \frac{1}{i} - \ln k = -\int_{0}^{\infty} e^{-x} \ln x dx \approx 0.5772$$

TRANSP-OR

< □ > < □ > < □ > < □ > < □ > < □ >

Logit model

The random utility model: $P_n(i|\mathcal{C}_n) =$

$$\int_{\varepsilon=-\infty}^{+\infty} \frac{\partial F_{\varepsilon_{1n},\varepsilon_{2n},\ldots,\varepsilon_{J_n}}}{\partial \varepsilon_i} (\ldots, V_{in} - V_{(i-1)n} + \varepsilon, \varepsilon, V_{in} - V_{(i+1)n} + \varepsilon, \ldots) d\varepsilon$$

CDF

Assumption: i.i.d. EV distributions:

$$F_{\varepsilon_n}(\varepsilon_1,\ldots,\varepsilon_{J_n})=\prod_{i=1}^{J_n}e^{-e^{-\mu\varepsilon_i}}.$$

Logit model

$$P_n(i|\mathcal{C}_n) = \frac{y_{in}e^{V_{in}}}{\sum_{j=1}^J y_{jn}e^{V_{jn}}}.$$

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021 43 / 111

Logit model

$$U_{in} = V_{in} + \varepsilon_{in}.$$

Why "logit"? If U_{in} and U_{jn} are EV distributed, $U_{in} - U_{jn}$ follows a logistic distribution.

Availability of alternatives

$$y_{in} = \left\{ egin{array}{cc} 1 & ext{if } i \in \mathcal{C}_n, \\ 0 & ext{otherwise.} \end{array}
ight.$$

 $y_{in=1}$ if alternative *i* is available to individual *n*.

Logit model

Expected maximum utility

If ε_{in} , $i = 1, \ldots, J_n$ are i.i.d. $EV(0, \mu)$, then

$$\mathsf{E}[\max_{i} U_{in}] = \frac{1}{\mu} \ln \sum_{i=1}^{J} y_{jn} e^{\mu V_{in}}.$$

EPFL

45 / 111

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

< 回 > < 三 > < 三 >

Example

Two alternatives

$$V_{0n} = 0$$
$$V_{1n} = -10 * \text{price} + 3$$

Choice probability

$$P_n(1|\text{price}) = rac{e^{-10* ext{price}+3}}{e^0 + e^{-10* ext{price}+3}} = rac{e^{-10* ext{price}+3}}{1 + e^{-10* ext{price}+3}}$$

Example

Beyond logit

- Other distributional assumptions can be used.
- Logit is not always consistent with observed behavior.
- Trade-off between model complexity and behavioral realism.
- Example: Multivariate Extreme Value models

A B A A B A

MEV models

Definition

$$\varepsilon_n = (\varepsilon_{1n}, \ldots, \varepsilon_{Jn})$$

follows a multivariate extreme value distribution if it has the CDF

$$F_{\varepsilon_n}(\varepsilon_{1n},\ldots,\varepsilon_{Jn})=e^{-G(e^{-\varepsilon_{1n}},\ldots,e^{-\varepsilon_{Jn}})},$$

where $G : \mathbb{R}^{J_n}_+ \to \mathbb{R}_+$ is a positive function with positive arguments, that must verify some properties.

MEV models

Choice model

$$P_n(i) = \frac{e^{V_{in} + \ln G_i(e^V)}}{\sum_j e^{V_{jn} + \ln G_j(e^V)}}.$$

Expected maximum utility

$$\mathsf{E}[\max_{j\in\mathcal{C}_n} U_{jn}] = \frac{1}{\mu}(\log G(e^{V_{1n}},\ldots,e^{V_{J_nn}}) + \gamma),$$

where γ is Euler's constant

Road map

Outline

- 1 Introduction
- 2 Microeconomics
- 3 The logit model
- Profit optimization, facility location
 - 5 Activity-based models

