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Abstract

The vehicle sharing systems (VSSs) are becoming more and more popular due to both financial
and environmental effects. On the other hand, they face many challenges, such as inventory
management of the vehicles and parking spots, imbalance of the vehicles, determining pricing
strategies, and demand forecasting. If these are not addressed properly, the system experiences a
significant loss of customers and therefore revenue. This work provides a framework for a VSS
management from a wider perspective by addressing the components and their relations with
the inclusion of a time dimension. The proposed framework is aimed to be applicable for any
kind of VSS. After identifying as many problems as possible related to a VSS, the future work
will focus on the application of the framework to a light electric vehicle (LEV) sharing system.
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1 Introduction

The idea of vehicle sharing systems (VSSs) dates back to 1940s (Wikipedia contributors, 2019b,

Jorge et al., 2015). However, due to the lack of technical means to identify the customers, the
constructed systems were not as practical as nowadays. With technological improvements, the
VSSs are now able to identify the customers through a mobile phone application, a magnetic
card, etc. Therefore, the notion of vehicle-sharing has become more and more popular during
the last 20 years. The car-sharing systems (CSSs) are available in over 1000 cities, whereas
the bicycle-sharing systems (BSSs) in more than 700 cities in several countries (Wikipedia
contributors, 2019a,b). For CSSs, for instance, the estimated number of registered members
was 1.7 million as of December 2012 (Wikipedia contributors, 2019b), and as of February 2018
car2go, which is the largest CSS company in the world, announced that their system serves to 3
million registered members, of which more than a half being in Europe, on its own. They also
claim that they experience 30% growth in car2go membership year-over-year (car2go, 2019).

Before going into the details of challenges for the design and operations of a VSS, let us
introduce some concepts. In terms of the trips there exist two types: one-way and return trips. In
return trips, one has to bring the vehicle back to the station where it was picked up. For one-way
trips, the vehicle can be dropped anywhere allowed by the system. This brings us to the second
concept: where to pick-up and drop-off the vehicles. The two kinds of station configurations are
station-based and free-floating. In the former configuration, the parking places for the vehicles
are fixed and the user is obliged to take the car to the stations whereas the latter does not have
any specific parking areas, that is, the vehicles can be parked on any designated spot in the city.
The latter gives more freedom to the user since the parking spots are more spread in the city.
For pricing, there are many combinations, but we can list all under two main ones: static and
dynamic pricing. Static pricing sets a price level regardless of the vehicle pick-up and drop-off

place and time whereas in dynamic pricing the price may depend on those.

The increasing usage of VSSs brought many challenging questions to the operators of the system,
i.e. decision makers. The VSS companies try to maximize the profits by analyzing their costs
and revenues. The number of vehicles to be used in the system, keeping the balance of available
number of vehicles and parking spots in the system (deployment of a rebalancing structure), the
demand estimation for a vehicle or for a parking spot, and pricing schema of the trips can be
counted among the most common problems investigated in the literature.

This work aims to come up with a holistic analysis of the system by providing the components
of this system in a nutshell and identifying inter- and intra-relations of these components. While
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identifying the components of the system, it is also important to think about the time horizon
and the corresponding decisions such as strategic, tactical, and operational. Our work does not
only construct the framework itself but also defines the relations between decision levels and the
problems.

Moreover, the future work aims to apply this proposed framework for the newly introduced
light electric vehicles (LEVs) (ENUU, 2019). As the existing studies are focused on BSSs and
CSSs, the existing methodologies became inapplicable for the LEVs. The rebalancing methods,
for instance, are not convenient for the LEVs since a LEV is not as small as a bicycle, making
it unsuitable for rebalancing with a truck, and has only one seat, preventing the transport of
staff, which is common in car rebalancing operations. Also, demand forecasting becomes a
challenging task since LEVs are allowed to be parked on any designated spot in the city. LEVs
also serve for a higher portion of the population since they do not require a driving license.
Moreover, as the vehicle is electric there should exist a way of refueling the vehicles, which
can be e.g. replacing the batteries or recharging the batteries while the vehicle is at the station.
It is also good to note that although the future work consists of an application on LEVs, the
framework is aimed to apply not only to conventional vehicles but also other vehicle types which
might be introduced in the future.

