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1 Introduction

Beyond impacting global economies and healthcare structures, the COVID-19 pandemic has
revealed several weaknesses in the ability of authorities to handle large-scale crises, notably in
understanding the evolution of people’s activity-travel behavior during such crises [1]. How
individuals move, interact, and make health-related decisions (e.g. undergoing testing or vol-
untarily limiting their trips) are key to understanding the propagation of infectious diseases.
Therefore, accounting for these dynamics is necessary to implement efficient and targeted poli-
cies to contain disease outbreaks. In this context, epidemiological models serve as invaluable
tools for formulating effective interventions.

Aggregated and disaggregated epidemiological models exist and can be classified into three
groups: compartmental [2], network-based [3, 4], and activity-based [5, 6]. Compartmental
models group the population into different categories, neglecting the heterogeneity of the indi-
viduals that are part of it. Network-based models, on the other hand, delve into the interactions
between individuals within interconnected networks, but are too computationally expensive to
apply for large-scale populations. In this study, we focus on activity-based models, which
present a detailed representation of individual behaviors. These models are especially valu-
able for understanding disease spread in complex real-world scenarios [5, 7]. However, while
activity-based epidemiological models have been widely used to guide public health responses
during the pandemic [5], they have some limitations.

Existing models [5, 8, 9, 10], typically assign a uniform probability of infection to individu-
als or make adjustments primarily based on age, overlooking the influence of health character-
istics and the attributes of infectious contacts encountered. Furthermore, the literature primarily
focuses on the implications of activity restrictions [11], leaving a gap in the exploration of the
effects of various policies. For example, there is a notable lack of studies that assess the impact
of policies such as requiring negative tests to participate in leisure activities. Lastly, models
generally emphasize the infection process [6, 5], often neglecting individual choices, such as
someone who decides to get tested. This approach provides a limited view of disease propaga-
tion and individual responses to infection.

Our model aims to address these gaps by creating a detailed epidemiological model that
captures both the dynamics of infection and the results of the tests on an individual level. Both
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(a) Aware and Responsible (b) False Hope

(c) Blissful Ignorance (d) Anxiety and Vigilance

Figure 1: Representation of individuals’ awareness and response patterns towards infection and
testing behaviors. (a) Aware and Responsible: An individual aware of her infection, adjusting
behavior to minimize transmission risk. (b) False hope: An individual with a false negative
test who, unknowingly, carries and potentially spreads the infection. (c) Blissful Ignorance: An
individual unaware and untested, highlighting risks of lack of testing or misinformation. (d)
Anxiety and Vigilance: An individual frequently tests due to high anxiety, usually receiving
negative results.

models account for latent agent behavior. By simulating behaviors over discrete time intervals,
the model facilitates in-depth exploration of transitions in health states, changes in infection
awareness, and the effects of testing. The central components of the model are: (i) movement
of individuals throughout the different facilities, (ii) changes in individuals’ health state, (iii) in-
dividuals choice to get tested, and (iv) individual changes in activity-travel behavior given the
test outcomes. The concept of "awareness" is an important factor in an individual’s disease
journey. Awareness is a binary variable that captures the moment when individuals become
aware of their infection by testing positive. This information is critical, as awareness directly
influences mobility and activity-travel behavior: individuals change their daily schedules and
interactions only when they realize their infection status. An example is provided in Figure 1
illustrating the behaviors of four different agents within our model. By incorporating these sub-
models, our model offers a comprehensive perspective on the relationship between the choices
of individuals, the spread of the disease, and their activity-travel behavior. Moreover, we can
test a range of policies beyond activity restrictions, and assess how "responsible" individuals
are, i.e. if they are willing to compile with testing policies. Finally, our model presents very
high computational efficiency, making it a tool for large-scale simulations and real-time public
health decision-making.
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2 Methodology

2.1 Data
The dynamics of disease spread occur in t periods. For mobility and agent characteristics, we
use the output of a microscopic activity-based model [12]. The model describes a population
consisting of N individuals who visit the facilities f from the set F , and have socioeconomic
characteristics xo

n, and health characteristics xh
n. For each individual n, facility f , and timestep

t, we denote Ze
fnt as a binary variable that:

Ze
fnt =

{
1 if individual n is in f at time t

0 otherwise.
(1)

Regarding infection data, use data from the Federal Office of Public Health (FOPH) on
daily positive tests and information on individuals tested in Switzerland from mid-February
2020 to mid-September 2021 [13]. This dataset includes age, sex, municipality, vaccination
doses, hospitalization, and causalities for all the individuals who tested positive. Additionally,
we use open-source aggregated data [14] from Switzerland, including positive, negative, and
tested counts, per age group. This dataset is required since we need information on the total
tests. The segmentation of the population is done into 10 age groups g. The group g to which
an individual n belongs is denoted as gn. The initial conditions of the framework have an impact
on the simulation results, as the trajectory of an epidemic is directly related to the number of
initial cases. We assume the model to run after ten days from the start of the pandemic. For this
reason, the initial conditions for the first days of simulation are not determined by the model,
but are taken directly from the data [14].

