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Abstract This paper presents a stochastic model for spatially embedded social
networks based on the ideas of spatial interaction models. Analysing empirical data,
we find that the probability to accept a social contact at a certain distance follows a
power law with exponent -1.6. With a simulation where the spatial distribution of
vertices is defined by a synthetic population of Switzerland, we can reproduce the
edge length distribution observed in the empirical data as well as some other typical
properties of social networks.

1. Introduction

Most work in transport planning research concentrates on daily commuting and peak
hour traffic, such as trips related to work or educational purposes. However, in
recent years one observers an increasing share of leisure related travel, which in the
case of Switzerland has even become the dominating travel segment. Looking at
the 2005 Swiss Microcensus on Travel Behaviour (ARE/BFS, 2007), one finds that
more than 40 % of activities are related to leisure. A share of 44 % for kilometers
travelled and a share of 50 % in the category of time spent fortifies the importance
of leisure traffic.

The limited work in leisure related travel research partly has pragmatic reasons.
To analyse and model trip making, transport researchers use measurable indicators
such as socio-demographic attributes of the population, the spatial distribution of
activity opportunities, and the generalised travel costs by mode and infrastructure.
In most situations, data of this type is available from local administrations and can be
used in a rather straightforward process of modelling commuter traffic. In contrast,
leisure travel is influenced by individual lifestyles, values and essentially is driven
by social motivations, i.e., to visit friends or relatives or to join them in activities
(Larsen et al., 2006). Data of such type is very rare since on the one hand the
realisation of appropriate surveys is often very costly and extensive, and on the
other hand respondents are required to disclose private data.

A common way to model the social relation between individuals is to use the
representation of a graph. Research on social networks dates back to the 1960ies
(Wasserman and Faust, 1994) and has gained increasing interest from sociologists
and also physicists in the last years, where the latter community focuses on the char-
acteristics of social networks as complex systems (Newman, 2003). Although there
is a huge amount of studies about social networks, their use for transport planning
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is limited. On the one hand, studies of social networks are often embedded in an
institutional setting, e.g., people working at the same company, pupils of the same
school or same class, movie actors or collaborating scientists, whereas a transport
planner requires a less localised sample which is representative in terms of travel
behaviour. On the other hand, and this is the most important aspect, the majority
of those studies provide no information about the spatial dimension of the social
network.

The spatial embedding of a social network is crucial for the modelling of leisure
travel. It provides the spatial distribution of an actor’s social contacts, i.e., the spa-
tial distribution of her leisure activity opportunities. However, research in social
network analysis started only recently to investigate the spatial dimension of net-
works.

The motivation for the work presented in this paper is to develop a methodol-
ogy to synthetically generate data that describes the social relations required for the
leisure travel modelling process. We present a statistical model to generate a spatial
embedded social network and essentially address the question to what extend the
spatial distribution of actors is an explanatory variable for the formation of social
ties.

The remainder of this article is organised as follows: In Sec. 2., we review the
literature related to our problem. Section 3. introduces some terms common in social
network analysis as well as the basic formulation of the occurrence probability of a
social relation. We analyse some empirical data and formulate the model in Sec. 4..
Results of the simulation are presented in Sec. 5., and the paper concludes with a
discussion in Sec. 6..

2. Related Work

Previous research on the detailed spatial distribution of social networks is sparse
and especially so for non-local, sometimes transcontinental contacts. Quantitative
research on the social content of long distance travel is missing, as the typical travel
survey has little interest in this issue. Equally, empirical analysis on the structure
of complete social networks outside of institutional settings, such as workplaces,
schools or clubs, is rare.

Latané et al. (1995) propose that the frequency of social interaction is described
by an inverse power law with slope -1. They analyse three data sets of studies on
the social interaction of students in the United States and China as well as a study
on social psychologists attending the same conference. All three studies show that
the interaction frequency fits well in their proposed model.

Frei and Axhausen (2007) sample ego-centric social networks in the greater area
of Zurich, Switzerland. Contrary to the study of Latané et al., they randomly select
respondents, which means that their study is not embedded in an institutional set-
ting. Frei and Axhausen also analyse the distance distribution of social contacts.
However, they find that the distribution does not follow a simple parametric distri-
bution, which seems to be reasonable since the underlying population is not equally
distributed over space.
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Since it is difficult to compile comprehensive data sets about social contacts,
the approach proposed by Brockmann and Theis (2008) may be also helpful for
the spatial analysis of social networks. Brockmann and Theis use the circulation of
money as a proxy for human traffic. They analyse data from the online bill tracker
www.wheresgeorge.com and find that the probability p(d) of a bill traversing a
distance d follows the power law p(d) ∝ d−1.6. However, there is no guarantee that
the traversal of a bill matches the travel of a single person, and the data gives no
information about the motivation of the travel.

