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Abstract

The SARS-CoV-2 epidemic outbreak has left a deep impact on society, highlighting the
urgent need to fully understand the role of human mobility in infectious disease spread and
control [1]. For this reason, being able to model the behavior of individuals is key to under-
standing the impact of mobility in the context of infectious diseases, leading to an increase
in the amount of literature developing epidemiological models.

Epidemiological models are essential tools used to predict disease dynamics and can
be classified into three main types: compartmental [2], network-based [3, 4], and activity-
based [5]. Each type offers a different perspective on disease transmission, from more ag-
gregated observations (compartmental) to more individual-based indicators (activity-based).
Compartmental models are based on aggregated compartments where individuals belong:
for example, susceptible S, infected I, and recovered R, neglecting the heterogeneity of
the population. Network-based models focus on interactions between individuals within
a network, making them computationally expensive to extend to large-scale populations.
Activity-based models, the focus of our research, despite being CPU-intensive, offer a more
detailed representation of individual behaviors, which is crucial for understanding disease
spread in a real-world context. While activity-based epidemiological models have been
widely used to guide public health responses during the pandemic, they have some limita-
tions. Specifically, the literature indicates that activity-based models, although providing a
more detailed perspective on individuals, tend to focus primarily on infection probabilities
[6], overlooking personal choices such as test decisions. This oversight can lead to incom-
plete insights into how diseases spread and how people respond to their infection status.

Our research aims to address this gap by introducing the choice of testing of each in-
dividual and the concept of "awareness" into the modeling framework, providing a more
comprehensive view of how diseases spread within the population. In this paper, we intro-
duce a novel approach, which takes into account not only infection probabilities but also
individual testing decisions. We propose an activity-based epidemiological model that adds
two latent states for agents’ behavior: the level of exposure E⋆, and the propensity to test
Q⋆. Also, it introduces the concept of awareness as the key mobility-epidemiological indi-
cator in an individual’s journey through a disease. The probability of an individual being
infected is modeled using a logit. The logit is defined by the individual’s exposure level,
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Figure 1: Overall dynamics of the discrete choice models inside the framework

which depends on the encounters with infected individuals and health characteristics. Once
we compute the probabilities, we generate a random variable that determines the binary
outcome of remaining susceptible or becoming infected. The process of someone deciding
to get tested is modeled as a discrete choice model. An individual’s likelihood of getting
tested is predicted using a logit function that considers their underlying propensity to test.
This propensity is influenced by the person’s socioeconomic factors, their level of expo-
sure to the virus, and the activities they perform. The output of these models allows us to
compute the awareness indicator. Awareness represents when an individual not only con-
tracts the virus, but also tests positive for it. From a mobility standpoint, this indicator is
crucial because it deeply influences an individual’s behavior. Once aware of their infec-
tion, individuals are likely to alter their activity-travel behavior, reduce interactions, and
seek medical care. Currently, we assume that all the aware individuals go under a 10-day
quarantine. The dynamics of the model are shown in Figure 1.

As input to the model, we employ an activity-based microscopic modeling technique
[7], which provides us with detailed schedules and the socioeconomic characteristics of
the individuals in our population. Furthermore, to ensure the reliability and precision of
our framework, we calibrate the parameters of the latent states using real-world infection
data. Regarding infection data, we dispose of daily positive tests in Switzerland and in-
formation about tested individuals from the Federal Office of Public Health (FOPH) from
mid-February 2020 to mid-September 2021 [8]. It includes age, sex, municipality, vaccina-
tion doses, hospitalizations, and causalities. Furthermore, we use open-source aggregated
data [9], including positive, negative, and tested counts, per age group. This calibration pro-
cess allows us to estimate the model parameters, aligning its final disease dynamics with
the ones observed in the data.

One of the most significant findings of our research challenges a common assumption
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in disease modeling: that an individual’s positive test is equivalent to an active infection
of the individual. This assumption neglects the underlying behavioral reaction of indi-
viduals not being aware of the infection, and therefore not changing their behavior. Our
approach offers the possibility of distinguishing between the individuals who do not test
positive and, therefore, do not alter their behavior, those who take measures upon receiving
a positive result, or those who are scared and test very often with no positive results. This
distinction is key for a comprehensive understanding of disease spread and its impact on
activity-travel behavior, or even to forecast medical supplies. Furthermore, the framework
also shows high computational efficiency: It runs in around 3 seconds for three months of
simulation and 800,000 individuals. The computationally efficient aspect makes our model
suitable for large-scale simulations and real-time decision support, and consequently for
both researchers and policymakers.

In conclusion, our activity-based epidemiological model offers a fresh perspective on
understanding the spread of the disease, not only during the SARS-CoV-2 pandemic but
also for future infectious diseases. By accounting for the likelihood of infection and test-
ing and the awareness of the individual, we can bridge the gap between human mobility
patterns and individual behaviors, providing a deeper insight into how diseases propagate.
As a behavioral-epidemiological tool that explains the intricate relationship between hu-
man behavior and disease dynamics, our model can help assess the process of developing
targeted interventions to mitigate the impact of infectious diseases. Its practicality and effi-
ciency make it a valuable asset to guide real-time decision-making in public health crises.
Our approach integrates insights from various fields, including epidemiology, transporta-
tion, and discrete choice analyzes, bridging different research communities to provide an
interdisciplinary approach.
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