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Abstract

GPS capable smart phones are emerging survey tools in transporta-
tion research field, especially in modeling individuals’ mobility patterns.
In route choice modeling, path observations need to be generated explic-
itly for the estimation. It is a challenge because the recorded data is
not as dense or accurate as those from dedicated GPS devices. In this
paper, we develop a methodology for generating probabilistic path ob-
servations from sparse and inaccurate location data, for state-of-the-art
discrete route choice models. The difference of the proposed algorithm and
the map matching algorithms is that instead of giving a unique matching
result, the new algorithm generates a set of potential true paths, along
with probabilities for each one to have been the true path. More impor-
tantly, the algorithm uses not only the topological measurement, but also
temporal information (speed and time) in the GPS data to calculate the
probability for observing the data while traveling on the proposed path.
We emphasis traveling as a dynamic movement on a path, and model it
as such in the algorithm. A short trip and two longer trips are used to
analyze the performance of the algorithm on real data. Then, 19 trips
recorded from a single user’s cell phone are used in a preliminary study
that estimates route choice behaviors using state-of-the-art discrete route
choice modeling methodologies with the proposed probabilistic path ob-
servation generation algorithm.

Keyword: route choice modeling, path observation generation, smart-
phone data, GPS data, map matching

1 Introduction

Developing technology has long been harnessed to supplement or replace parts
of travel behavior surveys. Tools such as GPS tracking devices have been given
to survey participants, to track their movements in a systematic and unbiased
way, instead of relying merely on travel diaries and prompted recall questioning.
Tracking survey participants using a specialized GPS device provides numerous
challenges: people may forget to charge the device, or leave it at home, and
it may not receive a good signal at all times, leaving gaps in the travel record.
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However, in the developed world, and increasingly in the developing world, many
people normally carry a wireless phone with them. They already manage the
tasks of charging and remembering to carry it, at least as well as they are going
to manage those tasks for any special survey device. Therefore we propose, as
in Stopher [2008], to bundle the survey data collection into a phone.

In collaboration with Nokia Research Center in Lausanne, we launched a
data collection campaign in September 2009 to collect various kinds of data from
Nokia N95 smart-phones, including GPS data. In this paper, we will focus on
estimating route choice behaviors from collected GPS data by developing a new
methodology for generating probabilistic path observations from recorded GPS
data, and applying network-free methodology (Bierlaire and Frejinger, 2008) in
discrete route choice models. Instead of deterministically matching the GPS
trace onto transportation network to generate a unique path as map matching
algorithms do (Ochieng et al., 2003, Quddus et al., 2007), several corresponding
path observations are generated probabilistically, along with probabilities for
each path to have been the true path ( Bierlaire et al. [2009] ). This method
can avoid the biases which could be potentially introduced by deterministic map
matching algorithms, especially for sparse and inaccurate location data.

In the next section, analysis on data recording using cell phones will be
presented to illustrate our motivation of developing new path observations gen-
eration algorithm. In section 3, after briefly presenting the path probability
measurement proposed by Bierlaire et al. [2009], we will discuss the issues in
the methodology, followed by solutions. Then the algorithm for generating path
observations will be presented in section 4. The algorithm will be applied to
a short real trip to illustrate the generated result. We aim at applying the
algorithm in discrete route choice models to estimate individuals’ route choice
behaviors. In section 5, results from a preliminary study on the estimation using
a small set of real GPS data will be presented.

2 Data collection using smart phones

By mid of October 2009, more than 75 Nokia N95 smart phones had been given
out to volunteers as their personal cell phones. As each individual uses his cell
phone in daily life, a pre-installed software records and sends various kind of data
to a remote data server automatically. Those data include GPS readings, nearby
WIFI stations, nearby Bluetooth devices, available GSM tower, accelerometer,
media play log, calendar entries and phone log. Once collected, the rich data
represents a unique opportunity to estimate mobility patterns of individuals. In
this paper, we will focus on using GPS data to estimate route choice behaviors.