The paper is organized as follows: Section 2 presents a brief literature review on VSSs and their
components. In Section 3 the proposed framework is presented. Section 4 discusses the research
questions in a VSS context and Section 5 includes the conclusions and future work.

2 Literature Review

There exist numerous studies in the literature about VSSs. In this section, we talk about the
studies that are relatively recent. The reader may find other literature surveys in Laporte et al.

(2015, 2018).

One of the most studied problems in VSSs is the imbalance of the vehicles observed in the
system. People using the system may not find a spot to park their vehicles in the destination, or
they may not find a vehicle in the origin. There have been a considerable set of recent studies on
bike rebalancing. In BSSs the rebalancing is usually performed using trucks or similar vehicles
(Ghosh et al., 2016, Liu et al., 2016, Pal and Zhang, 2017), which relocate the bikes from station
with high availability and low demand to the stations with high demand and low availability.
Therefore, the bike rebalancing problem consists of two major parts: estimation of the required
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inventory level of stations or city zones, and the routing of relocating vehicles. The relocating
vehicles routing is most often formulated as an optimization problem based on either capacitated
traveling salesman problem (TSP) (Pal and Zhang, 2017) or vehicle routing problem (VRP)
(Ghosh et al., 2016, Liu et al., 2016).

Resolving this issue in CSSs involves staff members to redistribute the vehicles between stations.
This, however, yields the subsequent problem of relocating the staff itself between two stations
and two car balancing operations. In most of the reviewed literature, these two problems are
tackled jointly, by defining optimization problems whose solutions determine simultaneously the
rebalancing of both vehicles and staff (Nourinejad et al., 2015, Boyacı et al., 2017). The strength
of Nourinejad et al. (2015) and Boyacı et al. (2017) is that they are both evaluated on real case
studies in Toronto, Canada, and Nice, France, respectively. However, neither of the approaches
include the forecasting of the demand and relocation of vehicles according to it whereas in Jorge
and Correia (2013) it is emphasized that the relation between these is important. In Boyacı et al.

(2017), authors account for the demand uncertainty, but in the case of high demand, the vehicle
requests are denied, which implies loss of demand. As the loss of demand comes with many
drawbacks such as bringing the company into disrepute, the constructed framework should be
able to predict the demand and rebalance vehicles in advance in order to reduce the demand
loss as much as it is allowed by the available data. With respect to the used methodology, in
Nourinejad et al. (2015) the problem definition is based on the multi TSP, while in Boyacı et al.

(2017) the authors have tailored a specific MILP for this purpose.

The demand estimation problem is addressed by machine learning algorithms used for forecasting
(Liu et al., 2016), by simulating the demand with a Poisson process (Ghosh et al., 2016), or even
by calculating the worst-case demand, as the solution of optimization problem, and optimizing
the rebalancing strategy according to it (Ghosh et al., 2016). Combining these two components
of the system, demand forecasting and rebalancing, the problem is formulated as a two player
game (Ghosh et al., 2016) or only sequentially forecasting the demand and rebalancing the
vehicles afterwards (Liu et al., 2016). In the case of two player game, one player is creating a
high demand, while the other is rebalancing the vehicles to reduce the demand loss as much as
possible.

On the other hand, the demand and rebalancing problems can also be manipulated by different
pricing schemes. For instance, decreasing the price of the trip from a low demand area to a
high one triggers users to utilize that option. By this way, the system does not only encourage
customers to use the system but also rebalances itself. However, in some cases it may end up
with demand loss because of the high pricing for the trips from high demand areas to low ones.
Therefore, this trade-off should be analyzed in detail. In practice, the companies tend to use a
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fixed value for a starting price and a variable amount which increases with the time and/or the
distance covered. In theory, there exists different approaches for dynamic pricing. The authors
in Jorge and Correia (2013) tackled the vehicle imbalance problem by defining a pricing scheme
which incentives the users to do trips which lower the imbalance and brings the system closer
to the equilibrium state. Their work showed that using only pricing strategy, i.e. without any
relocation, can improve the balance of the system, but will serve less demand. The authors in
Chemla et al. (2013) assign dynamic prices independently of their origin whereas in Waserhole
(2013) the price is set as soon as the itinerary of the customer is revealed and fixed till the
end of the trip. The approach in Waserhole (2013) is further extended with another approach
using a fluid approximation (Waserhole and Jost, 2013). In Pfrommer et al. (2014), the authors
proposed a model predictive control to set pricing incentives and applied their methodology on
a case study on a BSS in London, and it is shown that the level of service was improved with
the introduction of dynamic pricing schema for the weekends. However, during the weekdays,
because of the rush hours, they could not come up with a pricing schema that will improve the
performance of the system. Therefore, the literature still lacks research in terms of pricing in
VSSs.

