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An Early Stopping Bayesian Data Assimilation Approach
for improved Mixed Multinomial Logit transferability

Abstract

Mixed Multinomial Logit (MMNL) models can provide valuable insights into inter and
intra-individual heterogeneity in transportation choice modelling. However, the high
computational and data requirements for MMNL models has limited the application of
MMNL models in practice. These requirements are particularly problematic when in-
vestigating the behaviour of specific population sub-groups or market segments, where
a modeller may want to estimate separate models for a number of similar contexts, each
with low data availability. The same challenges arise when adapting one model to a
new location or time period.

To overcome these barriers, we establish a new Early Stopping Bayesian Data As-
similation (ESBDA) approach which updates a previously estimated MMNL on a new
data sample or subsample through iterative Bayesian inference. This approach there-
fore enables an existing model from one context to be transferred to a new context with
lower data availability.

The ESBDA approach is benchmarked against two reference estimators: (i) a stan-
dard Bayesian estimator (MMNL); and (ii) a Bayesian Data Assimilation (BDA) esti-
mator without early stopping. The results show that the proposed ESBDA approach can
effectively overcome over-fitting and non-convergence. ESBDA models outperform the
models estimated by the reference estimators in terms of behavioural consistency of pa-
rameter estimates and the out-of-sample predictive performance of the model. Even
when using few collected data, ESBDA can still produce suitable and stable MMNL
model with parameter estimates consistent with established behavioural theory.

Keywords: Multinomial Logit, Bayesian Data Assimilation, Model Transferability,
Early Stopping

1. Introduction

Discrete Choice Models (DCMs) are crucial modelling tools in transport, economics,
health, and other disciplines where individual choice behaviour is a key research inter-
est. The most prominent DCM used in practice is the Multinomial Logit (MNL) model,
where the parameters in the utility functions have fixed values across the population.
However, the fixed parameters in MNL models do not account for the significant in-
ter and intra-individual heterogeneity in individual choice behaviour. Variants of the
standard MNL have emerged to accommodate heterogeneity through assuming a dis-
tribution in the modelled parameters over the population. These distributions can be
discrete, as in the Latent Class Model (LCM) (Bhat, 1997; Greene and Hensher, 2003);
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or continuous, as in the Mixed Multinomial Logit (MMNL) (Cardell and Reddy, 1977;
Ben-Akiva and Bolduc, 1996; McFadden and Train, 2000). However, both MMNL and
LCMs have higher computational and data requirements than MNL models, which has
limited their application in practice.

The computational and data requirements of MMNL models become restrictive
when investigating market segmentation, where separate models for a different pop-
ulation subgroups are estimated, each with low data availability. Meanwhile, as the
parameter combinations of DCMs estimated for different populations can vary greatly,
it is difficult to apply or transfer models to a new modelling context (e.g., modelling
for a new location or for the future). This means areas or population segments with
poor data availability cannot benefit substantially from existing models. There is there-
fore a need to address the problem of data shortage in modelling heterogeneous choice
behaviour.

This paper addresses this need through the introduction of the Early Stopping
Bayesian Data Assimilation (ESBDA) estimator. Following the idea of model trans-
feribility (Ben-Akiva and Bolduc, 1987), the ESBDA estimator is designed to adapt a
previously established model to a new population subgroup, location, or time period.
The adaptation is achieved through Bayesian Data Assimilation (BDA). The proposed
estimator is equipped with early stopping procedures to help prevent over-fitting or non-
convergence, which are recurrent conundrums of small sample modelling of DCMs.
The major contribution of ESBDA is the enabling a modeller to exploit an existing
model estimated on a different population to estimate a model on a new population.
This is of particular benefit when the modeller does not have access to sufficient data to
estimate a reliable model directly on the new population.

2. The Early Stopping Bayesian Data Assimilation (ESBDA) Estimator

2.1. Modelling Approach
This section presents the modelling approach used, focusing on Bayesian Data As-

similation (BDA) and early stopping procedures, where ESBDA gets its major advan-
tages over the conventional hierarchical Bayesian estimator of MMNL. For a complete
review of modelling MMNL, we direct the reader to Chapter 6 of Train (2003).

