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Introduction

Future mobility

Trends

Mobility as a service

Shared mobility

Demand patterns are more and more
complex

New sources of data

Travel demand

Traditional methodology: discrete
choice

Emergence of machine learning
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Introduction

IATBR 2018

Session 3E: Machine Learning –
Fundamentals
Session 6E: More Machine Learning
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Introduction

Interest from young researchers

My PhD topic is “Understanding

Multi-Modal Passenger Behaviour at City

Scale.” I have used trip diary data to

compare the performance of multiple

discrete choice models, including various

multinomial logistic regression models,

random forests, support vector

machines and neural networks.”
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A little exercise

Journal of choice modelling

Issues

22 to 29

2017 and 2018

Procedure

Download HTML

Write Python script to extract words.

Calculate the occurrences of words.
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A little exercise

Some counts

logit 4948
utility 8326
machine 99
learning 1459
statistics 634
pattern 383
classification 0
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A little exercise

Visual representation: first attempt
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A little exercise

Manual cleaning

Remove common words

the is in and of with to for a that are as each et al on by

this we be can from it has where such also may pp not all

an their one other was than two at only when use table our

how new at or they but using both were using if three no

more which these have then given into while over used

because section based there will about you some many been

did between who same would its any among under could

Remove patterns

Keep only real words — no digits, no special character
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A little exercise

Visual representation: second attempt
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A little exercise

Manual cleaning

Remove obvious words

model models choice data
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A little exercise

Visual representation: third attempt
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A little exercise

Machine learning

Manual intervention is common

“A great deal of manual work goes into building and training

intelligent machine learning algorithms.” Sascha Schubert, business
solutions manager at SAS, May 22, 2017.

“Whenever new learning is involved in ML, the human programmer

has to intervene and adapt the programming algorithm to make the

learning happen.” Paramita Ghosh, Dataversity.net, April 13, 2017.

Hyperparameter tuning.

Learning rate tuning.
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ML and discrete choice

Definitions

Machine learning is

an interdisciplinary field

that uses statistical techniques

to give computer systems the ability to
”learn” from data,

without being explicitly programmed.

[Wikipedia]
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ML and discrete choice

Definitions

Applications of machine learning

classification

regression

clustering

density estimation

dimensionality reduction

[Wikipedia]
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ML and discrete choice

Discrete choice and classification

Discrete choice from a ML perspective

dependent variable is discrete

supervised learning

logistic regression

Introduction to Discrete Choice Models www.edx.org
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Looking back

10 years ago: Automatic Facial Expression Recognition

“The face is the most extraordinary

communicator, capable of accurately

signaling emotion in a bare blink of a

second, capable of concealing

emotion equally well”

Deborah Blum

Typical machine learning application
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Looking back

Choice experiment
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Looking back

Choice model

[Sorci et al., 2010]

Vi = ASCi +
∑
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Ingredients

Facial Action Coding System (FACS) [Ekman and Friesen, 1978]

Expression Descriptive Units (EDU) [Antonini et al., 2006]

Active Appearance Model (AAM) [Edwards et al., 1998]
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Looking back

Main conclusions of this work

Quality of classification similar to neural
networks and Bayesian networks.

Behavioral insights of the discrete
choice model.

Interpretation of the parameters.

Possibility to exploit know-how in the
specification.
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Data collection

Data universe

Machine Learning: data processing

Dataset is the universe

Data generation process is usually
ignored

Representativity is assumed

Main argument: the size of the dataset
is very large

Discrete choice: inference

A population is identified

Data collection strategies are designed

Data sets are rebalanced to represent
the population
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Data collection

Potential implications

Classification

Results from statistics: bias of the
parameters

Not necessarily an issue if
cross-validation is applied

Aggregation

Counting

Aggregation biases may be severe
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Data collection

Example

City of Geneva

Data for March 2, 2017.

Phone data: boundary flows, between adjacent zones.

ML: results of the ML learning algorithm of the phone company.

Compared with loop detectors: flows of cars
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Data collection

Results

Source: Montesinos Ferrer, Lamotte, Geroliminis
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Model output

Model output

Probability that an item n belongs to a class i

Choice models

Probability is used in applications

Classification

Class with highest probability is selected
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Model output

Severe aggregation bias

Example: classify 1000 items in two classes.

Data generation process

51% class 1 / 49% class 2

Perfect ML model

After projection: always predicts class 1

Total number of items in class 1

In reality: 510

Predicted: 1000
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Model output

Aggregation bias increases with the number of classes

Example: classify N items in K classes.

