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Abstract

The aim of this paper is to analyze and to improve the current planning process of the passenger
railway service.

At first, the state-of-the-art in research is presented. However, given the recent changes in
legislature allowing competitors in the railway industry, the current way of planning is not
sufficient anymore. The original planning is based on the accessibility/mobility concept provided
by one carrier, whereas the competitive market consists of several carriers that are driven by
the profit.

Moreover, the current practice does not define the ideal timetables and thus it is assumed that
they evolve incrementally, based on a historical data (train occupation, ticket sales, etc.).

And thus, we introduce a definition of an ideal timetable that is expressed using the passenger
cost. In order to create the timetables itself, we propose to insert the Ideal Train Timetabling
Problem (ITTP) that is solved for each Train Operating Company (TOC) separately, into the
planning process. The ITTP approach incorporates the passenger demand in the planning and
its aim is to minimize the passenger cost(s).

The outcome of the ITTP is the ideal timetables (including connections between the trains and
weighted by the demand), which then serve as an input for the traditional Train Timetabling
Problem (TTP). The TTP takes into account wishes of each TOC (the ideal timetables) and
creates global feasible timetable for the given railway network, while minimizing the changes of
the TOCs’ wishes.

The ITTP is in line with the new market structure and it can produce both: non-cyclic and cyclic





     

timetables. The model is tested on the data provided by the Israeli Railways (IR). The instance
consists of a full demand OD Matrix of an average working day in Israel during 2008. The
results are compared to the current timetable of IR. Due to the large complexity of the model, it
is solved using the Column Generation methodology.

Keywords
Railway Optimization, Timetabling, Demand, Ideal Timetable, Passenger Utility





     

1 Introduction

The time of dominance of one rail operating company (usually the national carrier) over the
markets in Europe is reaching to an end. With the new EU regulation, the track management
and train operating companies (TOC) have to be separated subjects. Thus allowing competition
(private sector) to enter the market.

Up to this point, the national carriers were subsidized by local governments and their purpose
was to offer the accessibility and mobility to the public (passengers). On the other hand, the
goal of the private sector is to generate revenue. In transportation sector, revenue is generated by
transporting passengers or goods. The prospective passengers and goods are considered to be
the demand to capture, hence TOCs’ goal is to maximize the captured demand.

In case of goods, the demand is more flexible and its market is more or less already open for
the private sector, unlike for passengers. The main driver of goods’ demand is cost and in some
cases also the trip time. On the other hand, the passenger demand is also sensitive to the time of
the departure related to the trip purpose (weekday peak hours for work or school, weekends for
leisure, etc.) and others (comfort, perception, etc.).

With the change of the market, the TOCs have to adapt to a new business model. In this paper,
we describe the current way of planning of the passenger railway service, and discuss, how the
demand is taken into account in the current planning process (Section 2). After the analysis,
we introduce current literature on the topic (Section 3) and elaborate on a new problem to be
inserted in the planning process, in a way that the new objective is properly taken into account
(Section 4). Due to the complexity of the problem, we decompose the model and solve it using
column generation methodology (Section 5). At the end of the paper, description of the case
study is shown (Section 6) and we finalize the paper with conclusions and future work (Section
7).

2 Railway Planning

In this section, we present the current state-of-the-art of the research in the planning of passenger
railway service. Since planning a railway operation is a complex task, due to the large solution
space, it is partitioned into several problems that are solved sequentially (Caprara et al. (2007)).
These problems and the sequence in which they are solved, can be seen on Figure 1.

The logical first step, in the planning of passenger railway service, should be the railway network
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Figure 1: Planning overview of railway operation

design. However, since most of the railway infrastructure has been already built (starting in the
early 19th century) and only small parts of the network are being build nowadays, it is often
omitted from the planning process as such. Moreover, the decision, what new parts to add in the
network, is often political and handled by the local authorities. The planning horizon then starts
with the line design followed by the timetable design, rolling stock and crew scheduling and
train platforming (Caprara et al. (2007)).

In the Line Planning Problem (LPP), the main input is demand per Origin/Destination (in the
form of the OD Matrix) and the global railway infrastructure (network). Based on this input, se-
lection of the most suitable lines from the pool of pre-processed potential lines, connecting these
origins and destinations, is undertaken. Apart from that, expected frequencies and capacities of
the lines are selected as well. This problem is handled by the TOC and it is usually solved every
few years (the infrastructure and the OD matrix do not change fast). For more information about
the LPP, please refer to the latest paper surveying the problem - Schöbel (2012).

