Disaggregate Demand Models and Optimization

Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

October 7, 2021
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
Demand models

- Supply = infrastructure
- Demand = behavior, choices
- Congestion = mismatch
Demand models

- Usually in OR:
 - optimization of the supply
 - for a given (fixed) demand
Aggregate demand

- Homogeneous population
- Identical behavior
- Price \((P)\) and quantity \((Q)\)
- Demand functions: \(P = f(Q)\)
- Inverse demand: \(Q = f^{-1}(P)\)
Disaggregate demand

- Heterogeneous population
- Different behaviors
- Many variables:
 - Attributes: price, travel time, reliability, frequency, etc.
 - Characteristics: age, income, education, etc.
- Complex demand/inverse demand functions.
Demand-supply interactions

Operations Research
- Given the demand...
- configure the system

Behavioral models
- Given the configuration of the system...
- predict the demand
Demand-supply interactions

Multi-objective optimization

Minimize costs

Maximize satisfaction
Microeconomics in a nutshell
In this lecture...

Microeconomics in a nutshell → Logit model
In this lecture...

Microeconomics in a nutshell

Profit maximization, facility location

Logit model
Microeconomics in a nutshell

Profit maximization, facility location

Logit model

Activity-based models
In this lecture...

Optimization

- Microeconomics in a nutshell
- Profit maximization, facility location
- Logit model
- Activity-based models
In this lecture...

Optimization
- Microeconomics in a nutshell
- Profit maximization, facility location

Discrete choice
- Logit model
- Activity-based models
In this lecture...

- Microeconomics in a nutshell
- Profit maximization, facility location
- Activity-based models
- Logit model
- Optimization
- Discrete choice

Tutorial
In this lecture...

Tutorial
- Microeconomics in a nutshell

Research
- Profit maximization, facility location

Optimization

Discrete choice
- Logit model
- Activity-based models
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
Microeconomic consumer theory

Homo economicus
Rational and narrowly self-interested economic actor who is optimizing her outcome

Preference operators \succ, \sim, and \succeq

- $a \succ b$: a is preferred to b,
- $a \sim b$: indifference between a and b,
- $a \succeq b$: a is at least as preferred as b.
Microeconomic consumer theory

Rationality

- Completeness: for all bundles a and b,

\[a \succ b \text{ or } a \prec b \text{ or } a \sim b. \]

- Transitivity: for all bundles a, b and c,

\[\text{if } a \succeq b \text{ and } b \succeq c \text{ then } a \succeq c. \]

- “Continuity”: if a is preferred to b and c is arbitrarily “close” to a, then c is preferred to b.

Michel Bierlaire (EPFL)
Microeconomic consumer theory

Continuous choice set

- Consumption bundle

\[Q = \begin{pmatrix} q_1 \\ \vdots \\ q_L \end{pmatrix}, \quad p = \begin{pmatrix} p_1 \\ \vdots \\ p_L \end{pmatrix} \]

- Budget constraint

\[p^T Q = \sum_{\ell=1}^{L} p_\ell q_\ell \leq I. \]

- Decision variables: quantities.
Utility function

- Parameterized function:
 \[
 \tilde{U} = \tilde{U}(q_1, \ldots, q_L; \theta) = \tilde{U}(Q; \theta)
 \]

- Consistent with the preference indicator:
 \[
 \tilde{U}(Q_a; \theta) \geq \tilde{U}(Q_b; \theta)
 \]
 is equivalent to
 \[
 Q_a \succeq Q_b.
 \]

- Unique up to an order-preserving transformation
Microeconomic consumer theory

Optimization problem

\[
\max_Q \tilde{U}(Q; \theta)
\]

subject to

\[
p^T Q \leq I, \ Q \geq 0.
\]