52/111

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

A simple example

Data

- \mathcal{C} : set of movies
- Population of N individuals
- Utility function:

 $U_{in} = \beta_{in}p_{in} + f(z_{in}) + \varepsilon_{in}$

Decision variables

- What movies to propose? y_{in}
- What price? p_{in}

Profit maximization

Data

- Two alternatives: my theater (m) and the competition (c)
- We assume an homogeneous population of *N* individuals

$$U_{cn} = 0 + \varepsilon_{cn}$$
$$U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn}$$

- $\beta_n < 0$
- Logit model: ε_{mn} i.i.d. EV

Michel Bierlaire (EPFL)

Heterogeneous population

Two groups in the population

$$U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn}$$

$$n = 1: \text{ Young fans:} \\ 2/3 \\ \beta_1 = -10, \ c_{m1} = 3 \end{cases} \qquad n = 2: \text{ Others: } 1/3 \\ \beta_1 = -0.9, \ c_{1m} = 0$$

Michel Bierlaire (EPFL)

EPEL

Demand

Demand and revenues

Optimization

Profit maximization

- Non linear
- Non convex

Facility location

Discrete

58/111

< 行

WWW. PHDCOMICS. COM

EPFL

イロト イヨト イヨト イヨト

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

Michel Bierlaire (EPFL)

Human Behavior and Optimization

→ ∃ → September 21, 2021

- A - E - N

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability

A linear formulation

Utility function

$$U_{in} = V_{in} + \varepsilon_{in} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}.$$

Simulation

- Assume a distribution for ε_{in}
- E.g. logit: i.i.d. extreme value
- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- The choice problem becomes deterministic

STRANSP-OR

Scenarios

Draws

- Draw R realizations ξ_{inr} , $r = 1, \ldots, R$
- We obtain R scenarios

$$U_{inr} = \sum_{k} \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.$$

- For each scenario r, we can identify the largest utility.
- It corresponds to the chosen alternative.

Capacities

- Demand may exceed supply
- Each alternative *i* can be chosen by maximum *c_i* individuals.
- An exogenous priority list is available.
- Can be randomly generated, or according to some rules.
- The numbering of individuals is consistent with their priority.

Choice set

Variables

$y_i \in \{0,1\}$	operator decision
$y_{in}^d \in \{0,1\}$	customer decision (data)
$y_{in} \in \{0,1\}$	product of decisions
$y_{\textit{inr}} \in \{0,1\}$	capacity restrictions

Constraints

$$y_{in} = y_{in}^{d} y_{i} \quad \forall i, n$$

 $y_{inr} \le y_{in} \quad \forall i, n, r$

Michel Bierlaire (EPFL)

A D N A B N A B N A B N

EPFL

æ

Utility

Variables

$$\begin{array}{ll} U_{inr} & \text{utility} \\ z_{inr} = \left\{ \begin{array}{ll} U_{inr} & \text{if } y_{inr} = 1 \\ \ell_{nr} & \text{if } y_{inr} = 0 \end{array} & \text{discounted utility} \\ (\ell_{nr} \text{ smallest lower bound}) \end{array} \right.$$

Constraint: utility

$$U_{inr} = \overbrace{\beta_{in}p_{in} + q_d(x_d)}^{V_{in}} + \xi_{inr} \forall i, n, r$$

Utility (ctd)

Constraints: discounted utility

$$\begin{split} \ell_{nr} &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq \ell_{nr} + M_{inr} y_{inr} & \forall i, n, r \\ U_{inr} - M_{inr} (1 - y_{inr}) &\leq z_{inr} & \forall i, n, r \\ z_{inr} &\leq U_{inr} & \forall i, n, r \end{split}$$

Michel Bierlaire (EPFL)

EPFL

66 / 111

September 21, 2021

Choice

Variables

$$U_{nr} = \max_{i \in C} z_{inr}$$
$$w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} \\ 0 & \text{otherwise} \end{cases}$$
 choice