The Train Timetabling Problem (TTP) exists in two settings: non-cyclic (Caprara et al. (2002))
and cyclic (Peeters (2003)). The difference between the two is, that trains with the cyclic
timetables leave the stations at the beginning of every cycle, i.e. if the cycle is one hour, the
trains then leave the station every hour in the same minute. The two options also differ in their
respective inputs: the pre-created ideal timetables (consisting of the desired times and the time
windows, that give degree of freedom to the problem, in order to find a feasible solution) for
the non-cyclic version; frequencies and fixed departures for some of the trains in the cyclic





     

version.

To the best of our knowledge, how to create the ideal timetables (non-cyclic timetabling), is
nowhere to be found in the published literature. Even a definition, of what such an ideal timetable
would be, is non existent. In case of the cyclic timetabling, the model only searches for a feasible
solution, without considering what could be the best start of the cycle. We assume, that the
common practice in the industry is to use the "historical" timetables and modify them in every
new planning of timetables, using the given TOCs’ train occupation data.

We believe, that the lack of the definition of the ideal timetables and how to create them, is a
major gap, caused by the lack of a competition in the previous railway market settings. We
assume, that not taking the passengers’ wishes into account, lead to the decrease of the railway
mode share in the transportation market.

And thus we propose to insert an additional section in the planning horizon called the Ideal
Train Timetabling Problem (ITTP). In the ITTP, we introduce a definition of the ideal timetable
(a definition of an ideal timetable, to the best of our knowledge, does not exist, even though
the ideal timetables are used in the non-cyclic TTP) as follows: the ideal timetable, consists of
train schedules, such that the cost, associated with traveling by train, of all of the passengers’
is minimized (Section 4). Such a timetable would benefit both, passengers and the TOC in the
respective manner: it would fit passengers’ wishes, which would lead to the increase of the
demand and to increase the TOCs’ profit.

Line 
PlanningDemand Lines Train 

Timetabling
Actual 

Timetables
Rolling 
Stock 

Planning

Train 
Platforming

Crew 
Planning

Actual 
Timetables

Actual 
Timetables

Platform 
Assignment

s

Train 
Assignment

s

Crew 
Assignment

s

STRATEGIC - several years TACTICAL - >= 1 year OPERATIONAL - < 1 year

TOC

IM

Ideal Train 
Timetabling

Ideal 
Timetables

Figure 2: Modified overview of railway operation

The ITTP is using the output of the LPP and serves as an input to the traditional TTP and hence,
it is placed between the two respective problems (Figure 2). The driver of this problem is the
passenger demand. The model will allow timetables of the line to take the form of the non-cyclic





     

or cyclic schedule. Moreover, we introduce a demand induced connections. The connections
between the trains are not pre-set, but are subject to the demand. In the literature the connections
are handled only in the cyclic version of the TTP, where the connections are always induced,
without a proper reasoning.

Returning to the traditional TTP: the model is modifying the timetables for all scheduled trains,
such that safety regulations in the railway network are maintained. The problem is minimizing
the shifts by taking into account each timetable’s cost or profit. As the ITTP will provide, not
only the ideal timetables, but also their costs, it is then automatically ready to be integrated into
the current planning process.

The design of the TTP suggests, that it serves mainly to the Infrastructure Manager (IM) to
secure the safety and the feasibility of the network, whilst maximizing the wishes of TOCs.
This problem is solved for every new timetable, i.e. typically every year (in Europe usually in
December, EU directive from 2004 obliges all TOCs in Europe to do so on the same day; in
some countries (France, Great Britain) twice a year).

The TTP in general is not able to solve all conflicts, specifically within the train stations, where a
microscopic approach is needed. To handle these conflicts, the Train Platforming Problem (TPP)
is solved (Caprara et al. (2007)). The TPP takes as input the designed actual timetables for train
stations and creates the routings through the stations. This problem is considered operational
(routings can be changed throughout the operation of the actual timetable) and it is handled by
the IM.

The Rolling Stock Planning Problem (RSPP) is taking care of a fleet of a TOC, i.e. what is the
train composition (numbers of 1st and 2nd class coaches) to be able to satisfy the demand and
published timetable without exceeding the available rolling stock (Caprara et al. (2007)). This
problem is as well operational and in the jurisdiction of the TOC.

The last step in the planning horizon is the Crew Planning Problem, which assigns crew to the
scheduled trains, subject to union rules and other woking restrictions. The goal is to minimize the
size of the crew needed for a global daily operation of the service. This problem is operational
and handled by the TOC.

For more detailed description of the complete railway planning horizon, please refer to Caprara
et al. (2007) or to Huisman et al. (2005).

In this section, we have identified several drawbacks of the current state-of-the-art planning
process. The cause (of these drawbacks) is the recent market change in the railway industry,
i.e. moving from the accessibility/mobility concept provided by one carrier to the competitive





     

market consisting of several carriers, that are driven by the profit. The building stone of a
competitive market is the demand. And thus in this paper, we propose a new planning phase
(ITTP) based on the demand to create the most attractive timetables for the passengers (both
cyclic and non-cyclic) including the connections between the trains in the network (also based
on the demand).