Demand function

- Solution of the optimization problem
- KKT optimality conditions
- Quantity as a function of prices and budget

\[
Q^* = f(I, p; \theta)
\]
Indirect utility

Substitute the demand function into the utility

\[U(I, p; \theta) = \tilde{U}(Q^*, \theta) = \tilde{U}(f(I, p; \theta), \theta) \]

Indirect utility
Maximum utility that is achievable for a given set of prices and income

In discrete choice...
- only the indirect utility is used
- therefore, it is simply referred to as “utility”
Microeconomic theory of discrete goods

Expanding the microeconomic framework

- Continuous goods
- and discrete goods

The consumer

- selects the quantities of continuous goods: \(Q = (q_1, \ldots, q_L) \)
- chooses an alternative in a discrete choice set \(i = 1, \ldots, j, \ldots, J \)
- discrete decision vector: \((y_1, \ldots, y_J) \), \(y_j \in \{0, 1\} \), \(\sum_j y_j = 1 \).

Note

- In theory, one alternative of the discrete choice combines all possible choices made by an individual.
- In practice, the choice set will be more restricted for tractability.
Utility maximization

Utility

\[\tilde{U}(Q, y, \tilde{z}^T y; \theta) \]

- **Q**: quantities of the continuous good
- **y**: discrete choice
- **\(\tilde{z}^T \) = (\tilde{z}_1, \ldots, \tilde{z}_i, \ldots, \tilde{z}_J) \in \mathbb{R}^{K \times J}**: \(K \) attributes of the \(J \) alternatives
- **\(\tilde{z}^T y \in \mathbb{R}^K \)**: attributes of the chosen alternative
- **\(\theta \)**: vector of parameters
Utility maximization

Optimization problem

\[
\max_{Q, y} \tilde{U}(Q, y, \tilde{z}^T y; \theta)
\]

subject to

\[
\begin{align*}
p^T Q + c^T y & \leq I \\
\sum_j y_j & = 1 \\
y_j & \in \{0, 1\}, \forall j.
\end{align*}
\]

where \(c^T = (c_1, \ldots, c_i, \ldots, c_J) \) contains the cost of each alternative.

Solving the problem

- Mixed integer optimization problem
- No optimality condition
- Impossible to derive demand functions directly
Solving the problem

Step 1: condition on the choice of the discrete good

- Fix the discrete good, that is select a feasible y.
- The problem becomes a continuous problem in Q.
- Conditional demand functions can be derived:

$$q_{\ell}\mid y = f(I - c^T y, p, \tilde{z}^T y; \theta),$$

or, equivalently, for each alternative i,

$$q_{\ell}\mid i = f(I - c_i, p, \tilde{z}_i; \theta).$$

- $I - c_i$ is the income left for the continuous goods, if alternative i is chosen.
- If $I - c_i < 0$, alternative i is declared unavailable and removed from the choice set.
Solving the problem

Conditional indirect utility functions
Substitute the demand functions into the utility:

$$U_i = U(I - c_i, p, \tilde{z}_i; \theta) \text{ for all } i \in \mathcal{C}.$$

Step 2: Choice of the discrete good

$$\max_y U(I - c^T y, p, \tilde{z}^T y; \theta)$$

- Enumerate all alternatives.
- Compute the conditional indirect utility function U_i.
- Select the alternative with the highest U_i.
- Note: no income constraint anymore.
Simple example: mode choice

Attributes

<table>
<thead>
<tr>
<th>Alternatives</th>
<th>Attributes</th>
<th>Travel time (t)</th>
<th>Travel cost (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Car (1)</td>
<td>t_1</td>
<td>c_1</td>
<td></td>
</tr>
<tr>
<td>Bus (2)</td>
<td>t_2</td>
<td>c_2</td>
<td></td>
</tr>
</tbody>
</table>

Utility

$$
\tilde{U} = \tilde{U}(y_1, y_2),
$$

where we impose the restrictions that, for $i = 1, 2$,

$$
\begin{cases}
 1 & \text{if travel alternative } i \text{ is chosen,} \\
 0 & \text{otherwise};
\end{cases}
$$

and that only one alternative is chosen: $y_1 + y_2 = 1$.
Simple example: mode choice

Utility functions

\[U_1 = -\beta_t t_1 - \beta_c c_1, \]
\[U_2 = -\beta_t t_2 - \beta_c c_2, \]

where \(\beta_t > 0 \) and \(\beta_c > 0 \) are parameters.