Research on models of spatially embedded networks is even more sparse than
literature on the analysis of the spatial dimension of social contacts. Wong et al.
(2005) propose an exponential random graph model to study the spatial structure
of random graphs. They model the probability of an edge formation as a simple
step function that only differentiates between edges within and beyond a so-called
neighbourhood radius. As a simulation scenario they use randomly scattered ver-
tices. Wong et al. study the effect of the neighbourhood radius on small-world
properties and community structures, but they make no statement about the edge
length distribution.

The model of Hackney and Marchal (2009) is based on the idea that there is a
certain probability that people become friends if they remain at the same place in an
overlapping time interval. To extract the trajectories of peoples’ mobility patterns,
they use a microscopic traffic simulation, which simulates daily traffic in the greater
area of Zurich, Switzerland. Hackney and Marchal find that distance distribution of
social contacts is heavily right-skewed, but they provide no detailed analysis on the
shape of the distribution.

3. Definitions

3.1. Social Networks
Social network analysis uses a graph to represent social relations between individ-
uals. A vertex in a graph represents an individual, where an edge between two
vertices denotes any kind of social relation, e.g., friendship. For simplicity, only
undirected and unweighted graphs are considered, i.e, edges can be traversed in
both directions (if i as a friend of j then j is also a friend if i), and all edges are
equal in their strength. For the analysis of a social network, the following indicators
are of interest in this article:

• The edge length distribution, where the length of an edge is defined by the
geographical beeline distance between both vertices.

• The degree distribution, where the degree of a vertex denotes the number of
adjacent vertices, i.e., the number of acquaintances.

The starting point for the simulation of the proposed model is a synthetic population
of Switzerland. The modelling process of the synthetic population is not discussed
in this paper. The interested reader is referred to Meister et al. (2008) for the basic
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concepts. The available synthetic population includes information about the res-
idential locations and socio-demographic attributes of all persons. Thus, a set of
vertices where each vertex is defined by a person in the synthetic population can be
created. This also means that the size of the network and the spatial distribution of
the vertices is fixed.

3.2. Spatial Interaction Models
The two-dimensional geographical coordinate of individual i is denoted by xi, and
the Euclidean distance between individual i and j is written as d(xi,x j) or, when
applicable without ambiguity, simply as di j.

The model we will propose in Sec. 4.3. relies on the idea that the intensity of
an interaction between two individuals is dependent on the distance between the
individuals. Models of such type are known as spatial interaction models (Wilson,
1971). In the case of a social network, individuals translate to vertices. Denoting by
ni(d) the number of vertices that are (a) adjacent to a given vertex i in the network
and (b) geometrically d distant units from i away, and denoting by Ni(d) the number
of all vertices that are d distant from i, this modeling assumption translates into the
following equation:

�ni(d)�= pacc(d)Ni(d) (1)

where �·� denotes the expectation and pacc(d) is the distance-dependent probability
that a connection is formed (“accepted”) between two vertices that are distance d
apart.

The next section identifies pacc(d) from real data.

4. Analysis of Empirical Data and Model Discussion

4.1. Data Collecting
The data used for this work is obtained using a so-called ego-centric network ap-
proach where persons are asked to report leisure contacts (Kowald et al., 2009a,b).
The newly reported contacts are then asked to report their leisure contacts. This
step is repeated multiple times, thus one obtains an ascending sampling strategy,
also known as snowball sampling. It reveals the spatial location of the respondents
and their acquaintances.

The survey is still ongoing and the data used for this work is only an early pre-
set. The first and second iteration of the snowball sample comprises in total 140
sampled Swiss respondents, which reported in total 1768 acquaintances. Figure 1
shows the spatial distribution of respondents and acquaintances. The survey is not
restricted to Switzerland, so respondents are allowed to name leisure contacts out-
side of Switzerland, and these contacts are also requested to participate the survey.
However, the synthetic population that is used for the network generation process is
only available for Switzerland. So, in the following analysis all social contacts that
are not located within Switzerland are ignored.
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Fig. 1. Residential locations from empirical data obtained by snowball sampling. Red dots
represent the respondents, white dots represent the reported acquaintances.

4.2. Data Analysis
Figure 2a) shows the edge length distribution of social contacts reported in the sur-
vey. The share of contacts decreases with increasing distance, but it does not exhibit
a clear scaling law, such as a power-law or an exponential scaling. One can as-
sume that the strong drop of the number of contacts at long distances (512 km) is
due to the finite size system, which is introduced by ignoring all edges with target
outside of Switzerland. Due to the small sample size at long distances we choose
logarithmically scaled bin sizes (where values are re-weighted by the bin width) in
the histograms as well as for the according regression analysis.