3 Literature Review

The state-of-the-art literature is mostly focused on the traditional planning problems and consid-
ers the demand only in the initial phase (i.e. the LPP). In order to be able to insert the ITTP in the
planning horizon, we have surveyed the LPP and the TTP (both non-cyclic and cyclic versions).
Apart from that, we have also looked into the literature on demand interaction (outside of the
traditional planning scope) in the passenger railway service (namely: revenue management,
dynamic pricing, discrete choice models, etc.).

3.1 Line Planning Problem

The literature is basically divided into two partitions by passenger based and cost based objective
function. One of the first models, that maximizes the direct travelers, can be found in Bussieck
et al. (1997b). The model is maximizing the amount of direct passengers and uses one binary
decision variable (1 – if the line is selected to be in the solution; 0 – otherwise). In order to solve
the model efficiently, valid inequalities are introduced. This model is also used by Hooghiemstra
et al. (1999). The phd thesis Bussieck (1997) extends the methodologies of solving the direct
passengers objective and moreover evaluates the minimization of operational costs (and its
techniques) as defined by Claessens.

In Claessens and van Dijk (1995) and Claessens et al. (1998) different approach is presented:
instead of maximizing direct travelers, the minimization of costs is the objective. Additional
decision variables on frequency and length of the trains (in terms of the number of carriages) are
used. Unfortunately this leads to a non-linear model and thus linear reformulation is developed
instead (one decision variable representing the combination of the above). Another linearizations
and additional techniques to solve this model are shown in Zwaneveld (1997), Goossens et al.

(2001) and Bussieck et al. (2004). Goossens et al. (2006) also works with the cost optimal
model and extends the approach by introducing multiple line types (Goossens (2004) further
extends the method). Both of the above types of the model (passenger and cost based) are then
presented again in Bussieck et al. (1997a).





     

In Barber et al. (2008), another type of the model maximizing passenger coverage is presented.
The main difference, comparing to the others, is that the lines are constructed from scratch,
instead of using the set of preprocessed lines.

Different kind of model, minimizing the passengers’ travel time is presented in Pfetsch and
Borndörfer (2005), Schöbel and Scholl (2006) and Borndörfer et al. (2007, 2008).

Lastly, the LPP is integrated with TTP in Kaspi and Raviv (2013). The model is minimizing the
total time passengers spend in the network. As a solution method cross-entropy metaheuristic is
used. The latest paper surveying the published literature on LPP is Schöbel (2012).

3.2 Train Timetabling Problem

3.2.1 Non-Cyclic

Most of the models, on the non-cyclic timetabling, in the published literature, formulate the
problem either as MILP or ILP. The MILP model uses continuous time, whereas the ILP model
discretizes the time. Due to the complexity of the problem, many heuristic approaches are
considered.

Brannlund et al. (1998) use discretized time and solve the problem with lagrangian relaxation of
the track capacity constraints. The model is formulated as an ILP. Caprara et al. (2002, 2006),
Fischer et al. (2008) and Cacchiani et al. (2012) also use lagrangian relaxation of the same
constraints to solve the problem. In Cacchiani et al. (2008), column generation approach is
tested. The approach tends to find better bounds than the lagrangian relaxation. In Cacchiani
et al. (2010a), several ILP re-formulations are tested and compared. In Cacchiani et al. (2010b),
the ILP formulation is adjusted, in order to be able to schedule extra freight trains, whilst keeping
the timetables of the passengers’ trains fixed. In Cacchiani et al. (2013), dynamic programming,
to solve the clique constraints, is used.

In Carey and Lockwood (1995), a heuristic, that considers one train at a time and solves a MILP,
based on the already scheduled trains, is introduced. Higgins et al. (1997) then show several
more heuristics to solve the MILP model.

Oliveira and Smith (2000) and Burdett and Kozan (2010), re-formulate the problem as job-shop
scheduling. Erol (2009), Caprara (2010) and Harrod (2012), survey different types of models for
the TTP.





     

3.2.2 Cyclic

One of the first papers, dealing with cyclic timetables is Serafini and Ukovich (1989). The paper
brings up the topic of cyclic scheduling based on the Periodic Event Scheduling Problem (PESP).
The problem is solved via proposed algorithm.