Equivalent specification

\[U_1 = -(\beta_t/\beta_c) t_1 - c_1 = -\beta t_1 - c_1 \]
\[U_2 = -(\beta_t/\beta_c) t_2 - c_2 = -\beta t_2 - c_2 \]

where \(\beta > 0 \) is a parameter.

Choice

- Alternative 1 is chosen if \(U_1 \geq U_2 \).
- Ties are ignored.
Simple example: mode choice

Choice

Alternative 1 is chosen if

\[-\beta t_1 - c_1 \geq -\beta t_2 - c_2\]

or

\[-\beta(t_1 - t_2) \geq c_1 - c_2\]

Alternative 2 is chosen if

\[-\beta t_1 - c_1 \leq -\beta t_2 - c_2\]

or

\[-\beta(t_1 - t_2) \leq c_1 - c_2\]

Dominated alternative

- If \(c_2 > c_1\) and \(t_2 > t_1\), \(U_1 > U_2\) for any \(\beta > 0\)
- If \(c_1 > c_2\) and \(t_1 > t_2\), \(U_2 > U_1\) for any \(\beta > 0\)
Simple example: mode choice

Trade-off

- Assume $c_2 > c_1$ and $t_1 > t_2$.
- Is the traveler willing to pay the extra cost $c_2 - c_1$ to save the extra time $t_1 - t_2$?
- Alternative 2 is chosen if

$$-\beta(t_1 - t_2) \leq c_1 - c_2$$

or

$$\beta \geq \frac{c_2 - c_1}{t_1 - t_2}$$

- β is called the *willingness to pay* or *value of time*
Simple example: mode choice

\[c_1 + \beta t_1 = c_2 + \beta t_2 \]

Alt. 1 is dominant

Alt. 2 is preferred

Alt. 1 is chosen

Alt. 2 is chosen
Behavioral validity of the utility maximization?

Assumptions

Decision-makers

- are able to process information
- have perfect discrimination power
- have transitive preferences
- are perfect maximizer
- are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is chosen?
Random utility model

Probability model

\[P(i|C_n) = \Pr(U_{in} \geq U_{jn}, \forall j \in C_n), \]

Random utility

\[U_{in} = V_{in} + \varepsilon_{in} = \beta^T X_{in} + \varepsilon_{in}. \]

Similarity with linear regression

\[Y = \beta^T X + \varepsilon \]

Here, \(U \) is not observed. Only the choice is observed.
Derivation

Joint distributions of ε_n

- Assume that $\varepsilon_n = (\varepsilon_{1n}, \ldots, \varepsilon_{Jn})$ is a multivariate random variable
- with CDF

 $$F_{\varepsilon_n}(\varepsilon_1, \ldots, \varepsilon_J)$$

- and pdf

 $$f_{\varepsilon_n}(\varepsilon_1, \ldots, \varepsilon_J) = \frac{\partial^J F}{\partial \varepsilon_1 \cdots \partial \varepsilon_J}(\varepsilon_1, \ldots, \varepsilon_J).$$

The random utility model: $P_n(i|\mathcal{C}_n) =$

$$\int_{-\infty}^{+\infty} \frac{\partial F_{\varepsilon_{1n}, \varepsilon_{2n}, \ldots, \varepsilon_{Jn}}}{\partial \varepsilon_i} \left(\ldots, V_{in} - V_{(i-1)n} + \varepsilon, \varepsilon, V_{in} - V_{(i+1)n} + \varepsilon, \ldots \right) d\varepsilon$$
Random utility model

- The general formulation is complex.
- We can derive specific models based on simple assumptions.
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
Road map

Optimization

Microeconomics in a nutshell

→

Discrete choice

Logit model
Error term

Random utility

\[U_{in} = V_{in} + \varepsilon_{in}. \]

Assumptions about the distribution

- **Probit**: central limit theorem: the sum of many i.i.d. random variables approximately follows a normal distribution.