One of the most recent surveys conducted by Laporte et al. Laporte et al. (2018) puts emphasis
on different decision levels of the VSSs as well as the problems faced. They come up with a
two dimensional classification where one is the type of the problem and the other is the decision
level. Their results show that there still exists lack of research in some specific areas such as
pricing incentives and routing problems at strategic level or locating stations in tactical and
operational levels. For instance, they claim that determining the optimal inventory level at each
station within a theoretical framework has not received much attention although it is closely
related to the rebalancing problem. Therefore, in this work, we take this idea further and define
the relations between the components of the system. Our motivation comes from the fact that all
the components of the system are connected both within and between decision levels.

In this paper, we extend and generalize the framework proposed by Laporte et al, by introducing
three decision levels, as well as a time dimension. In order to assess the generic character of
our framework, we comment it on a recently proposed VSS using vehicles that have features
common to both bikes and cars. Furthermore, according to Laporte et al. (2018), the existing
studies on the VSSs do not consider vehicles other than cars or bicycles. However, with the recent
introduction of new type of vehicles (e.g. ENUU (2019)), the proposed methodologies became
inapplicable. Moreover, in the future the companies will tend to offer VSSs that combines all
types of vehicles in order to reach as many customers as possible. Therefore, it is important to
construct a framework for any kind of VSS which is another aim of this work. The next section
provides the details on the proposed framework.
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Figure 1: A decision level

3 Proposed framework

As in every decision model, we first gather data, then we construct models to be able to represent
the data, and finally, take actions according to the outputs of these models for the future. These
notions form each decision problem and represent one dimension of the proposed framework.
Since we want to solve decision problem on both supply and demand side, these form the second
framework dimension. One layer of the framework is presented in Fig. 1.

To introduce the time dimension to our framework, we analyze supply and demand decision
problems at all planning levels, i.e. strategic, tactical, and operational. These levels correspond
to long-term (more than a year), mid-term (4-6 months), and short-term decisions (daily/hourly),
respectively. In other words, we construct such decision tools for each level which extends
our framework as in Fig. 2. By this way, we are able to place each problem in one of the 18
boxes. We represent the interaction between the components with white, the dependence with
blue, and intra-level interactions with a dashed line. The relations can be one-way or both-ways.
One-way interaction means that the results of one component affects the other component. This
also can be considered as one component feeding the other. A two-way interaction between the
components show that they interact with each other. The dependence relation, on the other hand,
is both ways and a change in one of them triggers an opposite effect in the other. Last but not
least, the intra-level interactions are identical in the meaning to interaction relations but they
exist only between the decision levels.

In the following subsections, we review the main problems observed in a VSS. To do that, we
introduce notions regarding the problems, and place those in boxes of Fig. 1 in three decision
levels. The first subsection discusses the supply and the second the demand part in detail. After

5



An optimization framework for a vehicle sharing system May 2019

all, we link all and come up with the final framework (Fig. 2).

3.1 Supply

When we talk about inventory, we refer to the number of parking spots and vehicles available,
and the fuel of the vehicle. The inventory management of the vehicles and parking spots include
works on (1) optimizing the fleet size of the vehicles that will serve to the customers (Boyacı
et al., 2015), (2) deciding the optimal location and the size of the parking facilities in order to
prevent both overstocking and understocking of the vehicles (Boyacı et al., 2015), (3) optimizing
the routing of the fleet of workers who are responsible for the maintenance of the vehicles and
their fuel/battery level depending on the type of the vehicle (Boyacı et al., 2017). The first
corresponds to tactical level decisions and can be changed in mid-term. The company may
increase or decrease the number of vehicles in the system once they monitor such a need. The
reason that the fleet size of the system cannot be placed under operational level is that it is not
practical to change this for just a short period of time. This action could be taken after solving
the model vehicle fleet sizing. The second task of deciding the optimal location, on the other
hand, is generally decided at the beginning of the system installment in the case of station-based
systems, which places under strategic level. However, one may also consider this as the parking
spots available throughout the city in the case of free-floating systems. The decision maker then
should decide on how much availability to offer in which part of the network. Therefore, this
problem can be also referred by the problem of network design. So, using the optimization of