Another important feature of most of GPS capable cell phones is Assisted-
GPS, which reduce warm-up time for getting the first GPS reading to seconds.
This advantage provides more opportunities to observe full tracks of the user’s
trips without losing the beginning parts of trips. Undoubtedly, cell phones have
significant advantages over dedicated GPS devices, however, they also have own
shortcomings. Firstly, due to battery constraint, the data is recorded with
time interval of 10 seconds. This sampling rate is generally lower than that of
dedicated GPS devices, so the collected data is more sparse. Secondly, the data
is not as accurate as those collected from dedicated GPS device. In the N95
phones used in this study, the GPS antenna is embedded under the keyboard,



Figure 1: Comparison between GPS data from cell phone and GPS device
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which is covered by the screen when the phone is not in use. Furthermore,
most of people have the habit that putting cellphones in pockets or handbags
when not in use. Both of these factors generally weaken the GPS signal. The
difference in data can be easily understood by looking at a map (see Figure
1) with two traces of GPS data, which are recorded at the same time by the
same person who carried both a dedicated GPS device (the same device used in
Flamm et al. [2007]) and a Nokia N95 smart-phone. The cell phone’s recorded
trace deviates significantly from the true path, while the data from GPS device
shows much better adherence to the true path.

A main application of map matching algorithms is on GPS navigation tools,
which are required to locate the user on a certain arc or even position on an arc
(see, for example Quddus et al. [2006]). Even though Dead-Reckoning sensors
are integrated with some navigation tools to improve the accuracy of the detec-
tion, it is still possible that for a entire trip an incorrectly matched arc leads
to an incorrectly matched path, and it is even possible that various matched
arcs can not be connected to form a path. However, in travel behavior study,
especially in route choice modeling, researchers are not interested in associat-
ing every single GPS point to an arc. Instead, modelers are concerned about
the correctness of the generated path representing the whole process of a trip,
because incorrectly matched paths can result in biases in models.

Route choice modeling frameworks have been adapted to accept a proba-
bilistic representation of the actual path (Bierlaire and Frejinger, 2008). An
observation need not be a unique path, but can be represented by a set of po-
tential paths, along with a probability for each path to have been the actual
one. In map matching algorithms where the Multiple Hypothesis Technique
(MHT) is used (Marchal et al., 2005), a set of route candidates is maintained at
each GPS point. Then for each route candidate, a score is calculated based on
distance, speed or/and heading difference between GPS points and arcs, though



heading has found to be unreliable for this usage (Schuessler and Axhausen
[2009]). Further, the score calculations, while often heuristically effective, lack
the theoretical grounding necessary to serve as the probability that the corre-
sponding path is the true path. Moreover, the simplicity of score calculation can
not ensure its correctness if there are outliers in the GPS data. Besides, in such a
post-processing algorithm (w.r.t. real time algorithm for navigation tools), “in-
accurate” data is eliminated from map matching in the process of data filtering
(Schuessler and Axhausen [2009, 2008]). Consequently, some useful information
in those “inaccurate” data is also excluded.

In this paper, we present an innovative algorithm which generates probabilis-
tic representation of traveled path from cell phone GPS data. The calculation
of the path probability involves the simulation of travel on potential true path.
The algorithm is designed to be able to take advantage as much as possible the
information in the raw data, since the data is already sparse from cell phones.
The result from the algorithm will be probabilistic path observations for state-
of-the-art discrete route choice models.

3 Path Probability Measurement

In Bierlaire et al. [2009], a path probability measurement is developed to cal-
culate the probability that a proposed path is the true path given a trace of
GPS data. It utilizes both spatial relevance between GPS data and network
elements, but also temporal relationship among them. The horizontal accu-
racy information is used to measure the spatial relevance. Bayesian inference is
used to calculate the probability that the traveler was traveling on the proposed
path, while the device recorded the location, speed, and time information. In
this paper, we briefly introduce this method and then present some improve-
ments which we learned from applying it to real data. For more details about
the algorithm, we refer to Bierlaire et al. [2009].