- **Logit**: Gumbel theorem: the maximum of many i.i.d. random variables approximately follows an Extreme Value distribution: \(EV(\eta, \mu) \).
Logit model

\[P_n(i|C_n) = \frac{y_{in} e^{V_{in}}}{\sum_{j=1}^{J} y_{jn} e^{V_{jn}}}. \]

Why “logit”?

If \(U_{in} \) and \(U_{jn} \) are EV distributed, \(U_{in} - U_{jn} \) follows a logistic distribution.

Availability of alternatives

\[
y_{in} = \begin{cases}
1 & \text{if } i \in C_n, \\
0 & \text{otherwise.}
\end{cases}
\]

\(y_{in}=1 \) if alternative \(i \) is available to individual \(n \).
Example

Two alternatives

\[V_{0n} = 0 \]
\[V_{1n} = -10 \times \text{price} + 3 \]

Choice probability

\[P_n(1 | \text{price}) = \frac{e^{-10 \times \text{price} + 3}}{e^{0} + e^{-10 \times \text{price} + 3}} = \frac{e^{-10 \times \text{price} + 3}}{1 + e^{-10 \times \text{price} + 3}} \]
The logit model

Example

Choice probability

$P_n(1|\text{price})$

Price

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Michel Bierlaire (EPFL) Disaggregate Demand Models and Optimization October 7, 2021 36 / 89
Beyond logit

- Other distributional assumptions can be used.
- Logit is not always consistent with observed behavior.
- Trade-off between model complexity and behavioral realism.
- Examples: Multivariate Extreme Value models, mixtures models, hybrid choice models.
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
A simple example

Data
- \(C \): set of movies
- Population of \(N \) individuals
- Utility function:
 \[
 U_{in} = \beta_{in} p_{in} + f(z_{in}) + \varepsilon_{in}
 \]

Decision variables
- What movies to propose? \(y_{in} \)
- What price? \(p_{in} \)
Profit maximization

Data

- Two alternatives: my theater \((m)\) and the competition \((c)\)
- We assume an heterogeneous population of \(N\) individuals

\[
U_{cn} = 0 + \varepsilon_{cn}
\]
\[
U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn}
\]

- \(\beta_n < 0\)
- Logit model: \(\varepsilon_{mn}\) i.i.d. EV
Heterogeneous population

Two groups in the population

\[U_{mn} = \beta_n p_m + c_{mn} + \varepsilon_{mn} \]

\(n = 1: \) Young fans:
\(\frac{2}{3} \)
\(\beta_1 = -10, \ c_{m1} = 3 \)

\(n = 2: \) Others: \(\frac{1}{3} \)
\(\beta_1 = -0.9, \ c_{1m} = 0 \)
Demand

- Total demand
- Young fans
- Others

Price vs. Demand graph showing how demand changes with price for different categories.
Demand and revenues

A graph showing the relationship between price and demand, with different demand segments labeled: Total demand, Young fans, Others. The x-axis represents price, ranging from 0 to 2, while the y-axis represents demand, ranging from 0 to 1. The graph also shows the comparison between revenues and demand across different price points.
Optimization

Profit maximization
- Non linear
- Non convex

Facility location
- Discrete
The main idea
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem
The main idea

Linearization

- Hopeless to linearize the logit formula (we tried...)
- Anyway, we want to go beyond logit.