According to (1), n(d) needs to be divided by N(d) in order to obtain the be-
havioural pacc(d). This is done in Fig. 2b), where every instance of an edge from
vertex i to vertex j of distance di j is re-weighted by Ni(di j), which is the number
of vertices in distance di j from vertex i. To make this operational, distances are
classified into distance classes of 1 km width.

A possible power law pacc(d) = cdγ leads in combination with (1) to a linear
model on a double-logarithmic scale:

ln
ni(d)
Ni(d)

= lnc+ γ lnd + εi(d), (2)

where εi(d) represents the unexplained random term in the regression model and
Ni (d) is obtained directly from the synthetic population. Figure 2b) also plots the
according linear regression line into the respectively transformed histogram. Again,
the data is cut off at the boundaries of the analysis zone. The power law fits well the
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Fig. 2. a) Edge length distribution with values aggregated into logarithmic bins from empiri-
cal data. b) Acceptance probability pacc (d) from empirical data.

data and results in an exponent of γ ≈−1.57.
Little more information can be inferred from the currently available survey data

because of its sparsity. The network built from empirical data exhibits a mean degree
of 17, i.e., on average each respondent named 17 acquaintances. The sample size
is still too small to determine a meaningful degree distribution. Also, clustering
cannot be determined at the current stage of the survey.

4.3. Model Discussion

The above approach suggests an acceptance probability of pacc(di j)∼ dγ
i j. In com-

parison with other approaches, one would, however, arguably prefer an acceptance
probability of pacc(di j) ∼ eci j (Wilson, 1971), where ci j is the generalised cost of
getting from i to j. This assumes that the attractiveness of the opportunities is homo-
geneously distributed; note that the usual re-weighting by the number of opportu-
nities in a given zone is no longer necessary since every opportunity is individually
considered.

Equating the two equations leads to dγ
i j ∼ eci j or

ci j = γ ln(di j)+ const, (3)

that is, it seems that the perceived generalised cost scales logarithmically in the
geographical distance. The model, at this point, makes no statement if this transfor-
mation is caused by human perception, or possibly by the properties of the trans-
portation system itself (which becomes faster for longer distances).
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5. Simulation

5.1. Introduction
For a variety of reasons, it may be interesting to have a complete model of all so-
cial contacts of a region or a country. Possible applications are the model-based
generation of an important segment of leisure traffic (visits of friends or relatives)
or the spreading of information/rumours. Behavioural models such as the ones by
Hackney (Hackney and Marchal, 2009) or by Jackson (Currarini et al., 2007) are,
in principle, able to generate such data. But in practice they are too slow for large
scale scenarios, and statistical properties such as clustering coefficients are diffi-
cult to control since they emerge from the behaviour. Statistical modelling, i.e., to
generate social networks from simple statistical principles, is meant to fill this gap
(also see Park and Newman, 2004). The following is a first step in this direction,
attempting to recreate the distance distribution from the survey.

5.2. Simulation Model
The model always takes an existing synthetic population as input. Two synthetic
populations will be explicitly tested in the following:

• A population of 10,000 randomly distributed vertices over a square of 200 km2.

• A 0.5% unbiased random sample of the population of Switzerland, resulting
in 36,000 persons.

In both cases, the simulation connects each possible pair of vertices (i, j) with prob-
ability pacc (di j). That is, every pair of vertices is touched exactly once.

The exponent of the power law in pacc (di j) is set to γ =−1.6 as observed from
empirical data. The acceptance probability is renormalised in a way that the mean
degree of the network can be adjusted to �k�= 17.

5.3. Random Vertex Distribution
As stated above, we first test the model with 10,000 randomly distributed vertices
over a square of 200 km2.

The network obtained from the simulation exhibits as expected a mean degree of
�k�= 16.9≈ 17. Since edges are inserted independently from each other, the degree
distribution shown in Fig. 3a) follows the usual Poisson distribution of random
graphs (Newman, 2003). Figure 3b) shows the edge length distribution over uniform
distance bins of 1 km size. The distribution follows a power law with an exponential
cut-off towards the system boundaries. The slope parameter of the power law in
the medium range up to 50 km is approximately -0.6: With randomly distributed
vertices, the number of vertices Ni (d) increases proportionally to distance d since
the circumference of a circle grows linearly with its radius. Thus, one obtains γ −1
for the slope of the observed edge length distribution. However, in a finite system
Ni (d) ∝ d does not hold towards the system boundaries.
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Fig. 3. Simulation with randomly distributed vertices. a) Degree distribution. The red curve
indicates a Poisson distribution with λ = 17. b) Edge length distribution.