Constraints

$$\begin{aligned} z_{inr} &\leq U_{nr} & \forall i, n, r \\ U_{nr} &\leq z_{inr} + M_{nr}(1 - w_{inr}) & \forall i, n, r \\ \sum_{i} w_{inr} &= 1 & \forall n, r \\ w_{inr} &\leq y_{inr} & \forall i, n, r \end{aligned}$$

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

Capacity

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1)y_{inr} + (n-1)(1 - y_{inr}) \; \forall i > 0, n > c_i, r$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in}-y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr}, \ \forall i > 0, n, r$$

 FRANSP-DR
 EPFL

 Michel Bierlaire (EPFL)
 Human Behavior and Optimization
 September 21, 2021
 68/111

Family of models

Constraints

- Set of linear constraints characterizing choice behavior
- Can be included in any relevant optimization problem.

Examples

- Profit maximization
- Facility location

Difficulties

- big *M* constraints
- large dimensions

Michel Bierlaire (EPFL)

• • = • • =

Profit maximization

Profit

If p_{in} is the price paid by individual to purchase option i, the revenue generated by this option is

$$\frac{1}{R}\sum_{r=1}^{R}\sum_{n=1}^{N}p_{in}w_{inr}.$$

Linearization

If $a_{in} \leq p_{in} \leq b_{in}$, we define $\eta_{inr} = p_{in}w_{inr}$, and the following constraints:

$$egin{aligned} & a_{in}w_{inr} \leq \eta_{inr} \ & \eta_{inr} \leq b_{in}w_{inr} \ & p_{in} - (1-w_{inr})b_{in} \leq \eta_{inr} \ & \eta_{inr} \leq p_{in} - (1-w_{inr})a_{in} \end{aligned}$$

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

• [lbeas et al., 2014]

Michel Bierlaire (EPFL)

September 21, 2021

A (1) > A (2) > A

EPEL

Parking choices [lbeas et al., 2014]

Alternatives

- Paid on-street parking
- Paid underground parking
- Free street parking

Model

- N = 50 customers
- $C = \{PSP, PUP, FSP\}$
- $\mathcal{C}_n = \mathcal{C} \quad \forall n$
- $p_{in} = p_i \quad \forall n$
- Capacity of 20 spots
- Mixture of logit models

A D N A B N A B N A B N

э

General experiments

Uncapacitated vs Capacitated case

- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation

- Reduced price for residents
- Two scenarios
 - Subsidy offered by the municipality
 - 2 Operator is forced to offer a reduced price

Uncapacitated vs Capacitated case

Uncapacitated

Michel Bierlaire (EPFL)

Human Behavior and Optimization

Computational time

	Uncapacitated case			Capacitated case				
R	Sol time	PSP	PUP	Rev	Sol time	PSP	PUP	Rev
5	2.58 s	0.54	0.79	26.43	12.0 s	0.63	0.84	25.91
10	3.98 s	0.53	0.74	26.36	54.5 s	0.57	0.78	25.31
25	29.2 s	0.54	0.79	26.90	13.8 min	0.59	0.80	25.96
50	4.08 min	0.54	0.75	26.97	50.2 min	0.59	0.80	26.10
100	20.7 min	0.54	0.74	26.90	6.60 h	0.59	0.79	26.03
250	2.51 h	0.54	0.74	26.85	1.74 days	0.60	0.80	25.93

A D N A B N A B N A B N

75/111

EPFL

æ

Facility location

Data

- Uin: exogenous,
- C_i: fixed cost to open a facility,
- c_i: operational cost per customer to run the facility.