the network model, one may come up with the network design of the system. Daily or hourly
decisions are made to overcome the third problem, routing for maintenance, which makes it
to be placed under operational level decisions. For instance, for electric vehicles, keeping the
battery level sufficient for each user is also an issue for the decision maker. There are several
approaches to overcome this issue. Some examples are: (1) the users are required to charge
the batteries in certain locations if it is under a certain threshold, (2) the company hires staff to
replace the batteries of the vehicles by monitoring their levels and (3) the company hires staff to
drive the vehicles to the charging stations. The first one is not user-friendly as it needs time and
makes the user responsible from an act whilst the second and the third put responsibility on the
company. The decision maker may introduce some pricing incentives, which we will discuss
later, to get rid of the disadvantages of the first. These decisions are made in daily basis.

Because of the dynamics in the city, these systems also experience imbalance during the day.
The vehicle rebalancing can be dynamic, where the relocation is performed during the system
operation, or static, where the relocation is done when the system is closed (e.g. over night)
(Laporte et al., 2018). To minimize the cost of such an implementation, this problem is layered
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into several subproblems in the literature: (1) optimizing the staff allocation and relocation who
are responsible for the rebalancing, (2) routing of vehicles performing rebalancing in the case of
BSSs, (3) routing of the relocated vehicles in the case of CSSs (Boyacı et al., 2017, Nourinejad
et al., 2015). The decisions regarding the type of rebalancing strategy can be made in both
strategic and tactical level: the former level decisions correspond to the type of vehicles used
and the latter the time of the operation. Type of rebalancing strongly relates to the type of the
vehicles used in the system. For instance, it is not efficient to use big trucks to rebalance a CSS
since it is not possible to carry dozens of cars on a truck. On the other hand, for a BSS, it is
generally not practical and desirable to rebalance bikes using human power since it is exhaustive.
Also, a worker cannot relocate another worker (which might rebalance another vehicle later
on) while rebalancing the bike. One needs to know about the demand in the next time step so
that the rebalancing operations to be made can be decided. That is why we need to determine
the time of rebalancing operations in order to be able to forecast accordingly. In the case of
static rebalancing, the forecast should be daily and the vehicles should be placed to the best
possible places in the system while the system is closed. For dynamic rebalancing, on the other
hand, the forecasting can be done at any time step. The decision maker should determine the
best for the system of interest. After, the daily decisions regarding the decided strategies should
be addressed under operational level decisions. These can be the routing of the rebalancing

operations and relocating of the workers. To come up with these solutions one needs to model
the parking availability and the location of the vehicles.

The problems discussed so far were mainly based on the decisions on the supply side. We should
also illustrate the type of the data needed to build the corresponding models and to take actions.
The data that can be placed under strategic level should be unalterable anytime or at least for
short- or mid-term. For instance, the geographical location of the city and city structure cannot
change anytime. Also, the majority of the network of the parking spots would stay the same
in long-term. To have drastic changes there must occur extraordinary events (e.g. earthquake),
that is why we place them under the strategic level. As we change our time horizon from
long-term to mid-term, our concerns move to seasonal or specific changes. The season of the

year is, for example, is an important aspect since it affects the forecasting. Also the important

events/festivals taking place in the city changes everyday decisions and should be taken into
consideration to increase the level-of-service, i.e. to decrease the lost demand. Moreover, the

cost of workforce is an input which can change time to time and therefore affects mid-term
decisions. There exists data types that may change the dynamics of the system instantly, such as
current parking availability and weather forecast. A user tends not to use a BSS on a rainy day
or an extremely hot day. Similarly, if a parking spot is not available to the user at the destination
point, then s/he tends not to use the system. In order to understand the effects of such things we
need the current parking availability as an input to the demand model at operational level.
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3.2 Demand

