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Basic Problem

Given a train time-table / schedule, locomotive assignment to the
trains and all costs related to fueling, determine the fueling plan
that minimizes the overall fueling costs

Additional fueling constraints:
Number of fueling stops

Capacity of locomotive fuel tank

Daily capacity of the fueling truck at yards

Assumptions:
Fueling stops do not delay the trains (instantaneous refueling)

Fuel consumption rate between two station yards known



Problem Features

Fueling costs have three parameters – unit cost of fuel, cost of
making a fueling stop at a yard and cost of hiring a fueling truck at
a yard

Cost of fuel at yards vary (due to logistics, marketing cost & taxes)

Restriction on the amount of fuel available at a yard

Restriction on the number of fueling stops at intermediate yards

The refueling plan MUST ensure that locomotives have enough
fuel to run all trains during the planning horizon



Motivation

A practical problem impacting the cost of operations of
railroad industry

Increasing cost of fuel and increased competition in recent
times

Availability of a slice of real-life data for a major US railroad



Simple Example

Four yards: Y1, Y2, Y3 and Y4

Tracks directly connect Y1-Y2, Y2-Y3 and Y3-Y4

Two trains T1 and T2 run daily

Yard sequence for T1: (Y1, Y2, Y3, Y4)

Yard sequence for T2: (Y4, Y2, Y1)

Though in this example train runs daily and exactly takes one day 
for journey, real problems could be more complex

Yard-Yard distances given as Y1-Y2: 106, Y2-Y3: 146, Y3-Y4: 16 
and Y2-Y4: 162 (Y2-Y3 + Y3-Y4)



Fueling Costs

Fixed cost for halting and waiting for fueling: $250

Locomotive Fuel Consumption Rate: 3.5 gallons / mile

Fueling truck weekly contracting cost: $4,000

Locomotive fueling tank capacity: 4,500 gallons

Fueling truck capacity: 25,000 gallons / day

Yard Fuel Price ($/gallon)
Y1 $3.25 
Y2 $3.05 
Y3 $3.15 
Y4 $3.15 



Loco-Train Assignment Schedule

LocoID Train Train Start Day Week Cycle Sequence Horizon Day

L1

T1 MON 1 1 1
T2 TUE 1 2 2
T1 WED 1 3 3
T2 THU 1 4 4
T1 FRI 1 5 5
T2 SAT 1 6 6
T1 SUN 1 7 7

L2

T2 MON 1 1 1
T1 TUE 1 2 2
T2 WED 1 3 3
T1 THU 1 4 4
T2 FRI 1 5 5
T1 SAT 1 6 6
T2 SUN 1 7 7



Pictorial Representation
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Problem Analysis
In reality, trains have NO ROLE in locomotive refueling, excepting the
information they carry about the sequence of yards that the locomotive will
power the train to

Yard information is critical because it plays a role on the decision regarding
placement of refueling trucks

Loco-yard assignment can be written as:

LocoID Yard Stop Number StationType Horizon Day Fuel or Not

L1 Y1 1 Origin 1 ?

L1 Y2 2 Intermediate 1 ?

L1 Y3 3 Intermediate 1 ?

L1 Y4 4 Origin 2 ?

L1 Y2 5 Intermediate 2 ?

L1 Y1 6 Origin 3 ?

…and so on



Literature Review

Nourbakhsh and Ouyang (2010)
No restriction of fuel at yards

Solve using Lagrangean relaxation – difficult sub-problem by shortest path

Nag and Murthy (2010)
Solve using greedy algorithm



Mathematical Model
Sets

J: set of all locomotives, denoted by j

I: set of all station yards, denoted by i

R: set of all train routes, denoted by r

S: set of stop sequence, denoted by s

Known Parameters:
Param_refueljis: 1 if locomotive j visits yard i on sequence s and 0 otherwise

Dayjst: 1 if locomotive j visits yard sequence s on day t and 0 otherwise

Trainrjs: Flag for intermediate yards; 1 if yard sequence s for locomotive j on train route r is
Intermediate, 0 otherwise (pre-processed)

djs: Distance between yards appearing in sequence s and next (in case it is the last non-
destination yard, then the first yard of the sequence) for locomotive j

rate: Amount of fuel consumed to run one mile

Min_fueljs: Minimum fuel required to reach next yard (=djs * rate)



Known Parameters:
ci: Cost of fuel at yard i

cFIXED: Fixed cost for refueling

cCONTRACT: Weekly cost of operating a refueling truck

CAP: Refueling truck capacity

TANK: Locomotive tank capacity

Decision variables:

xjs: Flag to represent refueling of locomotive j at the yard appearing in sequence s on its route

yjs: Amount of fuel in locomotive j at the time of entering the yard appearing in sequence s

wjs: Amount of fuel filled in locomotive j at the yard appearing in sequence s

zi: Number of refueling trucks at yard i

Mathematical Model



Minimize Cost

Constraints:
A locomotive j on yard sequence s is refueled if and only if there is a halt at
that yard.