2.2 Modeling Elements
• Contacts: We define a contact as an interaction between individuals where there is the

potential for the transmission of the disease. The spread of the disease is modeled on the
basis of the contacts generated by the activity schedules of the population from the micro-
scopic activity-based model. We define Zc

nmt as a binary variable indicating if individual
n and individual m meet at timestep t.

Zc
nmt =

∑
f

Ze
fnt · Ze

fmt, ∀m ∈ N\{n},

where the product between Ze
fnt and Ze

fmt is 1 only if both n and m are in facility f at the
same timestep t.

• Health State: The health state of every individual during any period is classified as
susceptible, infected, or recovered. We use three binary variables to define the health
state: Zs

nt, Z
i
nt and Zr

nt; where Zs
nt = 1 if the health state of the individual is "susceptible",

Zi
nt = 1 if the individual is "infected", and Zr

nt = 1 if the individual is "recovered", such
that:

Zs
nt + Zi

nt + Zr
nt = 1 ∀n, t. (2)

• Model Outcomes: The model emphasizes the movement of individuals between health
states and their responses to test outcomes. A latent state called "exposure" indicates
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an individual’s infection likelihood. The indicators that we obtain for each individual at
every timestep t are defined in Table 1. It includes mobility indicators: Ze

nt and Zc
nmt,

latent state of exposure E⋆
nt, behavioral indicators: Za

nt and Zq
nt, and epidemiological:

Zs
nt,Z

i
nt,Z

r
nt, and Z+

nt.

• Recovery Time: This represents the time it takes for an individual to transition from an
infected state to a recovered state. It is assumed to follow a log-normal distribution as in
[15].

γn ∼ lognormal(384, 96), ∀n, (3)

where the mean and standard deviation are expressed in time steps t.

Name Description Type
E⋆

nt latent state of exposure continuous
Zs

nt the individual is susceptible binary
Zi

nt the individual is infected binary
Zr

nt the individual is recovered binary
Z+

nt testing results of each individual binary
Za

nt awareness of each individual binary
Zq

nt propensity of test binary
Ze

nt location of the individual binary
Zc

nmt contact between two individuals binary

Table 1: Indicators epidemiological model for every individual n throughout p.

2.3 Model
Operating within discrete time intervals, the model captures the intricacies of infection spread,
testing procedures, and the resulting behavioral changes. A graphical representation of the
dynamics of the model can be found in Figure 2. We summarize the dynamics of the model in
the following steps. First, we update time and agent locations based on daily activities (ABM)
(see Equation 1).

After updating the time and agent locations, we update agent health states following the state
transition matrix B that contains the probabilities of transitioning from one state: susceptible,
infected and recovered, to another state: susceptible, infected, and recovered, at any time t.

B =

P (Zs
n(t+1) = 1|Zs

nt = 1) P (Zi
n(t+1) = 1|Zs

nt = 1) 0

0 P (Zi
n(t+1) = 1|Zi

nt = 1) P (Zr
n(t+1) = 1|Zi

nt = 1)

P (Zs
n(t+1) = 1|Zr

nt = 1) 0 P (Zr
n(t+1) = 1|Zr

nt = 1)


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where:

P (Zi
n(t+1) = 1|Zs

nt = 1) =
1

1 + e−µE⋆
nt
, (4)

P (Zs
n(t+1) = 1|Zs

nt = 1) = 1− P (Zi
n(t+1) = 1|Zs

nt = 1), (5)

P (Zr
n(t+1) = 1|Zi

nt = 1) = Φγn(p− pin) (6)

P (Zi
n(t+1) = 1|Zi

nt = 1) = 1− P (Zr
n(t+1) = 1|Zi

nt = 1) (7)

P (Zr
n(t+1) = 1|Zr

nt = 1) = 0 (8)

P (Zs
n(t+1) = 1|Zr

nt = 1) = 1 (9)

The hidden exposure state E⋆
nt is a continuous variable that captures the individual’s level of

exposure to infection. This latent state takes as exogenous variables the health characteristics
of the individual xh

n, and the number of infectious contacts χi
nt for an individual n for timestep

t.

E∗
nt = βe

0 +
Ke−1∑
k=1

βh
kx

h
nk + βiχi

fnt + εe, (10)

where βh
k is a vector of Ke parameters (to be estimated from the data), βi is the parameter of

χi
fnt, ε

e is the (random) error term, and χi
fnt is defined as:

χi
fnt =

∑
m Zi

mtZ
e
fmt∑

m Ze
fmt

. (11)

Then, we run the testing model to estimate the binary choice of getting a test or not for every
individual. We estimate the probability for an individual to perform a test in timestep t as:

P (Zq
nt = 1) =

1

1 + e−µ(βq
0+

∑Kq−1

k=1 βo
kx

o
nk+ηeE⋆

nt)
(12)

where βo
k is the parameter vector of Kq parameters (to be estimated from data) from the socio-

economic characteristics of the individual xo
n, and ηe is the parameter for E⋆

nt. Once we know
which individuals get tested, we estimate the number of positive individuals, by first checking
whether the individual is selected for testing, i.e. if