Figure 1: Flowchart of iterative Bayesian procedures and early stopping procedures of ESBDA.
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2.1.1. Bayesian Data Assimilation (BDA)
BDA is a phrase first used in the time-series modelling literature to describe a time-

related model refinement/calibration technique which uses new information as it be-
comes available (Jazwinski, 1970; Reich and Cotter, 2015). This paper extends the
definition of BDA to ‘the technique of data assimilation through Bayesian inference for
general transfer/update of a previously established model’.

In the context of updating a model for a new population, the conjugate prior is the
previously estimated parameter combination of a similar model. Through assimilating
the sample data of the modelling object, the prior evolves into a new parameter com-
bination (posterior) fitting to the target context. The assimilation is processed through
iterative Bayesian inference, where each parameter is updated in response to the con-
dition of the rest of the parameter combination. We will introduce the procedure in
Section 2.2.1.

2.1.2. Early Stopping
Early stopping is a commonly used technique in Machine Learning (ML), which

stops the training before convergence in order to regularise the model and prevent over-
fitting. It tracks the real-time validation and/or training set error(s) and terminates the
modelling when an early stopping criterion is met. This technique is not used in the
conventional MMNL estimation as this model type rarely has a high dimensional pa-
rameter space and therefore has a relatively low risk of over-fitting.

However, early stopping could also be of benefit for the MMNL models when mod-
elling with very small sample sizes. Early stopping can prevent the resultant model
from over-fitting to the insufficient sample data which may not be representative of the
population to be modelled. Meanwhile, the insertion of early stopping procedures es-
sentially configures the core of Maximum Simulated Likelihood (MSL) estimator into
the Bayesian estimator. As such, ESBDA becomes essentially a hybrid of the two most
prominent MMNL estimators — the MSL and the hierarchical Bayes (HB) procedure.
The HB procedure typically terminates the simulation when the MMNL model con-
verges. However, the model may never converge when the sample size is small, which
makes when to stop the modelling become a tough decision. In this case, this deci-
sion could be left to the early stopping procedures. Despite these potential benefits, to
the best of the authors’ knowledge, this paper is the first effort to configure the early
stopping procedure into a MMNL estimator.

Here we present the mainstream classes of early stopping criteria that are applicable
to our estimator. Let E denote the modelling error and Eopt(T ) denote the lowest error
obtained in epochs until T :

Eopt(T ) = min
T ′≤T

E(T
′
) (1)

The relative generalisation loss at epoch T (in percent) is:

L(T ) = 100 · ( E(T )

Eopt(T )
− 1) (2)

(i) The first class of stopping criteria, Lα, stops modelling as soon as the generalisation
loss drops to a certain threshold, i.e., stop when L(T ) > α.
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(ii) The second class,Qα, stops training when the decreasing speed ofE,Pk(t), drops below
a certain threshold, i.e., L(T )

Pk(T ) > α, where k refers to consecutive k epochs, e.g., a training strip.
And the decreasing speed (in per thousand) of E is:

Pk(T ) = 1000 · (
∑T

T ′=T−k+1
E(T

′
)

k ·minT
T ′=T−k+1

E(T ′)
− 1) (3)

(iii) The third class triggers stopping when the L increased in s successive strips:
Ss: stop after epoch T iff E(T ) > E(T − k) and Ss−1 stops after epoch T − k; or
S1: stop after the end of first strip t with E(T ) > E(T − k).
Early stopping criteria (except for Qα) are typically applied to the validation set only be-

cause the training set error is automatically tracked in the form of likelihood during the MSL
modelling progress. However, as the HB itself does not track the likelihood in the training set,
we apply early stopping to the both datasets. The one in the training set serves as a lightweight
MSL to supervise the modelling error during the HB procedure.

2.2. Estimator Formulation
2.2.1. Algorithm

Our framework is built on a fundamental Bayesian estimator which employs the HB proce-
dure. The HB method was initially established by Rossi et al. (1996) and Allenby (1997) and
the estimator was then coded by Train (2006). We have recoded extensively to realise modelling
error tracking and plotting, to adapt the codes to the new model, etc. For simplicity, the diagram
of the algorithm (Fig.2) illustrates only the modifications that make a sound difference to the
estimation results. The key extensions of the new estimator from the standard HB procedure
are on the two ends of the original algorithm: (i) the adoption of a conjugate prior parameter
combination in the beginning and (ii) the early stopping procedures to terminate modelling.