Objective function

$$\min \sum_{i \in \mathcal{C}_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i w_{inr}$$

Benders decomposition

$$\min \sum_{i \in C_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i w_{inr}$$

subject to

$$egin{aligned} \max_w U_{nr} &= \sum_i U_{inr} w_{inr} \ \sum_i w_{inr} &\leq 1 \ w_{inr} &\leq y_i \ w_{inr} &\geq 0 \ w_{inr}, y_i \in \{0,1\}. \end{aligned}$$

Michel Bierlaire (EPFL)

- 4 回 ト 4 三 ト 4 三 ト

EPFL

э

Benders decomposition

Customer subproblem: fix y_i^*

$$\max_{w} U_{nr} = \sum_{i} U_{inr} w_{inr}$$

subject to

$$\sum_{i} w_{inr} = 1$$

 $w_{inr} \leq y_{i}^{*}$
 $w_{inr} \geq 0.$

Property

Totally unimodular: no integrality constraint is required.

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

Benders decomposition

Primal
 Dual

$$\min_{w} U = -\sum_{i} U_{i}w_{i}$$
 $\max_{\lambda,\mu} \lambda + \sum_{i} \mu_{i}y_{i}^{*}$

 subject to
 $\lambda,\mu \leq 1$
 $w_{i} \leq y_{i}^{*}$
 $\forall i$
 $w_{i} \geq y_{i}^{*}$
 $\forall i$
 $w_{i} \geq 0$
 $\forall i$
 $w_{i} \geq 0$
 $\forall i$

∀i ∀i

EPFL

2

Bender decomposition

Ongoing work

- Exploit the duality results to generate cuts for the master problem.
- Investigate the use of Benders for other problems.
 - profit maximization,
 - maximum likelihood estimation of the parameters.

80/111

September 21, 2021

Road map

Outline

- Microeconomics
- 3 The logit model
- Profit optimization, facility location

5 Activity-based models

82 / 111

A (10) N (10)

Introduction

- Travel demand is derived from activity demand.
- Activity demand is influenced by socio-economic characteristics, social interactions, cultural norms, basic needs, etc. [Chapin, 1974]
- Activity demand is constrained in space and time [Hägerstraand, 1970].

83/111

4 E N

Literature

Econometric models

$$\begin{split} & \tilde{\boldsymbol{\xi}}_{1} = \tilde{\boldsymbol{f}}_{1} \sum_{i=1}^{n} \tilde{\boldsymbol{f}}_{i} & \mu (\boldsymbol{\xi}_{1}^{i} + \mu \boldsymbol{\xi}_{2}^{i} + \mu \boldsymbol{\xi}_{2}^{i}) + \tilde{\boldsymbol{f}}_{1} \sum_{i=1}^{n} \tilde{\boldsymbol{\xi}}_{1}^{i} (\boldsymbol{\xi}_{1}^{i} + \tilde{\boldsymbol{\xi}}_{2}^{i}) + \tilde{\boldsymbol{\xi}}_{1} \sum_{i=1}^{n} \tilde{\boldsymbol{\xi}}_{1}^{i} (\boldsymbol{\xi}_{1}^{i} + \tilde{\boldsymbol{\xi}}_{2}^{i}) + \tilde{\boldsymbol{\xi}}_{1} \sum_{i=1}^{n} \tilde{\boldsymbol{\xi}}_{1}^{i} (\boldsymbol{\xi}_{1}^{i} + \tilde{\boldsymbol{\xi}}_{2}^{i}) + \tilde{\boldsymbol{\xi}}_{1} \sum_{i=1}^{n} \tilde{\boldsymbol{\xi}}_{1}^{i} (\boldsymbol{\xi}_{1}^{i} + \tilde{\boldsymbol{\xi}}_{2}^{i}) + \tilde{\boldsymbol{\xi}}_{1}^{i} + \tilde{\boldsymbol{\xi}}_{1}^{i}$$

Rule-based models

< □ > < □ > < □ > < □ > < □ >

Michel Bierlaire (EPFL)

э

State of the art: econometric approach

[Bhat, 2005]

- Multiple Discrete Continuous Extreme Value
- Based on first principles.
- Decision-maker solves an optimization problem, with a time budget.
- Several alternatives may be chosen.
- Model derived from KKT conditions.