In Nachtigall and Voget (1996) model for minimization of the waiting times in the railway
network, whilst keeping the cyclic timetables (based on PESP), is solved using branch and
bound and in Nachtigall (1996) using genetic algorithms. Another algorithm, based on con-
straint generation, to solve the PESP formulation is presented in Odijk (1996). In Lindner and
Zimmermann (2000), branch and bound algorithm is also applied to solve the PESP. In Kroon
and Peeters (2003), variable trip times are considered. Peeters (2003) further elaborates on PESP
and in Liebchen (2004) implementation of the symmetry in the PESP model is discussed. In
Liebchen and Mohring (2002), the PESP attributes are analyzed on the case study of Berlin’s
underground. Lindner and Zimmermann (2005) propose to use decomposition based branch and
bound algorithm to solve the PESP.

Kroon et al. (2007) and Shafia et al. (2012), deal with robustness of cyclic timetables. Liebchen
and Mohring (2004) propose to integrate network planning, line planning and rolling stock
scheduling into the one periodic timetabling model (based on PESP). Caimi et al. (2007) and
Kroon et al. (2014) introduce flexible PESP – instead of the fixed times of the events, time
windows are provided.

3.3 Demand Related

Apart of the classical problems (shown on Figure 1), other additional techniques like revenue
management, dynamic pricing or discrete choice models can be used to affect the demand.
Especially the revenue management, which has been proven effective in the airline industry.

In Ben-Khedher et al. (1998), the decision tool RailCap, used by the french national carrier
SNCF, is described. The main responsibility of the tool is to adjust the train capacity (by adding
new unit to the train, drop empty extra units or open them for reservations on double-unit trains,
open an optional train to reservations and assign it an itinerary-compatible fleet type) based
on the current reservations, ODs and forecasted demand. The tool is maximizing the expected
incremental profit subject to operational constraints (mainly availability of the rolling stock and
its routing through the network).

In Chierici et al. (2004), model to maximize the demand captured by train is presented. The





     

resulting timetable is cyclic (coming from constraints). The model integrates modal choice logit
with 3 alternatives - bus, train and car (utility consists of travel time, monetary cost, walking
time, average waiting time and comfort). Coefficients are estimated by a revealed preference.
Since the MILP is non-convex 2 methods are tested: branch and bound and heuristic approach.
Both are tested on a regional network in Italy, with real schedules as input. It is shown that with
the current schedule, only 4 % of the population can choose train.

In Lythgoe and Wardman (2002), analysis of the demand for travel from and to airport and a
formulation of a discrete choice model are introduced. Whelan and Johnson (2004) are showing a
discrete choice model to decrease the overcrowding on the trains by adding a special ticket costs,
when at the same time not reducing the total amount of passengers transported, i.e. smoothing
the demand along the time horizon. In Cordone and Redaelli (2011), integration of the modal
choice model and classical cyclic TTP is presented.

In Li et al. (2006), simulation framework based on the dynamic pricing is discussed. In Crevier
et al. (2012) the aim is to cover the demand with maximizing the profit using different pricing
strategies. The model is using preset booked schedules, which are then utilized on an operational
level.

Abe et al. (2007) describes the revenue management (RM) in the railway industry with case
studies of RM around the world. Comparison with the RM in airline industry is elaborated as
well. In Bharill and Rangaraj (2008), revenue management for Indian Railways is described.
Armstrong and Meissner (2010) shows the overview of RM in the railway industry (both freight
and passenger). Wang et al. (2012) describes a MILP model for RM.

4 Ideal Train Timetabling Problem

The aim of this problem is to define and to provide the ideal timetables as an input for the
traditional TTP. It is not well said in the TTP, what ideal means. It is only briefly mentioned,
that supposedly, those are the timetables, that bring the most profit to the TOCs (this assumption
is in line with the competitive market). Generally speaking, the more of the demand captured,
the higher the profit. Thus the ITTP’s goal is to design TOC’s timetables, such that the captured
passenger demand is maximized (objective, but not the form of the objective function).

The input of the ITTP is the demand that takes the form of the amount of passengers that want
to travel between OD pair i ∈ I and that want to arrive to their destination at their ideal time
t′ ∈ T i. Apart of that, there is a pool of lines l ∈ L along with the lines’ frequencies expressed as





     

the available train units v ∈ V l (both results of the LPP) and the set of paths between every OD
pair p ∈ Pi. The path is called an ordered sequence of lines to get from an origin to a destination
including details such as the running time from the origin of the line to the origin of the OD pair
hpl

i (where l = 1), the running time from an origin of the OD pair to a transferring point between
two lines rpl

i (where l = 1), the running time from the origin of the line to the transferring point
in the path hpl

i (where l > 1), the running time from one transferring point to another rpl
i (where

l > 1 and l < |Lp|) and the running time from the last transferring point to a destination of the
OD pair rpl

i (where l = |Lp|). Note that the index p is always present as different lines using the
same track might have different running times.