3.1 Algorithm framework

By simulating traveler’s movement on a path, the algorithm calculates the prob-
ability for generating the observed GPS trace on the path. The probability value
is updated when a new GPS point enters,

Pr(gjagj—h e 791 ‘p) = Pr(gj‘gj—la e aglvp) : Pr(gj—lv e 7g1 |p)7 (1)

where §; denotes the jth recorded GPS point in a trip and p is the proposed
path. For each GPS point §;, the point probability Pr(g;|gj—1,--- ,G1,p) is
calculated by integrating, in ¢;’s domain of relevance D;, the probability for
generating the GPS point at each possible location, which we term the location
probability. The domain of relevance of GPS point (or domain shortly) is a set
of arcs, which are close to the GPS point and satisfy some conditions which
will be described in the next section. By Bayes, the location probability is
the product of the conditional probability for arriving at the location at the
observation time, and the marginal probability for generating the GPS point at
the location. According to these, we derive
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where [, is the length of arc a. The marginal probability, f, s (Gj,€q), is the
spatial measurement for the relevance between GPS point and location in the
network, which means the probability that the §; is recorded at a position e,
on the arc a, given by
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in which #; and x are horizontal coordinates of §; and ¢, respectively, ||Z; —
z|| is their Euclidean distance, and O'V;C is the horizontal accuracy of g;. The
conditional probability, f.(€.|gj—1, - ,G1,p) , stands for the probability that
the traveler arrives at the current location, given the condition that he departed
from the previous GPS point. It is calculated by integrating the probability that
the traveler arrives at the current location given each location in the previous

domain as the departure location,
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in which ¢, is a position on arc b belonging to the domain of g;_;. All terms
except f.i(€al€s, §j—1,b) are calculated when g;_; was dealt (see Bierlaire et al.
[2009] for more details). And we calculate the position transition probability
foi(€al€r, gj—1,b) by simulating traveler’s movement from §;_; to g;. Specif-
ically, it equals to the probability that traveler uses observed time difference
between §;_1 and §; to travel from the previous position to the current posi-
tion,

foi(€al€ns Gj—1,0) = fe, . (& —;-1). (7)

3.2 [Issues and Improvements
3.2.1 Low speed GPS point

The calculation of position transition probability (7) relies on the speed infor-
mation from GPS data. The speed data are used to calculate the travel time



on the arcs where the GPS points are assumed to be observed. However, if a
GPS point has a very low speed value, which means that the traveler may have
been stopped somewhere, we are not able to derive either the travel time or the
stopped time from GPS data. In order to solve such problem, we simplify the
position transition probability to,

1, €p — €q
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in which €, — €, means ¢, is in the downstream of €.

3.2.2 Preference to longer path

There is a drawback using (2) as the point probability. If there are two paths
with difference only in the domain of §; that ps contains one more arc g, i.e.

(Dj Np2) = (Dj Np1) U{q}, 9)
from (2) we will have Pr(gj|gj—17 e 7glap2) > Pr(gj‘g]—h o aglapl)a because
Pr(g;,qlgj—1, -+ ,g1,p) =9 > 0. It leads to an inappropriate result that longer

path is always more preferable to shorter one, even if ¥ is very low. Hence, in
order to solve this issue, we weight Pr(g;|gj—1,---,g1,p) by the length of path
segment which lies in the current domain, then (2) becomes,
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4 Path Observation Generation Algorithm

Path candidates should be generated before the probability can be calculated.
The full set of generated paths is enormous, including all paths connecting the
domains of all GPS points. In this paper, we define a policy to limit the number
of generated paths dynamically at each GPS point. At each GPS point §;, a set
of best path candidates are chosen according to the cumulative value of their
path probabilityPr(p|g;, Gj—1,- -+ ,§1). And for each arc in D, at least one path
going through it is selected. At the next GPS pointg;1, by searching from the
end nodes of the old paths via shortest path trees, the domain of relevance is
determined, and the path candidates are updated by appending the shortest
paths to the old path candidates. If an arc satisfy the following criteria, it will
be included in the domain of relevance: firstly, the heading difference between
recorded GPS data and the arc is less than 60 degrees if the observed speed is
greater than 5km/h, and secondly the degree of relevance

1
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is greater than a pre-defined threshold. Using shortest path trees is appropriate
because the domains’ sizes are generally large, so that the generated paths are
capable of representing topology of the network. The process of the algorithm
is:



1. Initialization:

(a)
(b)

Search over the network for the domain of first GPS point gg;

Connect arcs in the domain to generate a full set of path candidates
Po;

2. At each GPS point g;:

If the GPS point with traveling speed (0; > bkm/h ), tag it as normal

(a)
(b)

()

speed:

Search from the end nodes of path candidates (P,,) of previous nor-
mal speed GPS point for D;, with distance limitation 2 - y,,;

Loop over each old path pi € P, :

i. Loop over each segment s connecting from py to D ;
ii. If the first arc of s, ag € D;, or ag is not the reverse arc of the
last arc of py, append s to pi to generate a new path in Pj;
If L is not empty:
i. over all arcs in all path candidates, determine the domain of each
low speed GPS point;
ii. empty L;
If number of paths in P; is greater than a fixed number:

i. calculate path probability value for each path candidate;

ii. from higher to lower, choose path candidates with cumulative
probability value of 90%;

iii. for each arc a in the domain, preserve in P; at least one path
with a as the last arc, according to the probability value;

iv. update P;;

Set j = 74+ 1, and nr = j as index of previous normal speed GPS
point go to 2;

Else:

(a)
(b)

Push g; to the list of temporal low speed GPS points L
Set j =j+1, go to 2;

3. Finalization:

(a)

(b)
()

If L is not empty, over all arcs in all path candidates, determine the
domain of each low speed GPS point;

Calculate probability for each path candidate;

From higher to lower, choose path candidates with cumulative prob-
ability value of 90% as final result.



Figure 2: A small example
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5 Case studies

5.1 Examples for path observation generation algorithm

In order to illustrate the performance of the algorithm, we apply it to a short
real GPS track, which was recorded when a traveler was in a car running in
a dense network, see Figure 2. The network data used is downloaded from a
free map data source, open street map (www.openstreetmap.org). The true
path on which the GPS points (red cars) were recorded are indicated in the
mini map at the left-bottom corner of the graph. In the main view, blue lines
indicate path observations generated. A large number of paths, 19 specifically,
are generated, however, most of them overlap over each other, with different
origins and destinations but share almost the same intermediate segments.

In the result, the beginning and ending of the trip is ambiguous because the
path probability value relies highly on the inter-dependency among GPS records,
but there is no information before the first GPS point, and no information
after the last GPS point. The problem of origin can be easily solved if the
trip is longer, since the latter GPS point strengthen the selection of the entire
path, which is one of the characteristics of the path probability algorithm. The
ambiguous trip end is an issue of the algorithm if only GPS data is used, because
when the user stops traveling, the GPS records will appear as a cloud distributed
around the true position. However, the rich available data from the cell phone
gives us an opportunity to infer the trip end from the user’s daily habits and cell
phone’s connection to other devices, such as WIFT stations and others’ bluetooth
devices.

The generated results shows some paths deviate from the true path in the
middle of the trip. This is a result of the inaccuracy of the GPS data. The
path probability algorithm shows its strength in this case, as it assigns fairly
low probability value to those paths. Only 4 out of 21 paths goes through the
wrong segment, with probability value 16% in total.



Table 1: Statistics of the trips

Min | Average | Max

Numbers of GPS points per trip 16 35.6 58
Travel time per trip [second] 179 395 795
Length of generated path (Length) [km] | 1.71 3.98 6.44
Number of traffic signals (NbTS) 0 2.86 5.44
Path size (PS) 0.02 0.08 0.77

We further apply the algorithm to two longer trips with 72 and 50 recorded
GPS points respectively. Results shown in Figure 3 and Figure 4 are better
than the small example. But we observe in 3 a small deviation from main road
in some generated paths. Although the calculated probability value for those
paths are low (5 out of 33 paths,13% in total ), they are still possible to have
been the true path. From Figure 4, we can easily recognize the the true path,
because those GPS points are relatively accurate and close to the generated
path.