The estimator assimilates new data and approximate the posterior estimates by Markov
Chain Monte Carlo (MCMC) sampling through iterative Bayesian inference procedures. We
illustrate the procedures using the multivariate normal, as it is relatively easy to follow numeri-
cally1. For βn ∼ N(b,W ), we have the utility function:

Unj = α′znj + (β̄′n + σnζnj)xnj + εnj (4)

where α
′

and β̄′n + σnζnj are vectors of fixed and random coefficients respectively. znj is the
vector of fixed-weighted explainable variables and xnj is that of random-weighted variables.
εnj is the remaining unobserved utility which is independent and identically distributed (iid)
Extreme-Value 1 type (EV1). Then the conditional posteriors in each layer of Bayesian infer-
ence are:

1. K(βn|α, b,W ) ∝ L(yn|α, βn)φ(βn|b,W )2. It is not in a closed form, so Metropo-
lis–Hastings Algorithm (M-H) is used to obtain a simulated βn on the pooled data.

2. K(b|W,βn∀n) is N(
∑

n βn/N,W/N)). Note α does not enter this layer directly. Its
affect on posterior b is passed through the draws of βn from the first layer.

1The limited space only allow us to present out methodology as succinct as possible. For an in-depth
study of the HB procedure, we direct the reader to Chapter 9 and 12 of Train (2003).

2We use βn to denote the real-time simulated α
′

and β̄′n + σnζnj .
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Figure 2: Estimation procedures of the original Train’s Hierarchical Bayes procedures (left) and the
proposed ESBDA estimator.
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3. K(W |b, βn∀n) is IW (K + N, (KI + NS̄)/(K + N)) where S̄ =
∑

n(βn − b)(βn −
b)
′
/N . Similarly, α does not involve directly.

4. K(α|βn) ∝ ΠnL(yn|α, βn). M-H may be used again when the prior on α is essentially
flat.

The method can be conveniently adapted to variants of normal distribution simply through
distribution transformation. Denote the weights of random utility terms in person n’s utility
function as cn, and cn = T (β̄′n + σnζnj), where T refers to a distribution transformation which
depends only on the latent distribution parameters and which is weakly monotonic (to maintain
∂ckn/∂c

β̄′n+σnζnj
n ≥ 0 for elements in βn or cn). The distributed random parameter is drawn in

the same manner in modelling but it enters the utility function in its transformed form:

Unj = α′znj + T (β̄′n + σnζnj)
′xnj + εnj (5)

Whilst the derivation of the resulting posterior in each layer may change in other flexible
distributions, the procedures are broadly similar.

2.2.2. Hyper-parameters
The class(es) of early stopping criteria and the threshold value(s) are usually selected in

an interactive fashion (Precheit, 1998). For model performance in estimation and for hyper-
parameters optimisation, our estimator employs Cross-Entropy Loss (CEL) (Eq.6), which is a
normalised measure independent on the sample size. And the early stopping criteria that we
incorporate are Lα and Ss.

GCEL = − 1

N
Glog-likelihood,

= − 1

N

N∑
n=1

lnP (in|xn)
(6)

To guarantee model termination, stopping criteria are complemented by a rule that termi-
nates modelling after a set number of epochs. Other hyper-parameters, e.g., the total number of
epochs, the number of draws for simulating the distributed parameters, are also set on an ad-hoc
basis. To relieve serial correlation of M-H, draws of posterior distribution of α, βn are retained
at regular intervals instead of consecutively (every T1 epochs). The same rule is applied to CEL
tracking and plotting (every T2 epochs).

2.2.3. Target Scenarios
The estimator is developed principally to transfer/update a previously estimated model to

adapt (i) another location, (ii) demographic/ locational population segments, or (iii) a different
time period (given the prediction of demographic change). It can also be used for normal MMNL
estimation.