Part of the ITTP is the routing of the passengers through the railway network. Using a decision
variable xt′p

i , we secure that each passenger (it′) can use exactly one path. Similarly, within the
path, passenger can use exactly one train on every line in the path (decision variable yt′plv

i ). These
decision variables, among others, allow us to backtrace the exact itinerary of every passenger.
The timetable is understood as a set of departures for every train on every line dl

v. The timetable
can take form of a non-cyclic or a cyclic version (depending if the cyclicity constraints are active,
see Section 4.1).

Since the input demand is static, the intuitive objective function would be to minimize the total
travel time of every passenger. However, the information about the ideal arrival time t′ is present
and hence to maximize the demand, we have to combine the total travel time and the timeliness
of the arrival to the destination.

To express the timeliness, we borrow the concept of the scheduled delay from the traffic flow
theory (see Arnott et al. (1990)). The logic behind it, is as follows: if a passenger arrives to
his/her destination on his/her ideal time, then his/her scheduled delay (st′p

i ) is equal to zero,
otherwise linear delay functions are applied. There are two cases:

• Being early – st′p
i = (t − t′) · f2

• Being late – st′p
i = (t′ − t) · f1

where t is the time of the arrival into the destination. We assume that the scheduled delay is
perceived differently, when being late and early. The calibration of the ratio between being late
and early is a subject for further analysis (in our example in Figure 3, we use f1 = 2 and f2 = 1).
The scheduled delay is different for every OD pair i with different ideal times t′ using different
paths p.

Since it is much more attractive to express the objective function in monetary units, for further
estimation of the profit (not a subject of this paper) and full integration with the TTP (the
objective is to minimize the timetable shifts subject to the profit), we multiply the value of the
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Figure 3: Scheduled Delay Concept

scheduled delay (in time units) by the value of time q2 (monetary units per time unit). The same
goes for the total travel time, where it is split into in vehicle time (time units) multiplied by the
q2 and waiting time (time units) multiplied by the value of waiting time q1 (monetary units per
time units). According to Wardman (2004) and Axhausen et al. (2008), the time spent waiting is
perceived differently (two times more) than the time spent in vehicle.

Lastly, using a direct train, instead of a several trains with interchanges, is more attractive to the
passengers (see Axhausen et al. (2008)). To take care of this attribute, we introduce a minimum
transfer time m. Since it is as well a waiting time, it is multiplied by the same value of q1. As
we allow unlimited number of transfers, it is then multiplied by the size of the path minus one
(|Lp| − 1), as the transfers happen in-between two lines.

In the end, we can combine all of the above attributes into a one cost Ct′
i :

Ct′
i =

q1 · wt′
i + q1 · m ·

∑
p∈P

xt′p
i · (|L

p| − 1) + q2 ·
∑
p∈P

∑
l∈Lp

rpl
i · x

t′p
i + q2 ·

∑
p∈P

st′p
i · x

t′p
i

 (1)

In the final form of the objective function, the above cost is weighted by the demand Dt′
i . As the

problem is no longer concerned by the accessibility and mobility of the passengers, we don’t
need to take into account the maximum travel time between an origin and a destination.

Based on the above assumptions, we can formulate the ideal timetable:

The ideal timetable consists of such train departures that the passengers’ global





     

costs are minimized, i.e. the fastest most convenient path to get from the origin to
the destination traded-off by a timely arrival to the destination for every passenger.

4.1 Mathematical Formulation

In this section, we present a mixed integer programming formulation for the ideal train
timetabling problem.

Input Parameters Following is the list of parameters used in the model:

i ∈ I – set of origin-destination pairs
t ∈ T – set of time steps t in the planning horizon
t′ ∈ T i – set of ideal times for OD pair i

l ∈ L – set of operated lines
v ∈ V l – set of available vehicles on line l

p ∈ Pi – set of possible paths between OD pair i

l ∈ Lp – set of lines in the path p

rpl
i – running time between OD pair i on path p using line l

hpl
i – time to arrive from the starting station of the line l to the origin of the pair i

Dt′
i – demand between OD i with ideal time t′

m – minimum transfer time
c – cycle
q1 – value of the waiting time
q2 – value of the in vehicle time
f1 – coefficient of being early
f2 – coefficient of being late

The lines and the set of available vehicles per line V l is an output from the Line Planning
Problem based on the selected frequencies within the problem.