First principles

Each customer solves an optimization problem

Solution

Use the utility and not the probability
A linear formulation

Utility function

\[U_{in} = V_{in} + \varepsilon_{in} = \sum_k \beta_k x_{ink} + f(z_{in}) + \varepsilon_{in}. \]

Simulation

- Assume a distribution for \(\varepsilon_{in} \)
- E.g. logit: i.i.d. extreme value
- Draw \(R \) realizations \(\xi_{inr}, r = 1, \ldots, R \)
- The choice problem becomes deterministic
Scenarios

Draws

- Draw \(R \) realizations \(\xi_{inr}, r = 1, \ldots, R \)
- We obtain \(R \) scenarios

\[
U_{inr} = \sum_k \beta_k x_{ink} + f(z_{in}) + \xi_{inr}.
\]

- For each scenario \(r \), we can identify the largest utility.
- It corresponds to the chosen alternative.
Capacities

- Demand may exceed supply
- Each alternative \(i \) can be chosen by maximum \(c_i \) individuals.
- An exogenous priority list is available.
- Can be randomly generated, or according to some rules.
- The numbering of individuals is consistent with their priority.
Choice set

Variables

\[y_i \in \{0, 1\} \quad \text{operator decision} \]
\[y_{in}^d \in \{0, 1\} \quad \text{customer decision (data)} \]
\[y_{in} \in \{0, 1\} \quad \text{product of decisions} \]
\[y_{inr} \in \{0, 1\} \quad \text{capacity restrictions} \]

Constraints

\[y_{in} = y_{in}^d y_i \quad \forall i, n \]
\[y_{inr} \leq y_{in} \quad \forall i, n, r \]
Utility

Variables

\[U_{inr} \]
\[z_{inr} = \begin{cases} U_{inr} & \text{if } y_{inr} = 1 \\ \ell_{nr} & \text{if } y_{inr} = 0 \end{cases} \]
\((\ell_{nr} \text{ smallest lower bound})\)

Constraint: utility

\[U_{inr} = V_{in} - \beta_{in} p_{in} + q_d(x_d) + \xi_{inr} \forall i, n, r \]
Utility (ctd)

Constraints: discounted utility

\[\ell_{nr} \leq z_{inr} \quad \forall i, n, r \]
\[z_{inr} \leq \ell_{nr} + M_{inr}y_{inr} \quad \forall i, n, r \]
\[U_{inr} - M_{inr}(1 - y_{inr}) \leq z_{inr} \quad \forall i, n, r \]
\[z_{inr} \leq U_{inr} \quad \forall i, n, r \]
Choice

Variables

\[U_{nr} = \max_{i \in C} z_{inr} \]

\[w_{inr} = \begin{cases} 1 & \text{if } z_{inr} = U_{nr} \\ 0 & \text{otherwise} \end{cases} \]

Constraints

\[z_{inr} \leq U_{nr} \quad \forall i, n, r \]

\[U_{nr} \leq z_{inr} + M_{nr}(1 - w_{inr}) \quad \forall i, n, r \]

\[\sum_{i} w_{inr} = 1 \quad \forall n, r \]

\[w_{inr} \leq y_{inr} \quad \forall i, n, r \]
Capacity

Capacity cannot be exceeded $\Rightarrow y_{inr} = 1$

$$\sum_{m=1}^{n-1} w_{imr} \leq (c_i - 1)y_{inr} + (n - 1)(1 - y_{inr}) \forall i > 0, n > c_i, r$$

Capacity has been reached $\Rightarrow y_{inr} = 0$

$$c_i(y_{in} - y_{inr}) \leq \sum_{m=1}^{n-1} w_{imr}, \forall i > 0, n, r$$
Family of models

Constraints
- Set of linear constraints characterizing choice behavior
- Can be included in any relevant optimization problem.