For model segmentation, a hierarchical modelling structure can be established to investigate
heterogeneous choice behaviour hierarchically — from a general level to specific detailed seg-
ments — through layers of ESBDAs (see Fig. 3). In each level of segmentation, the coefficients,
i.e., the posterior, estimated for the upper level model are input to the ESBDA as the prior to
estimate this level posterior coefficients, which will then serve as the prior of the next level.
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Figure 3: Hierarchical modelling structure for a systematic DCM model segmentation

3. Testing procedure

Simulation experiments are carried out to benchmark the ESBDA estimator against two
reference estimators. The alternative estimators are run to estimate the same MMNL model.
The comparison is made on the basis of the estimation results.

3.1. Benchmark Estimators
As Table 1 shows, the basic benchmark estimator is the HB procedure (Train, 2006). The

starting values of the model coefficients are selected at random. The estimation is therefore
based solely on the limited data of the modelling target. We further employ an intermediate
estimator, i.e., BDA, as another reference estimator. It takes full advantage of the Bayesian
inference to develop the new model informatively from a informative prior model. Unlike the
proposed estimator, this estimator is not equipped with early stopping procedures.

Table 1: The ESBDA estimator and the benchmark estimators
Estimator prior-based ESBDA prior-based BDA Non-prior Bayesian

Estimator
Simulation
mechanism

Bayesian modelling Bayesian modelling Bayesian modelling

prior Previously estimated
parameters

Previously estimated
parameters

No-prior

Early stopping
procedures

Yes No No

3.2. Measures of Estimator Performance
The estimators are compared across three performance dimensions. The first is the statistics

of their modelling estimates, e.g., statistical significance, sign errors. The second indicator is the
modelling progress: how steady CEL progresses throughout a complete modelling; whether the
estimation result truly converge; and where does the modelling early stop. The last is whether
the parameter combination is interpretable. The ratios of model coefficients against the weight
of money can provide valuable insights into people’s willingness to pay of different factors
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(time in particular) in choice behaviour. A MMNL estimator should give the model a param-
eter combination which is highly interpretable and therefore informative to exploring people’s
valuation of different factors in choice behaviour. On the contrary, the modelling methodology
may need to be reconsidered if there is a suspicious coefficient ratio. As such, we employ an
additional estimator evaluation dimension, which is the modeller’s judgement of the resultant
time-cost-ratio, i.e., how far the estimated ratio deviates from empirical values of Value of Time
(VOT).

3.3. Case Study: Modelling Travel Mode Choice in London
The model used to test the three estimators is a MMNL model that we develop for modelling

the travel mode choice in London. The dataset, available online, is adapted from a closely
tailored London travel dataset3(Hillel, 2019) which recreates the travel mode choice-set that are
faced by the respondentsat the time of travel.

The time/cost ratio is of particular interest in transport modelling. To investigate the ratio,
the values of time and of cost cannot be both random at the same time. Therefore, we assign a
normal distribution to the cost value and maintain all other coefficients/constants as fixed value
parameters. People’s perception and valuation of time varies when travelling in different modes.
So we set alternative-specific parameters for the utility functions of the four modes, i.e., driving
(Un driving), public transit (Un public), cycling (Un cycling), and walking (Un walking). The utility
functions are as follows (Eq.7–10)4. The explanatory variables and the coefficients of the model
are presented in Table 2.

Un driving = (β̄n cost + σn costζn cost)cn d + αdriving-timetn d + αvarνn d + εn driving (7)

Un public =(β̄n cost + σn costζn cost)cn p + αaccess-timetn a + αbus-timetn b + αrail-timetn r+

αchange-walking-timetn change1 + αchange-waiting-timetn change2 + Cpublic + εn public
(8)

Un cycling = αcycling-timetn c + Ccycling + εn cycling (9)

Un walking = αwalking-timetn w + Cwalking + εn walking (10)

Table 2: Variables and Coefficients of the London Travel Mode Choice Model, and the distributions of
the coefficients

Variable / Constant Symbol Coefficient Distribution

Travel Cost cn d(driving);
cn p(public)

βn cost normal

Driving time tn d αdriving-time fixed
Access time tn a αaccess-time fixed
In-vehicle time on bus tn b αbus-time fixed
In-vehicle time on rail tn r αrail-time fixed
Interchange walking time tn change1 αchange-walking-time fixed
Interchange waiting time tn change2 αchange-waiting-time fixed
Cycling time tn c αcycling-time fixed
Walking time tn w αwalking-time fixed
Traffic variability νn d αν fixed
Constant of the Public transit mode - Cp fixed
Constant of the Cycling mode - Cc fixed
Constant of the Walking mode - Cw fixed

3available on https://www.icevirtuallibrary.com/doi/suppl/10.1680/jsmic.
17.00018.