5.4. Synthetic Population of Switzerland
The starting point for this simulation is the synthetic population of Switzerland.

Figure 4a) shows the degree distribution of the simulated social network. The
distribution is highly right-skewed and does not fit a Poisson distribution. Many
real-world networks exhibit a power law degree distribution (Newman, 2003), and
one can observe that the tail of the simulated distribution exhibits a power law in the
range of 15 to 50 with exponent -2.1.

The simulated edge length distribution, again averaged over logarithmic dis-
tance bins, is shown in Fig. 4b). It fits quite well a power law with exponent -1.2
(red triangles) but does not exactly reproduce the shape of the empirical distribution
(black circles). Figure 4c) shows the acceptance probability pacc (d) over logarith-
mic distance bins, which is determined for the simulation with the same method as
for the empirical data in Sec. 4.2.. As expected, the simulation values scale with
d−1.6. The difference of the exponents of ni (d) and pacc (d) mean that the number
of opportunities at distance d scales with approximately Ni (d) ∝ d0.4 in case of the
population of Switzerland. One can validate this assumption by generating the fully
connected graph for the synthetic population, i.e., by connecting all vertices. Figure
4d) shows the resulting edge length distribution of such a simulation over uniform
distance bins of 1 km size. One observes that at least for the medium range up to
50 km the number of opportunities in fact scales with d0.35. Since a high share of the
population lives in Zurich and since Zurich is only 25 km distant from the southern
border of Germany, one very quickly observes the boundary effects.

We can identify the distribution of the population to be the cause for two further
effects. The first effect is visualised in Fig. 5a) and 5b). There is a correlation
between the vertex degree and the population density: the higher the population
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density, the higher the degree. Generally speaking, simulated people living in urban
areas tend to have a lot of social contacts, whereas people living in the country side
have fewer contacts. Accordingly, the simulated network exhibits a high degree-
degree correlation of 0.6 (calculated with the method of Newman (2002)), i.e., ver-
tices of high degree tend to connect to other vertices of high degree. Furthermore,
one also observes a correlation between edge length and population density (Fig.
5c). All short edges are concentrated in the highly populated areas, whereas long
edges are concentrated in the countryside.

All of these results are plausible if one considers the methodology: Every possi-
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Fig. 4. Simulation with a synthetic population of Switzerland. a) Degree distribution. The
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ble edge (i, j) is considered and accepted with probability pacc(di j), which is larger
for short distances. Since vertices in densely populated areas have many more op-
portunities in close distance, many more opportunities are accepted, resulting in
larger degrees.

At the current stage of the survey, the observed data is to sparse to confirm or
contradict our findings from the simulation. Figure 6a) shows that the degree over
the population density randomly scatters, and similarly, the mean edge length over
the population density (Fig. 6b) exhibits no clear pattern. Recall that this is an
ongoing survey and that more data will be available in the future.
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Fig. 5. Simulation with a synthetic population of Switzerland. a) Visualisation of the degree
distribution. b) Degree over population density. c) Edge length over population density.
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6. Discussion and Conclusion

This paper presents a stochastic model for spatially embedded social networks based
on a spatial interaction model. From empirical data, we find that the probability to
accept a leisure contact at a certain distance follows a power law with exponent -1.6.
However, the resulting distance distribution of social connections is distorted by the
underlying population distribution.

The paper shows that the observed scaling law can be explained with the tradi-
tional gravity model in that the probability of an edge can be modelled as a function
of the distance between both actors. With a simulation on a synthetic population,
we demonstrate that we can reproduce the observed edge length distribution with
the proposed model.

The simulated network shows a right-skewed degree distribution and high degree-
degree correlation, which are both typical properties for social networks. The model
also produces a spatial distribution of degrees that is highly correlated with the pop-
ulation density. A the current stage of the survey, we cannot identify such a pattern
in the empirical data because of its sparsity.

Turning to transportation research, the question arises if the beeline distance is
the appropriate measure for the spatial distance between two individuals. Especially
regarding the topology of Switzerland, one observes that the costs of visiting an
acquaintance do not scale linearly with the beeline distance. For future studies, we
intend to replace the beeline distance by travel time. Considering for example that a
distance of 1 km is done in10 min by walking, 10 km in 30 min by public transport,
and 100 km in 1 hour by car, this may indeed explain the logarithmic dependency
of cost on distance observed in Sec. 4.3., and hence the currently observed power
law as a function of distance would transforms into a exponential function of travel
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Fig. 6. a) Degree over population density from empirical data. b) Mean edge length over
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time.
Regarding the findings of this study, one can conclude that distance does matter

and explains certain characteristics of social networks, but it appears to be only one
explanatory variable beside others.
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