Examples
- Profit maximization
- Facility location

Difficulties
- big M constraints
- large dimensions
Profit maximization

Profit
If p_{in} is the price paid by individual to purchase option i, the revenue generated by this option is

$$
\frac{1}{R} \sum_{r=1}^{R} \sum_{n=1}^{N} p_{in} w_{inr}.
$$

Linearization
If $a_{in} \leq p_{in} \leq b_{in}$, we define $\eta_{inr} = p_{in} w_{inr}$, and the following constraints:

$$
\begin{align*}
 a_{in} w_{inr} & \leq \eta_{inr} \\
 \eta_{inr} & \leq b_{in} w_{inr} \\
 p_{in} - (1 - w_{inr}) b_{in} & \leq \eta_{inr} \\
 \eta_{inr} & \leq p_{in} - (1 - w_{inr}) a_{in}
\end{align*}
$$
A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.
A case study

Challenge

- Take a choice model from the literature.
- It cannot be logit.
- It must involve heterogeneity.
- Show that it can be integrated in a relevant MILP.

Parking choice

- [Ibeas et al., 2014]
Parking choices [Ibeas et al., 2014]

Alternatives
- Paid on-street parking
- Paid underground parking
- Free street parking

Model
- \(N = 50 \) customers
- \(C = \{\text{PSP}, \text{PUP}, \text{FSP}\} \)
- \(C_n = C \quad \forall n \)
- \(p_{in} = p_i \quad \forall n \)
- Capacity of 20 spots
- Mixture of logit models
General experiments

Uncapacitated vs Capacitated case
- Maximization of revenue
- Unlimited capacity
- Capacity of 20 spots for PSP and PUP

Price differentiation by population segmentation
- Reduced price for residents
- Two scenarios
 1. Subsidy offered by the municipality
 2. Operator is forced to offer a reduced price
Uncapacitated vs Capacitated case

Uncapacitated

Capacitated
Computational time

R	**Uncapacitated case**			**Capacitated case**												
5	Sol time	2.58 s	PSP	0.54	PUP	0.79	Rev	26.43	Sol time	12.0 s	PSP	0.63	PUP	0.84	Rev	25.91
10	Sol time	3.98 s	PSP	0.53	PUP	0.74	Rev	26.36	Sol time	54.5 s	PSP	0.57	PUP	0.78	Rev	25.31
25	Sol time	29.2 s	PSP	0.54	PUP	0.79	Rev	26.90	Sol time	13.8 min	PSP	0.59	PUP	0.80	Rev	25.96
50	Sol time	4.08 min	PSP	0.54	PUP	0.75	Rev	26.97	Sol time	50.2 min	PSP	0.59	PUP	0.80	Rev	26.10
100	Sol time	20.7 min	PSP	0.54	PUP	0.74	Rev	26.90	Sol time	6.60 h	PSP	0.59	PUP	0.79	Rev	26.03
250	Sol time	2.51 h	PSP	0.54	PUP	0.74	Rev	26.85	Sol time	1.74 days	PSP	0.60	PUP	0.80	Rev	25.93
Facility location

Data
- U_{in}: exogenous,
- C_i: fixed cost to open a facility,
- c_i: operational cost per customer to run the facility.

Objective function

$$\min \sum_{i \in C_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i W_{inr}$$
Benders decomposition

\[
\begin{align*}
\min & \quad \sum_{i \in C_k} C_i y_i + \frac{1}{R} \sum_r \sum_i \sum_n c_i w_{inr} \\
\text{subject to} & \\
\max & \quad U_{nr} = \sum_i U_{inr} w_{inr} \\
\sum_i w_{inr} & \leq 1 \\
w_{inr} & \leq y_i \\
w_{inr} & \geq 0 \\
w_{inr}, y_i & \in \{0, 1\}.
\end{align*}
\]
Benders decomposition