4We use βn cost to denote (β̄n cost + σn costζn cost) in the rest of this paper.
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To test the estimation ability of the ESBDA, BDA, and HB approaches at different samples
sizes, tests are conducted with four subsamples of the dataset, as shown in Table 3. In addition,
the levels of modelling also provide a platform to illustrate our idea of building a modelling
system for hierarchical model segmentation, using layers of ESBDA.

Given the sufficiently large full dataset, there is no problem of over-fitting or non-convergence
in modelling by any alternative estimator at Level 0. The purpose of Level 0 modelling is to
derive a ’mother model’ to feed conjugate prior parameters to the next level modelling. Level
1-3 Models use corresponding population sample data as they are developed to investigate travel
behaviour of a certain sub-population.

Table 3: Modelling levels, and the corresponding modelling objective and sample size of each level
Sample size Modelling object Number of choice samples

Training Validation

Level 0 All journeys, regardless of travel purpose
time period of travelling or the traveller’s
attributes, income, age, etc.

8331 7817

Level 1 General home-office journeys, regardless
of time period of travelling or the trav-
eller’s attributes, income, age, etc.

613 735

Level 2 Home-office journeys during morning
peak-time, regardless of the traveller’s at-
tributes, income, age, etc.

266 264

Level 3 Home-office journeys during morning
peak-time; the 26-35-year-old people
whose household income is between
£25,000-£49,999.

26 27

3.4. Experimental Setup
The early stopping criteria used for the modelling are: L(T ), UP and a complementary

criterion which terminate modelling anyway after 5,000 epochs. The threshold values of L(T )
and UP are set to α = 2 and s = 100. And we set T1 = 10 and T2 = 20.

4. Results and Discussion

Performance of alternative estimators is analysed on the grounds of (i) Statistics and be-
havioural consistency of parameter estimates (Table 5 to 7) and (ii) the steadiness of modelling
progress (Fig. 4 to 6).

Estimated parameters with statistical insignificance and sign error are highlighted in Table 6
to 7. We omit the plot of level-0 modelling as the modelling progresses of all the three estimators
are steady and ESBDA does not undergo early stopping. Three estimators finally converge to
indistinguishable estimates, with majority estimates being statistically significant.

The sample size at Level-1 is still relatively large. CELs of all the three estimators approach
their asymptotes. ESBDA early stops at the 2540th epoch. None of the estimators encounters
sign error. But some time-cost ratios (e.g., driving time/cost, as highlighted in Table 3) produced
by the two benchmark estimators are found to have deviated from the corresponding empirical
values at Level 0. The proposed estimator has no such problems and is thus favoured over
the benchmark estimators. While the models estimated by the other estimators may mislead
behaviour interpretations, the model estimated by ESBDA still maintains strong explanatory
power that an appropriate MMNL model is supposed to have.
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Table 4: Estimates of the Level 0 modelling
coefficient value coefficient value coefficient value

βn cost -0.1605 αdriving-time -3.4996 αaccess-time -3.4173
αbus-time -2.2110 αrail-time -2.3821 αchange-walking-time -1.9474
αchange-waiting-time -2.6313 αcycling-time -4.6405 αwalking-time -6.2339
αν -5.1859 Cp 1.7403 Cc 0.2730
Cw 3.5505

Table 5: Estimates of the Level 1 modeling through alternative estimators
(* p < 0.05; ** p < 0.01; *** p < 0.001; e sign error; ! unreasonable time-cost ratio)

ESBDA Estimator
(not early stopped)