Decision Variables Following is the list of decision variables used in the model:

Ct′
i – the total cost of the passengers with ideal time t′ between OD pair i

wt′
i – the total waiting time of the passengers with ideal time t′ between OD pair i





     

wt′p
i – the total waiting time of the passengers with ideal time t′ between OD pair i

using path p

wt′pl
i – the waiting time of the passengers with ideal time t′ between OD pair i on

the line l that is part of the path p

xt′p
i – 1 – if the passengers with ideal time t′ between OD pair i choose path p; 0 –

otherwise
st′

i – the final scheduled of the passengers with ideal time t′ between OD pair i

st′p
i – scheduled delay of the passengers with ideal time t′ between OD pair i

traveling on the path p

dl
v – the departure time of a train v on the line l

yt′plv
i – 1 – if the passengers with ideal time t′ between OD pair i on the path p take

the train v on the line l; 0 – otherwise
zl

v – frequency within cyclicity

Model The mathematical formulation then looks as follows:

min
∑
i∈I

∑
t′∈T i

Dt′
i · C

t′
i (2)

Ct′
i = q1 · wt′

i + q1 · m ·
∑
p∈P

xt′p
i · (|L

p| − 1)

+q2 ·
∑
p∈P

∑
l∈Lp

rpl
i · x

t′p
i + q2 ·

∑
p∈P

st′
i ∀i ∈ I,∀t′ ∈ T i, (3)∑

p∈Pi

xt′p
i = 1, ∀i ∈ I,∀t′ ∈ T i, (4)∑

v∈V l

yt′plv
i = 1, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀l ∈ Lp, (5)

wt′
i ≥ wt′p

i − M ·
(
1 − xt′p

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (6)

wt′p
i =

∑
l∈Lp\1

wt′pl
i , ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (7)

wt′pl
i ≥

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

−M ·
(
1 − yt′pl′v′

i

)
− M ·

(
1 − yt′plv

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀l ∈ Lp :

(8)

l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,

wt′pl
i ≤

((
dl

v + hpl
i

)
−

(
dl′

v′ + hpl′

i + rpl′

i + m
))

+M ·
(
1 − yt′pl′v′

i

)
+ M ·

(
1 − yt′plv

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀l ∈ Lp :

(9)

l > 1, l′ = l − 1,∀v ∈ V l,∀v′ ∈ V l′ ,





     

st′
i ≥ st′p

i − M ·
(
1 − xt′p

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (10)

st′p
i ≥ f2 ·

((
d|L|v + h|L|i + rp|L|

i

)
− t′

)
− M ·

(
1 − yt′p|L|v

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀v ∈ V |L|,

(11)

st′p
i ≥ f1 ·

(
t′ −

(
d|L|v + h|L|i + rp|L|

i

))
− M ·

(
1 − yt′p|L|v

i

)
, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀v ∈ V |L|,

(12)

dl
v − dl

v−1 = c · zl
v, ∀l ∈ L,∀v ∈ V : v > 1, (13)

wt′
i ≥ 0, ∀i ∈ I,∀t′ ∈ T i, (14)

wt′p
i ≥ 0, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (15)

wt′pl
i ≥ 0, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀l ∈ Lp,

(16)

xt′p
i ∈ (0, 1) , ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (17)

st′p
i ≥ 0, ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi, (18)

dl
v ≥ 0, ∀l ∈ L,∀v ∈ V l, (19)

yt′plv
i ∈ (0, 1) , ∀i ∈ I,∀t′ ∈ T i,∀p ∈ Pi,∀l ∈ Lp,∀v ∈ V l,

(20)

zl
v ∈ N, ∀l ∈ L,∀v ∈ V l. (21)

The objective function (2) is minimizing the passengers’ costs. Constraint (3) calculates the
cost of the solution. Constraints (4) secure that every passenger is using exactly one path to
get from his/her origin to his/her destination. Similarly constraints (5) make sure that every
passenger takes exactly one train on each of the lines in his/her path. Constraints (6) select
the best path in terms of the waiting time. Constraints (7) add up all waiting times along the
given path. Constraints (8) and (9) set the proper waiting time in the transferring stations.
Constraints (10) select the best path in terms of the scheduled delay. Constraints (11) and
(12) are complementary constraints (one at a time is active) that calculate the scheduled delay
in passengers’ destinations. Lastly, constraints (13) are handling the cyclicity of the created
timetables (if removed, the created timetables would take non-cyclic form). Constraints (14)-(21)
set the domains of decision variables.

5 Solution Approach

The mixed integer programming formulation of the ITTP has a large solution space, which
makes the problem difficult to solve. Moreover, the presence of the big M constraints lead to a
weak lower bound. Thus in the following section, we decompose the mixed integer model and





     

formulate it as a set partitioning problem.

5.1 Set Partitioning Model

Let Ω be the set of feasible assignments of a demand between all OD pairs with all ideal times.
Note that a feasible assignment represents the assignment of a single demand between a given
OD pair with a given ideal time to a given path.

Input Parameters The following input parameters are used in the set partitioning model:

a ∈ Ω – set of all possible assignments
i ∈ I – set of origin-destination pairs
t ∈ T – set of all time steps
t′ ∈ T i – set of times that there is a demand between OD pair i

l ∈ L – set of operated lines
c – cycle
Da – demand using assignment a

nl – number of available train units on line l

Ca – cost of the assignment a

Bit′
a =

 1 if OD pair i at time t′ is assigned in assignment a,
0 otherwise.