5.2 Modeling route choice behavior from real data

The purpose of developing the probabilistic path generation algorithm is that
generated path observations can be used in discrete choice models to estimate
users’ route choice behaviors. We extract from the cell phone database a single
user’s 19 trips in Lausanne area. A Path Size Logit (PSL) model with network-
free data approach (Bierlaire and Frejinger [2008]) is used for the estimation.
The deterministic term of the utility function is specified by

Vi = Bps - In PS; + B Length; + Brs NbT'S;, (11)

in which Length; and NbT'S; denote the length and number of traffic signals of
the path p; respectively. The path size attribute (P.S;) is calculated by,

PS =" b 1 (12)
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in which U is the path choice set of the origin and destination of path observa-
tion p;, and d,; equals one if path p; contains arc a, zero otherwise. 1 shows
the statistics of the trips and generated path observations. For each trip, the
attributes are weighted by path probabilities.

The choice set is sampled by using biased random walk algorithm (Frejinger
et al., 2009) with settings: 50 draws, Kumaraswamy parameters b; = 30 and
ba = 0.4, length is used as generalized cost for the shortest path computations.

Table 2 reports the coefficient estimates for all attributes. All coefficients
have their expected signs and they are all significantly different from zero. The
positive value of Path Size coefficient is consistent with the theory (Frejinger,
2008). The negative signs of coefficients for path length and number of traffic
signals indicate that the traveler is more willing to choose shorter path, and less
traffic signals for his trip, which is reasonable and understandable in the real
world.
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Table 2: Estimation result
Coefficient Value | Rob. Std. Error | Rob. t-test
In(Path Size) 3.56 1.656 2.16
Path length -41.9 154 -2.72
Number of traffic signals | -1.23 0.402 -3.05

Number of observations: 21
Null log-likelihood: -81.619
Final log-likelihood: -28.592
Adjusted rho-square: 0.613
Model estimated by BIOGEME (Bierlaire 2007)
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6 Conclusions and Future Works

A proposed path observation generation algorithm, supplemented to a path
probability measurement, is presented in this paper to generate path observa-
tions from GPS data. By applying to real trips, we show the viability of the
algorithm and we analyze some characteristics of the algorithm in order to ex-
plore any possibility of improving it. The results from longer trips are generally
better because more data, and hence more information, can be used by the path
probability algorithm to capture the dependency among consecutively recorded
GPS data. However, the efficiency of the algorithm is still an issue to be solved
for long trips. The accuracy of the result will also need to be examined using
data recorded in more complicated situations, such as GPS cloud generated in
congested intersections and road segments. Preliminary tests comparing the
algorithm with state-of-the-art map matching algorithms reveal that our algo-
rithm is superior in the presence of sparse data. With dense and accurate data,
both approaches give results of similar quality. More data and testes will be
used for the comparison of the two methodologies.

The path probability can be understood as the probability that the device
records the same data if we simulate a travel on a proposed path. A prior knowl-
edge of transportation mode is useful for the simulation because each trans-
portation mode is restricted to use certain types of roads in the transportation
network, and different transportation modes have different running patterns.
There are already some works on detecting transportation mode purely from
GPS data, for instance, Schuessler and Axhausen [2008]. However, the per-
formance of applying such algorithm to cell phone data hasn’t been examined.
The availability of acceleration data and other data from cell phones provides
a prospect of exploring new transportation mode detection methods. For ex-
ample, it is usually hard to distinguish bus from car, since both of them are
motor vehicles running in the same transportation network. However, the cell
phone can see more nearby bluetooth devices, i.e. passengers’ cell phones, in a
bus. Additionally, we can learn from the fact that passengers on a bus changes
frequently, leading to the frequent change of nearby bluetooth devices. This will
remain to be our further research.

The estimation of route choice behavior from a single users’ trips is a prelim-
inary study on applying the probabilistic path observation generation algorithm
in discrete choice modeling framework. The estimation result is consistent with
the theory and reasonable in terms of estimated behavior. Although the data
set is relatively small and utility function is simple, it shows the viability of uti-
lizing state-of-the-art discrete choice modeling methodologies in the estimation
of route choice behavior from cell phone data. In the future, we will use the
proposed algorithm to generate more path observations from cell phone data,
when they are available, to estimate behaviors using more models.
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