BDA Estimator Non-conjugate-prior
Estimator

Mean StDv Mean StDv Mean StDv
µn cost -0.1637*** 0.0075 -0.1211** 0.0409 -0.1275*** 0.0369
σn cost 0.0094*** 0.0017 0.0486 0.0275 0.0384 0.0237
βn cost -0.1725 0.0957 -0.1411 0.2182 -0.1453 0.1941
αdriving-time -3.6692*** 0.7421 -0.3705! 1.9873 -3.0117 3.0168
αaccess-time -2.2671* 0.9753 –5.7970* 2.4072 -5.1126 3.2635
αbus-time -1.4018 0.7978 -2.3862 1.5479 -2.6516 1.5919
αrail-time -1.2581 1.1941 -1.4583 2.4762 -2.6057 2.8412
αchange-walking-time -1.4994 0.8110 -2.5526 2.6399 -0.1235! 1.1013
αchange-waiting-time -1.5642 1.5574 -4.9852 2.5574 -6.3279 4.2701
αcycling-time -5.0625*** 0.5994 -5.7544** 1.8166 -7.0572* 2.9924
αwalking-time -7.6346*** 0.5759 -8.8903*** 1.1969 -8.9231*** 2.2502
αν -6.2389** 1.9229 -11.9053*** 2.7490 -13.8196 5.4239
Cp 1.7216*** 0.4506 2.5713* 1.2857 1.7251 1.0461
Cc 1.1120 0.3734 1.2281 1.0263 0.7673 0.9277
Cw 4.6604*** 0.5723 5.4952*** 0.9213 0.5723*** 1.0875

As the sample size continues to shrink, the benchmark estimators both see an inevitably
increased fluctuation of CELs during modelling, in particular, the Non-conjugate-prior estima-
tor. Given a handful of sample data, as the plots show, the Level-2/3 models are unlikely to
see convergence on the training set or validation set, even with a set of informative conjugate-
prior parameters. Estimates generated by one epoch can change massively within just several
epochs under the unsteady modelling process. Not surprisingly, obvious sign errors occur in the
estimations by the two reference estimators.

Table 6: Estimates of the Level 2 modeling through alternative estimators
(* p < 0.05; ** p < 0.01; *** p < 0.001; e sign error; ! unreasonable time-cost ratio)

ESBDA Estimator
(1480 epochs)

BDA Estimator Non-conjugate-prior
Estimator

Mean StDv Mean StDv Mean StDv
µn cost -0.1723*** 0.0497 -0.4450 0.3775 -0.0974 0.0965
σn cost 0.0713*** 0.0180 0.5705 0.4513 0.2249 0.1385
β∗ cost -0.1965 0.2644 -0.5134 0.7478 -0.1403 0.4695
αdriving-time -3.1287*** 0.7790 -4.5707 1.8986 -5.4834* 2.8758
αaccess-time -7.1108*** 1.8538 -5.6903 3.0392 4.2442e 3.4498
αbus-time -4.2545*** 1.0576 -7.3937* 2.8542 -1.4524 2.2295
αrail-time -2.0064 1.2996 -5.8100 4.4338 -0.0960! 3.6980
αchange-walking-time -2.7981* 1.1139 -2.7262 2.1047 1.3032e 2.7747
αchange-waiting-time -1.5147 1.1692 -1.2664 2.0883 3.9445e 2.3518
αcycling-time -5.3324*** 0.5847 -12.4342* 5.6856 -5.2187* 2.4230
αwalking-time -9.1773*** 1.9352 -12.7062*** 2.0968 -8.4056*** 2.3010
αu -8.6779*** 1.6804 -10.4169*** 2.3457 -4.8123 2.9461
Cp 1.7203 1.2760 8.2318 4.1037 2.5942* 1.3842
Cc -0.3207 0.9438 7.2235 4.6470 3.7693 1.9513
Cw 4.2865* 1.7358 12.1655** 4.0600 7.5329*** 2.1980
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Figure 4: Comparison of Cross-Entropy Loss (CEL) of the conjugate-prior-based BDA and the Non-
conjugate-prior Bayesian Estimator (Level 1 modelling)

Figure 5: Comparison of Cross-Entropy Loss (CEL) of the conjugate-prior-based BDA and the Non-
conjugate-prior Bayesian Estimator (Level 2 Modelling)
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In contrast, ESBDA still arrives at acceptable estimates and maintains strong interpretability.
This is attributed to the early stopping procedures which effectively terminates the modelling
before the estimation diverges under the unsteady simulation process.