Elt
a =

 1 if the assignment a is using line l at time t,
0 otherwise.

Decision Variables Following is the list of decision variables used in the model:

λa –

 1 if assignment a is a part of the solution,
0 otherwise.

xt
l –

 1 if there is a train scheduled on line l at time t,
0 otherwise.

Model

min
∑
a∈Ω

Ca · Da · λa (22)





     

∑
a∈Ω

Bit′
a · λa = 1, ∀i ∈ I,∀t′ ∈ T i, (23)∑

a∈Ω

Elt
a · λa ≤ xt

l, ∀l ∈ L,∀t ∈ T, (24)∑
t∈T

xt
l ≤ nl, ∀l ∈ L, (25)

min(t+c,T )∑
t′′=t

xt′′
l ≤ 1, ∀l ∈ L,∀t ∈ T, (26)

λa ∈ {0, 1} , ∀a ∈ Ω, (27)

xt
l ∈ {0, 1} , ∀l ∈ L, t ∈ T. (28)

The objective function (22) is minimizing the costs of passengers. Constraints (23) ensure that
there is exactly one assignment for every passenger in the optimal solution. Constraints (24) link
the scheduled trains with used assignments. Constraints (25) dictate that the amount of scheduled
trains on every line does not exceed the amount of available physical trains. Constraints (26) are
cyclicity constraints. Constraints (27) and (28) set the domains of decision variables.

In this new formulation, we have reduced the amount of decision variables and got rid of the big
M constraints. However, the solution space is now even bigger and thus in order to avoid the
"explosion" of the solution space (time), we propose to solve the linear programming relaxation
of the above problem using column generation, as described in the next section.

5.2 Column Generation

In the linear programming (LP) relaxation of the set partitioning problem the domains of λa and
xt

l are extended to [0, 1]. Despite the large number of variables it is possible to solve the LP
relaxation using a column generation algorithm. In a column generation algorithm we maintain
a restricted master problem (RMP) that only considers a small subset Ω1 ⊆ Ω of all the possible
variables. New variables are added to Ω1 until we can decide that no variable in Ω \ Ω1 can
improve the solution that results from only using the variables in Ω1.

In the first iteration of column generation, the RMP is solved using the set Ω1 consisting of
passenger assignments in the initial feasible solution provided by the CPLEX after solving
the original formulation using the current published timetables of a TOC. Thereafter, in each
successive iteration of the column generation process, the following dual variables are passed to
the subproblem for identifying feasible assignments with negative reduced cost:





     

Algorithm 1: Branch and Price
Data: data file, Ω, f inished - boolean, duals - float
Result: Ω1 ⊂ Ω, solution

1 begin
2 Ω1 ← initialSolution
3 duals← ∅

4 solution← ∅

5 repeat
6 duals← solveMaster(Ω1)
7 f inished ← true

8 for i ∈ N do
9 temp← solveSubProblem(i, t′, duals)

10 if reducedCost(temp) < 0 then
11 Ω1 ∪ temp

12 f inished ← f alse

13 until f inished

14 solution← solveMaster(Ω1)
15 if solution < Z then
16 ub← solveMaster(Ω1, integral)
17 if solution = ub then
18 break

19 solution← branch&bound(solution)

20 print solution

αt′
i – dual variables for constraint 23
βt

l – dual variables for constraint 24

We do not need to consider the dual variables corresponding to constraints (25) and (26) since
these constraints do not involve the λa variables and therefore the associated dual variables do
not impact the reduced cost of the λa variables. Based on the dual variables from RMP, the
subproblem generates new columns to enter the active pool of columns Ω1 by calculating the
most negative reduced cost column for each vessel separately in each iteration of the column
generation process. When there are no columns with negative reduced cost for any subproblem
to enter Ω1, the column generation terminates.

The column generation in pseudocode can be seen in Lines (1) – (13) in Algorithm 1. For math-
ematical justification of column generation, please refer to Barnhart et al. (1998), Desaulniers





     

et al. (2005) and Feillet (2010).

5.2.1 Sub-Problem

In each iteration of column generation, we solve a sub-problem for every OD pair i, every ideal
time t′ ∈ T i and every path p ∈ Pi. In each subproblem, the objective is to identify the feasible
assignment for that particular OD pair with ideal time with the most negative reduced cost to be
added to the current pool of active columns Ω1 in the restricted master problem. Note that the
index i and t′ is removed from all decision variables, since it is solved separately for each OD
pair i with ideal time t′.