∀ j, s … (1)

Fuel in the locomotive at any time cannot exceed the tank capacity
∀ j, s … (2)

Fuel conservation in the locomotive before and after crossing a yard
sequence s

∀ j, s: s ∩ {S} … (3a)

∀ j … (3b)

Mathematical Model

−

−



Constraints:
A locomotive can be refueled in at most NFP intermediate yards along a
route (excluding the origin and the destination)

∀ j, r … (4)

There is a limit on the amount of fuel that can be filled at each yard every
day

∀ i, t … (5)

–

Mathematical Model



MIP Cuts:
If a station yard does not have a contracted refueling truck, it is not possible
to fuel the locomotive at that yard. It would effectively mean that the x
variable for a particular locomotive and stop sequence has to be less than or
equal to the z variable corresponding to the yard in the optimal solution

∀ i

–

Further Improvements: Valid Inequalities



MIP Cuts:
For every yard sequence sk ∈ s, there exists a finite set of station yards Sk ∈
{sk + 1, …, sk + n} such that the locomotive must be refueled in at least one
of them to be able to continue the journey. The following cut represents the
introduction of this constraint

∀ j, sk ∈ s: {s ∪ (S+1 ≡ 1 ∈ s)}

∀ ip, …, iq ∈ i

–

Further Improvements: Valid Inequalities
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MIP Cuts:
If there was no cost for contracting a fueling truck or that unlimited fuel was
always available at every station yard, the problem of minimizing fuel
purchase cost and halting cost can be decomposed at locomotive level.
Thus the optimal cost of minimizing fuel purchase decision and the cost of
halting for each locomotive is same as the optimal cost obtained by
considering all these locomotives together

–

Further Improvements: Valid Inequalities



Real Instance

73 yards

Up to 14 Intermediate yards for each train

214 trains – some run daily, others with lesser frequency

214 locomotives

Planning Horizon: 2 weeks

Expanded the same network to two, four and eight times the size 
(i.e., with up to 1768 locomotives and 584 station yards) to 
evaluate the model performance on larger networks

Advantage is that we can compare solution quality without any 
extrapolation



Results

Implementation using C and solver used was Gurobi 4.3

The model could not prove the optimality but we were left with a 
small absolute optimality gap of less than $10 after 24 hours run

Model Name Constraints Included Time Limit (s) Solution (mil $) Optimality Gap (%)

Base (1) – (6) 600 11.41150 1.53%

MIPCut#1 (1) – (7) 600 11.40419 0.85%

MIPCut#2 (1) – (9) 600 11.40068 0.21%

MIPCut#3 (1) – (11) 600 11.39967 0.08%



Results: Larger Instances
Network Size Model 

Name

Constraints 

Included

Time Limit 

(s)

Solution (mil 

$)

Optimality 

Gap (%)

Best Known Solution 

Gap (%)

Double Base (1) – (6) 600 22.84456 1.89% 0.20%

Double MIPCut#1 (1) – (7) 600 22.82189 1.06% 0.10%

Double MIPCut#2 (1) – (9) 600 22.81712 0.48% 0.08%

Double MIPCut#3 (1) – (11) 600 22.80818 0.36% 0.04%

Quadruple Base (1) – (6) 600 45.74321 2.12% 0.32%

Quadruple MIPCut#1 (1) – (7) 600 45.69412 1.34% 0.21%

Quadruple MIPCut#2 (1) – (9) 600 45.68753 0.66% 0.19%

Quadruple MIPCut#3 (1) – (11) 600 45.67923 0.47% 0.18%

Eight Times Base (1) – (6) 600 91.72433 2.56% 0.58%

Eight Times MIPCut#1 (1) – (7) 600 91.65912 1.73% 0.51%

Eight Times MIPCut#2 (1) – (9) 600 91.63665 1.01% 0.48%

Eight Times MIPCut#3 (1) – (11) 600 91.61742 0.79% 0.46%



Dealing with Uncertainty
Assumption of deterministic fuel consumption throughout the locomotive 
network is strong and impractical

Fuel requirement for a locomotive varies due to changes in train 
speeds, braking needs, atmospheric pressure, wind conditions and 
temperature

If the locomotive consumed 10% more fuel at every section (between 
two yards), there might have been as many as 700 occasions (about 
66% of refueling halts) when the train would have run out of fuel before 
arriving at the next yard with an available fueling truck

While this measure is indicative of the extent to which the theoretical 
model has been optimized, it also indicates that this solution could be of 
little interest to the practitioners



Dealing with Uncertainty
Handle uncertainty with a reserve fuel

Change the objective function to:

Add another constraint

The more we increase the value of α, the more we tend to increase the 
reserve fuel in locomotives

We find that increasing ymin gradually to 103.5 gallons results in 
ensuring that the locomotive never goes without fuel if the consumption 
increases by 10% on any section



Dealing with Uncertainty
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Conclusion
While existing approaches rely on heuristics, we have shown that this paper 
that realistic instances of the problem can be solved to optimality with exact 
methods, thanks to adequate valid inequalities

We could solve very large instances with around 1800 locomotives and 600 
station yards – which shows that our approach is practical

We have shown that the concept of uncertainty features are appropriate to 
generate robust solutions, without impacting the complexity of the model, or the 
performance of the algorithm

Concept can surely be extended to airline fueling and other facilities location 
problems such as car sharing

Future research must dwell into robust optimization and recoverability in the 
event of disruptions



Thank you!
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