Overall, levels of modelling experimentation suggests that of the three estimators, ESBDA
is superior in terms of quality of estimates, modelling speed, the steadiness of the modelling
process, and the trade-off between the conjugate prior and the sample data.

Table 7: Estimates of the Level 3 modeling through alternative estimators
(* p < 0.05; ** p < 0.01; *** p < 0.001; e sign error; ! unreasonable time-cost ratio)

ESBDA Estimator
(80 epochs)

BDA Estimator Non-conjugate-prior
Estimator

Mean StDv Mean StDv Mean StDv
µn cost -0.2010 0.0497 -0.3725 0.4018 0.2163 0.5389
σn cost 0.0310 0.0180 0.5252 0.4045 0.6860 1.8527
βn cost -0.2262 0.2755 -0.4382 0.7175 -0.2914 0.0820
αdriving-time -2.3779*** 0.1864 -2.8289 1.9983 -7.7548 7.1594
*** αaccess-time -6.6902*** 0.3654 -11.6366** 3.4448 -8.1120* 2.9168
αbus-time -4.5864*** 0.4108 -7.0441 4.8814 -4.1359* 1.7178
αrail-time -1.5990*** 0.2956 -0.9152 2.6612 -1.5551 1.9935
αchange-walking-time -2.5548*** 0.0567 6.2294e 5.5857 0.5287e 3.1137
αchange-waiting-time -1.9652*** 0.2486 -2.2056 1.9487 -3.1581 3.1191
αcycling-time -5.4081*** 0.1340 -9.1297* 3.2975 -1.9244 3.2986
αwalking-time -8.4161*** 0.5026 -5.9748** 1.3551 -5.8217* 1.9707
αν -8.5447*** 0.1241 -10.4248* 3.6031 -3.4708 2.1917
Cp 1.9808*** 0.1699 3.1394 1.9598 5.2596 2.5588
Cc -0.6847 0.3522 -0.2329 1.8483 0.3442 2.0902
Cw 4.2805*** 0.1956 2.1939 2.1759 5.0985* 1.8686

Figure 6: Comparison of Cross-Entropy Loss (CEL) of the conjugate-prior-based BDA and the Non-
conjugate-prior Bayesian Estimator (Level 3 modelling)

5. Conclusions and Future Work

This paper presents a new ESBDA estimator which provides a practical approach to build
new MMNLs by transferring/updating from previously estimated model parameters through
BDA. Data assimilation is processed using iterative Bayesian inference. The estimator is equipped
with a lightweight MSL analogue to complement the Bayes procedures through inserting the
early stopping procedures.
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The proposed estimator is tested in modelling experiments at three levels of sample size.
the model estimated by the ESBDA outperforms its counterparts of the benchmark estimators
in each of the three considered dimensions for each experiment. In all experiments, the pro-
posed estimator appears to be the only estimator which yields a decent MMNL model with
interpretable coefficients.

Experimental results suggest that the ESBDA estimator is superior over the plain Bayesian
estimator and the conjugate-prior-based BDA estimator. ESBDA inherits the merits of the two
most prominent MMNL estimators — the MSL and the HB procedure, as it is essentially a
hybrid. Data assimilation prevents the resultant model from over-dependence on the previously
established model, which is not tailored to the modelling target. The model also has addressed
the problem of over-fitting to the sample data which may not be sufficiently representative of
the modelling target. Meanwhile, ESBDA can effectively prevent non-convergence, which has
been a recurrent problem when modelling with little sample data.

The study has several limitations which point to anticipatory yet challenging future re-
search directions to achieving the full potential of the ESBDA Estimator. Planned research
work includes: (i) Further comparing ESBDA to Maximum Simulated Likelihood (MSL); (ii)
Investigating Cross-Validation to substitute for early stopping and Hamiltonian Monte Carlo for
Random Walk M-H (iii) Testing the proposed estimator on multiple modelling scenarious with
multiple models.

Overall, ESBDA shows great promise as a practical, economical and relatively time-saving
tool to assist in analysing choice behaviour, particularly for less wealthy or of specific population
groups with lower data availability.
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