Data generation process

1+ε
K

class 1 / K−1−ε
K(K−1) class i

Perfect ML model

After projection: always predicts class 1

Total number of items in class 1

In reality: N 1+ε
K

Predicted: N
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Estimation

Loss function/goodness of fit

Formalism

Class i , item n

Independent variables/features :
xn = (xin)

J
i=1

Choice / class: yn = (yin)
J
i=1 ∈ {0, 1}J

Unknown parameters: β ∈ R
K

Model: f (xn;β) ∈ [0, 1]

Loss function: finite sums

L(β) =
N∑

n=1

L(f (xn;β), yn)
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Estimation

Loss function/goodness of fit

L(f (xn;β), yn) =

-Log likelihood / cross
entropy

−
J∑

i=1

yin ln f (xn;β)

Square loss

J∑

i=1

(1− yinf (xn;β))
2

Hinge loss

J∑

i=1

|1− yinf (xn;β)|+

Exponential loss

J∑

i=1

exp(−γyinf (xn;β))
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Estimation

Stochastic gradient descent

Loss function

L(β) =
N∑

n=1

L(f (xn;β), yn)

Key ingredient for optimization

Gradient:
∇L(β) =

∑
n∈{1,...,N}∇L(f (xn;β), yn)

Big data

Approx.:
∑

n∈B⊆{1,...,N}∇L(f (xn;β), yn).
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Estimation

Stochastic gradient on choice data [Lederrey et al., 2019]
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Cross-validation

Cross-validation

Main ideas

How to select the best model?

It should be the one that predicts best

Example: leave-one-out

If =
1

N

N∑

n=1

L(f (xn; β̂n−), yn)
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Conclusions

Summary
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Conclusions

Summary

DCM ML

Manual intervention Model spec. Algorithm
Interpretability Yes Not quite
Sampling issues Handled Mainly Ignored
Model output Probability Mostly 0/1

Estimation standard NL opt. stochastic gradient
Cross-validation Mainly ignored Yes
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Conclusions

Conclusions

Two different communities

Two different state-of-practice

Similar objectives

Research agenda

Bring the best from each world
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Conclusions

Some recent examples

Application of ML models to choice data

[Wong et al., 2018], [Lhéritier et al., forthcoming]

Application of ML algorithms to DC

[Lederrey et al., 2019]

Economic interpretation of ML

[Wang and Zhao, 2018]

Choice model including a neural network

[Sifringer et al., 2018]

Assisted specification

[Paz et al., 2019], [Ortelli, 2019], [Hillel et al., forthcoming].
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Lhéritier, A., Bocamazo, M., Delahaye, T., and Acuna-Agost, R.
(forthcoming).
Airline itinerary choice modeling using machine learning.
Journal of Choice Modelling.

Michel Bierlaire (EPFL) Discrete Choice/Machine Learning June 11, 2019 46 / 48



Conclusions

Bibliography III

Ortelli, N. (2019).
Automatic utility specification in discrete choice models.
Master’s thesis, Ecole Polytechnique Fédérale de Lausanne (EPFL).

Paz, A., Arteaga, C., and Cobos, C. (2019).
Specification of mixed logit models assisted by an optimization
framework.
Journal of Choice Modelling, 30:50 – 60.

Sifringer, B., Lurkin, V., and Alahi, A. (2018).
Enhancing discrete choice models with neural networks.
In Proceedings of the 18th Swiss Transportation Research Conference.

Michel Bierlaire (EPFL) Discrete Choice/Machine Learning June 11, 2019 47 / 48



Conclusions

Bibliography IV

Sorci, M., Antonini, G., Cruz, J., Robin, T., Bierlaire, M., and Thiran,
J.-P. (2010).
Modelling human perception of static facial expressions.
Image and Vision Computing, 28(5):790–806.

Wang, S. and Zhao, J. (2018).
Framing discrete choice model as deep neural network with utility
interpretation.
arXiv preprint arXiv:1810.10465.

Wong, M., Farooq, B., and Bilodeau, G.-A. (2018).
Discriminative conditional restricted Boltzmann machine for discrete
choice and latent variable modelling.
Journal of Choice Modelling, 29:152 – 168.

Michel Bierlaire (EPFL) Discrete Choice/Machine Learning June 11, 2019 48 / 48


	Introduction
	A little exercise
	ML and discrete choice
	Looking back
	Data collection
	Model output
	Estimation
	Cross-validation
	Conclusions