Input Parameters Following is the list of parameters used in the model:

i – the origin destination pair
t′ – ideal travel time for OD pair i

p – path of the sub-problem
t ∈ T – set of all time steps
l ∈ Lp – the sequence of lines used to get from the origin to the destination
rl – running time of line l

hl – running time to get from the starting station of the line l to the first station on
the same line included in the current path

m – the minimum transfer time
q1 – the value of time spent waiting
q2 – the value of time spent in vehicle
f1 – coefficient of being early
f2 – coefficient of being late

Decision Variables Following is the list of decision variables used in the model:

betat
l –

 1 if line l is used at time t,
0 otherwise.

w – the total waiting time of the passengers
wl – the waiting time of the passengers when transferring to line l

s – scheduled delay of the passengers
C – the cost of the passengers





     

Model

min C −

α +
∑
l∈L

∑
t∈T

βt
l · betat

l

 (29)

C =

q1 · w + q1 · m · (|L| − 1) + q2 ·
∑
l∈L

rl + q2 · s

 (30)∑
t∈T

betat
l = 1, l ∈ Lp, (31)

w =
∑
l∈L\1

wl, (32)

wl ≥
(
t · betat

l + hl
)
−

(
t′′ · betat′′

l−1 + hl−1 + rl−1 + m
)
, ∀l ∈ Lp : l > 1,∀t, t

′′

∈ T :

t ≥ t′′ + hl−1 + rl−1 (33)

wl ≤
(
t · betat

l + hl
)
−

(
t′′ · betat′′

l−1 + hl−1 + rl−1 + m
)
, ∀l ∈ Lp : l > 1,∀t, t

′′

∈ T :

t ≥ t′′ + hl−1 + rl−1 (34)

s ≥ f2 ·
(
t · betat

|L| + h|L|
)
− t′, ∀t ∈ T, (35)

s ≥ f1 · t′ −
(
t · betat

|L| + h|L|
)
, ∀t ∈ T, (36)

h ≥ 0, (37)

betat
l ∈ {0, 1}, ∀l ∈ L,∀t ∈ T. (38)

The objective function (29) is looking for a column with the most negative reduced cost.
Constraint (30) calculates the cost of the solution. Constraints (31) make sure that passengers
take exactly one train on each line in the path. Constraints (32) calculate the total waiting time.
Constraints (33) and (34) set the proper waiting time in the transferring stations. Constraints (35)
and (36) are complementary constraints (one at a time is active) that calculate the scheduled delay
in passengers’ destinations. Constraints (37) and (38) set the domains of decision variables.

6 Case Study

As our case study, we use the data from the Israeli Railways (IR), kindly provided by Mor
Kaspi and Tal Raviv, who have cleaned the data and used them in their study (Kaspi and Raviv
(2013)).

The data consist of an hourly demand from 6 a.m. to 1 a.m. for every origin destination pair in
the IR network (Figure 4). The demand has been extracted from the ticket sells and train counts
in the year 2008 and it is a representative sample of an average working day (over the whole





     

Figure 4: Israeli Railways Network

year of 2008) in Israel.

We further modify the data for our specific use. The demand is smoothed into minutes using the
poisson process. Moreover, since the scheduled delay is related to the arrival into the destination,
we shift the demand’s ideal time from the origin to the destination, by adding up the shortest
travel time for the specific OD (assuming that the passengers minimize their cost).





     

For the values of time, we are using the swiss values as estimated in Axhausen et al. (2008), due
to the unavailability of the israeli values.

The IR network consists of 48 passenger stations, which adds up to 2256 OD pairs. As our
benchmark, we are using the current IR timetables (year 2014), from which we have extracted 36
unidirectional lines (in our study we do not take into account different stopping patterns within
the same lines) that are being operated by 389 trains (it is an odd number, as we do not take into
account trains scheduled between 1 a.m. and 6 a.m., as no demand data exist for this period of
time). The data processing is still undergoing, however we have not seen a path between an OD
pair that would require more then one interchange. The size of the problem justifies the use of
column generation.

7 Conclusions and Future Work

In this research, we survey the literature on the current planning horizon for the railway passenger
service and we identify a gap in the planning horizon – demand based (ideal) timetables. We then
introduce a definition of such an ideal timetable and formulate a mixed integer linear problem
that can design such timetables. Since the proposed formulation is complex (large amount of
decision variables, big M constraints), we propose to decompose the problem and solve it using
column generation methodology.

At the current stage, the implementation is undergoing and hence no results are being provided.
We plan to use a demand data obtained from the Israeli Railways as mentioned in the above
section. The current timetables of IR are cyclic, thus we will be able to measure the cost savings
between our cyclic timetables and the ones of IR. Moreover, using our non-cyclic version of the
model, we will be also able to measure the actual cost of the cyclic timetables.
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