Customer subproblem: fix y_i^*

$$\max_w U_{nr} = \sum_i U_{inr} w_{inr}$$

subject to

$$\sum_i w_{inr} = 1$$

$$w_{inr} \leq y_i^*$$

$$w_{inr} \geq 0.$$
Benders decomposition

Primal

$$\min_w U = - \sum_i U_i w_i$$

subject to

$$\sum_i w_i = 1$$

$$w_i \leq y_i^* \quad \forall i$$

$$w_i \geq 0.$$

Dual

$$\max_{\lambda, \mu} \lambda + \sum_i \mu_i y_i^*$$

subject to

$$\lambda + \mu_i \leq -U_i \quad \forall i$$

$$\mu_i \leq 0 \quad \forall i.$$
Profit optimization, facility location

Bender decomposition

Ongoing work

- Exploit the duality results to generate cuts for the master problem.
- Investigate the use of Benders for other problems.
 - profit maximization,
 - maximum likelihood estimation of the parameters.
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
Introduction

- Travel demand is derived from activity demand.
- Activity demand is influenced by socio-economic characteristics, social interactions, cultural norms, basic needs, etc. [Chapin, 1974]
- Activity demand is constrained in space and time [Hägerstråand, 1970].
State of practice

Sequence of decisions

Source: [Scherr et al., 2020]
Research question

Relax the *series of discrete choice models* approach

- The interactions of all decisions is complex.
- Sequence of models is most of the time arbitrary.

Integrated approach

Develop a model involving many decisions:

- activity participation,
- activity location,
- activity duration,
- activity scheduling,
- travel mode,
- travel path.
Research objectives

- Integrated approach based on first principles.
- Theoretical framework: utility maximization.
- Individuals solve a scheduling problem.
- Important aspects: trade-offs on activity sequence, duration and starting time.
- Again, we replace the error terms by draws.
Real data

Dataset

- 2015 Swiss Mobility and Transport Microcensus.
- Daily trip diaries for 57’000 individuals.
- Records of activities, visited location, mode/path choice.
Real data

Assumptions

- Desired start times and durations are the recorded ones.
- Feasible time windows: percentiles start and end times from out of sample distribution.
- Only the recorded locations are considered.
- Uniform flexibility profile across population.
Individual 1 (weekday)

Optimal schedules generated for random draws of ε_{an}
Individual 2 (weekday)

Optimal schedules generated for random draws of ε_{an}
Individual 3 (weekday)

Optimal schedules generated for random draws of ε_{an}
Validation

Activity profiles for full-time workers, Lausanne area

Simulation

Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
Validation

Activity profiles for individuals older than 65, Lausanne area

Simulation

Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
Validation

Activity profiles for students, Lausanne area

Source: SBB. Acknowledgment to Patrick Manser.
Validation

Activity profiles for primary school pupils, Lausanne area

Validation

Microcensus

Source: SBB. Acknowledgment to Patrick Manser.
Activity-based models

Ongoing work

- Synthetic population
- Estimation of the parameters
- Social interactions
Outline

1. Introduction
2. Microeconomics
3. The logit model
4. Profit optimization, facility location
5. Activity-based models
6. Conclusion
Conclusion

Microeconomics in a nutshell

- **Optimization**
 - Profit maximization, facility location
- **Discrete choice**
 - Logit model
- Activity-based models

Tutorial
- Microeconomics in a nutshell

Research
Acknowledgments

A great team...

- Stefano Bortolomiol,
- Tim Hillel,
- Virginie Lurkin,
- Meritxell Pacheco,
- Janody Pougala,
- Shadi Sharif Azadeh,
- and many others...

Readings

- [Pacheco Paneque, 2020]
- [Pacheco et al., 2021]
- [Bortolomiol et al., forta]
- [Bortolomiol et al., fortb]
- [Pougala et al., 2021]
Bibliography I

A general framework for the integration of complex choice models into mixed integer optimization.

Capturing trade-offs between daily scheduling choices.
Technical Report TRANSP-OR 210101, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.

Scherr, W., Manser, P., and Bützberger, P. (2020).
Simba mobi: Microscopic mobility simulation for corporate planning.
Transportation Research Procedia, 49:30–43.