State of practice

Sequence of decisions Source: [Scherr et al., 2020]

Research question

Relax the series of discrete choice models approach

- The interactions of all decisions is complex.
- Sequence of models is most of the time arbitrary.

Integrated approach

Develop a model involving many decisions:

- activity participation,
- activity location,
- activity duration,
- activity scheduling,

- travel mode,
- travel path.

87 / 111

TRANSP-OR

Research objectives

- Integrated approach based on first principles.
- Theoretical framework: utility maximization.
- Individuals solve a scheduling problem.
- Important aspects: trade-offs on activity sequence, duration and starting time.
- Again, we replace the error terms by draws.

September 21, 2021

SP5

Decision variables for individual n and draw r

For each (potential) activity a:

- Activity participation: $w_{anr} \in \{0, 1\}$.
- Starting time: $x_{anr} \in \{0, \ldots, T\}$.
- Duration: $\tau_{anr} \in \{0, \ldots, T\}$.
- Scheduling: $z_{abnr} \in \{0,1\}$: 1 if activity *b* immediately follows *a*.

Michel Bierlaire (EPFL)

4 1 1 1 4 1 1 1

Objective function

Additive utility

$$\max \sum_{a \in A} w_{anr} U_{anr} + \theta_t \sum_{a \in A} \sum_{b \in A} z_{abnr} \rho(s_a, s_b, m_a, p_a).$$

EPFL

Michel Bierlaire (EPFL)

Human Behavior and Optimization

Constraints

Time budget

$$\sum_{a \in A} w_{anr} \tau_{anr} + \sum_{a \in A} \sum_{b \in A} z_{abnr} \rho(s_a, s_b, m_a, p_a) = T, \ \forall n, r.$$

Time windows

$$0 \leq \gamma_a^- \leq x_{anr} \leq x_{anr} + \tau_{anr} \leq \gamma_a^+ \leq T, \ \forall a, n, r.$$

Michel Bierlaire (EPFL)

EPFL

æ

91/111

< 回 > < 三 > < 三 >

September 21, 2021

Constraints

Precedence constraints

$$z_{abnr} + z_{banr} \leq 1, \ \forall a, b, n, r.$$

Single successor/predecessor

$$\sum_{b \in A \setminus \{a\}} z_{abnr} = w_{anr}, \ \forall a, n, r,$$
$$\sum_{b \in A \setminus \{a\}} z_{banr} = w_{anr}, \ \forall a, n, r.$$

Constraints

Consistent timing

$$(z_{abnr}-1)T \leq x_{anr} + \tau_{anr} + t_{anr} - x_{bnr} \leq (1-z_{abnr})T, \ \forall a, b, n, r.$$

where

$$t_{anr} = \sum_{b \in A} z_{abnr} \rho(s_a, s_b, m_a, p_a).$$

Other constraints...

see [Pougala et al., 2021] for details

- mode of transportation
- or route
- car availability
- etc.

Optimization problem

Simulation-based optimization

- For each realization of the error terms, we have an optimal schedule.
- It includes all the choice dimensions (activity participation, location, duration, scheduling, and mode and route).
- We can generate an empirical distribution of chosen schedules.

94/111

September 21, 2021

Real data

Dataset

- 2015 Swiss Mobility and Transport Microcensus.
- Daily trip diaries for 57'000 individuals.
- Records of activities, visited location, mode/path choice.

Real data

Assumptions

- Desired start times and durations are the recorded ones.
- Feasible time windows: percentiles start and end times from out of sample distribution.
- Only the recorded locations are considered.
- Uniform flexibility profile across population.