Zq
nt = 1, (13)

defined in Table 1. After, we divide all individuals who fulfill (13), according to their health
status as:

nqi
t ∈Zq

nt = 1 & Zi
nt = 1, (14)

nqs
t ∈Zq

nt = 1 & Zs
nt = 1, (15)

nqr
t ∈Zq

nt = 1 & Zr
nt = 1. (16)

where nqi
t is an individual that is infected and tested, at time t, nqs

t is an individual that is
susceptible and tested, and nqr

t is an individual that is recovered and tested. Additionally, we
define the probabilities of PCR sensitivity as a constant value throughout the simulation, in n
and p [16]. The ranges in parentheses correspond to the confidence intervals 95%.
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Initialization

Compute the
exposure E∗ (10)

Compute the
probability of
testing based
on Q∗ (12)

Compute the
probability of
infection (4)

Gets a
test?

Change
health

state from
S to I?

Individual
is infected

Individual re-
mains susceptible

Tests
positive?
(14-19)

Set awareness to
1 for 10 days 20

Confinement
for 10 days 21

No action

Yes

Yes No

Yes No

No

Figure 2: Overall dynamics of the discrete choice models inside the framework

P (Z+
nt = 1|Zq

nt = 1 andZi
nt = 1) = 0.65± (0.62− 0.68), (17)

P (Z+
nt = 1|Zq

nt = 1 andZs
nt = 1) = 0.17± (0.10− 0.23), (18)

P (Z+
nt = 1|Zq

nt = 1 andZr
nt = 1) = 0.17± (0.10− 0.23). (19)

Since our hypothesis is that individuals only change their behavior once they are aware of
being sick, that is Zi

nt = 1 and Zq
nt = 1. Therefore, we compute the individual awareness of

infection indicator which is modeled as:

Za
nt = Zi

ntZ
q
nt. (20)

Finally, we implement the mobility restrictions by:

Ze
fn(t+1) =

{
Ze

fnt if individual’s n outcome is 0, and
0 otherwise.

(21)

3 Results

We calibrate our model using the data described in Section 2.1, applying measurement equations
that link individual tests with observed tests per population segment each week. To deal with the
aggregation of the data and keep the individual-level information of the model, the calibration
of the model parameters uses the negative binomial distribution, chosen for its precision in
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depicting variability in test data. However, adjusting it directly is difficult due to its distinct
and non-smooth nature. The details of this methodology are beyond the scope of this extended
abstract but will be fully discussed in future work.

One of the standout features of our model is its computational efficiency; we can process
800,000 individuals in about 3 seconds over a three-month simulation, making it a very suitable
tool for large-scale scenarios.

Figure 1 represents the different responses to infection and testing behaviors. Each subfigure
highlights a distinct type of behavioral attitude of an individual based on their awareness and
the changes in their activity-travel behavior. Figure 1a shows an individual who is aware of
her infection and actively modifies her behavior during travel activity to minimize transmission
risk, representing the ideal behavioral response where knowledge leads to responsible actions,
with indicators: Zi

nt = 1, Zq
nt = 1, Z+

nt = 1, and Za
nt = 1. Following this, in Figure 1b we

observe an individual testing with a false negative, and therefore becoming an unaware carrier
of the infection, potentially endangering others. In contrast, Figure 1c portrays an individual
who is oblivious to its infection. She chooses not to get a test and therefore can inadvertently
spread the disease, highlighting the risks associated with a lack of testing or misinformation.
Lastly, Figure 1d, presents an individual characterized by high anxiety about contracting the
disease, frequently testing, and getting negative tests.

To examine our model’s accuracy and applicability, we tested it on several data sets featuring
various demographic and mobility patterns. Preliminary results indicate substantial variations
in disease spread due to differences in individual awareness and testing tendencies. Specifically,
areas with higher awareness and testing experienced more controlled spread, underscoring the
importance of public health measures and individual actions.

4 Conclusion

In this extended abstract, we uncover a critical oversight in traditional disease modeling. Many
models are designed under the assumption that a positive test result directly equates to an indi-
vidual having an active infection, which does not account for the different behavioral responses
of individuals who are unaware of their infection status. Our research emphasizes the im-
portance of distinguishing between actual infection and an individual’s awareness of it. This
differentiation is crucial. It helps us differentiate people who remain oblivious to their infection
and thus do not change their behavior, to those who become cautious upon testing positive and
change their activity-travel behavior. Moreover, we can capture other behaviors like individuals
who frequently test out of fear without ever getting a positive result. By understanding these
nuances, we get a clearer picture of how diseases spread in the context of an individual’s choices
and activity-travel behavior. This insight can be particularly helpful for predicting how diseases
impact daily activities such as travel.

Also, the computational efficiency not only makes it a valuable tool for academic research,
but also a practical resource for real-time decision-making by those in charge of public health
responses.

Finally, our approach draws from various disciplines, such as epidemiology, transportation,
and discrete choice analyses. By merging these fields, we have developed a comprehensive
approach to understanding the spread of disease. This model not only sheds light on the SARS-
CoV-2 pandemic but also sets the stage for how we can better approach future infectious dis-
eases.
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