Example

Individual 1 (weekday)

Optimal schedules generated for random draws of ε_{a_n}

Michel Bierlaire (EPFL)

Human Behavior and Optimization

September 21, 2021

Example

Individual 2 (weekday)

Optimal schedules generated for random draws of ε_{a_n}

Michel Bierlaire (EPFL)

September 21, 2021

< □ > < □ > < □ > < □ > < □ > < □ >

ΞP
Individual 3 (weekday)

Optimal schedules generated for random draws of ε_{a_n}

Michel Bierlaire (EPFL)

September 21, 2021 99 / 111

< □ > < 同 > < 回 > < 回 > < 回 >

Validation

Activity profiles for full-time workers, Lausanne area

Simulation

Microcensus

Source: SBB. Acknowledgment to Patrick Manser.

A D N A B N A B N A B N

25

September 21, 2021

Validation

Activity profiles for individuals older than 65, Lausanne area

Simulation

Source: SBB. Acknowledgment to Patrick Manser.

101 / 111

September 21, 2021

イロト イボト イヨト イヨト

Validation

Activity profiles for students, Lausanne area

Validation

Source: SBB. Acknowledgment to Patrick Manser.

イロト イボト イヨト イヨト

Validation

Activity profiles for primary school pupils, Lausanne area

Validation

Source: SBB. Acknowledgment to Patrick Manser.

.∃⇒ ⇒

NSP-OR

September 21, 2021

Activity-based models

Ongoing work

- Synthetic population
- Estimation of the parameters
- Social interactions

104 / 111

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Outline

- 1 Introduction
- 2 Microeconomics
- 3 The logit model
- Profit optimization, facility location
- Activity-based models

Conclusion

Acknowledgments

A great team...

- Stefano Bortolomiol,
- Tim Hillel,
- Virginie Lurkin,
- Meritxell Pacheco,
- Janody Pougala,
- Shadi Sharif Azadeh,
- and many others...

Readings

- [Pacheco Paneque, 2020]
- [Pacheco et al., 2021]
- [Bortolomiol et al., forta]
- [Bortolomiol et al., fortb]
- [Pougala et al., 2021]

107 / 111

A B A A B A

Bibliography I

Bhat, C. R. (2005).

A multiple discrete-continuous extreme value model: formulation and application to discretionary time-use decisions.

Transportation Research Part B: Methodological, 39(8):679 – 707.

Bortolomiol, S., Lurkin, V., and Bierlaire, M. (forta).

Price-based regulation of oligopolistic markets under discrete choice models of demand.

Transportation. Accepted on Jul 13, 2021.

Bibliography II

Bortolomiol, S., Lurkin, V., and Bierlaire, M. (fortb).

A simulation-based heuristic to find approximate equilibria with disaggregate demand models.

Transportation Science. Accepted on Apr 16, 2021.

Chapin, F. S. (1974).

Human activity patterns in the city: Things people do in time and in space, volume 13.

Wiley-Interscience.

Hägerstraand, T. (1970).

What about people in regional science? *Papers in Regional Science*.

Bibliography III

- Ibeas, A., dell'Olio, L., Bordagaray, M., and de D. Ortúzar, J. (2014). Modelling parking choices considering user heterogeneity. *Transportation Research Part A: Policy and Practice*, 70:41 – 49.
 - Pacheco, M., Bierlaire, M., Gendron, B., and Sharif Azadeh, S. (2021).
 - Integrating advanced discrete choice models in mixed integer linear optimization.
 - *Transportation Research Part B: Methodological*, 146:26–49. Accepted on Feb 09, 2021.
 - Pacheco Paneque, M. (2020).
 - A general framework for the integration of complex choice models into mixed integer optimization.
 - PhD thesis, Ecole Polytechnique Fédérale de Lausanne, Switzerland.

3

Bibliography IV

- Pougala, J., Hillel, T., and Bierlaire, M. (2021).
 Capturing trade-offs between daily scheduling choices.
 Technical Report TRANSP-OR 210101, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
- Scherr, W., Manser, P., and Bützberger, P. (2020).
 Simba mobi: Microscopic mobility simulation for corporate planning. *Transportation Research Procedia*, 49:30–43.