From pricing point of view, there exist many applications in the industry. Some companies
work with a fixed price to reserve the vehicle and it increases with the distance and/or time
the customer travels with the vehicle. Some others also try to encourage people so that they
return the vehicles to the place where they actually picked up to serve balancing issues (Mobility,

2019). This approach is not applicable in a free-floating system. On the other hand, there also
exist studies in the literature where they assume that dynamic pricing is possible (Jorge et al.,

2015). With such an approach the company aims to manipulate the market so that the system
will need less rebalancing executed by the company while the revenue is not sacrificed. However,
although the revenue is not sacrificed, this does not necessarily mean that the level-of service
stays the same. Also, with different levels of pricing throughout the day may result confusion
from the user perspective and user may leave the system, i.e. opt-out. Therefore, with the
introduction of dynamic pricing other concerns such as lost demand and level-of-service should
also be analyzed and the objective needs to be set accordingly. Following the discussion, we see
that the pricing component can be placed under both tactical and operational level decisions.
The tactical level decisions can be thought as the pricing strategy, i.e. dynamic or fixed, to be
applied and the offers/campaigns that will be presented to the customers. Although it is easy to
announce any offers to the customers or change the pricing strategy even in a day, the nature of
these decisions requires at least a mid-term analysis to be made. The short-term decisions can
be made through deciding the actual price. Furthermore, the level of service, the determination
of budget for advertisement, and market placement can be listed in the strategic level decisions
that will relate pricing in lower decision levels.

Last but not least, one of the main problems faced in VSSs is forecasting the demand. First of
all, with different type of vehicles the people are expected to behave differently. For instance,
LEVs are available for a higher portion of the population since they do not require a driving
license as in a car or no effort to ride it as in a bicycle. Second of all, the type of the stations,
which can be fixed and free-floating (Laporte et al., 2018), also affects the forecasting procedure.
The type of the stations should be decided at strategic level within the network design. After, the
historical demand data helps the decision maker to design the network accordingly, i.e. placing
the stations and deciding their capacities for the fixed station case, allocating parking spots
throughout the city for the free-floating case. Note that the capacities are determined with the
help of forecasting on mode- and destination-choice. The results of this model will help the
decision maker to take actions on the level of service, budget of advertisement, and market

placement. In the tactical level, the mid-term demand forecasting model should be constructed
to be able to come up with the pricing strategy. This model requires a disaggregate historical
demand data so that the data can be manipulated and aggregated at any level to come up with
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the strategies. The short-term decisions regarding this problem correspond to forecasting the
demand of the vehicles and the parking spots -which can be considered as forecasting the supply-
per station or zone, i.e. short-term demand forecasting per station and zone. This obviously
utilizes disaggregate demand data and monitors and analyzes the system in detail.

The type of the demand data used for the models also varies with the decision level. The demand
side of the information relies on the historical demand and the aggregation is mostly related to
the level of decision. As the horizon gets shorter the disaggregation increases since we want to
be responsive to the changes in the system.

3.3 Integration of the components

This subsection integrates all the components together and discusses the relations between them.
Here, we discuss everything at high-level. One may refer to the previous subsections for further
details.

Fig. 2 provides the overall picture discussed above and the relationship between the components
of system with time dimension. The vertical relations are represented with one-way white
arrows since the data is an input to the constructed models and the models with the input data
help the decision maker to decide on the action. For instance, the pricing strategy to be applied
affects the approach taken in both tactical and operational levels. The horizontal interaction at
the Models level is two-way and represented with a white arrow since these models interact
with each other because of the dependent data they are using. At the Data level it is a two-way
blue relation since these information depend each other. For example, when a vehicle demand
occurs on a spot, i.e. picked-up, then it will create one more supply of a parking spot. The
interactions between the decision levels are from the Actions component of the upper level to
the Models of the lower level. These interactions represent the fact that the chosen actions on
the upper planning level determine to a great extend the used models and their outputs in the
lower planning level. Therefore, this relation is represented with dashed one-way arrows.

4 Open research questions

Looking to the literature that we have reviewed, we have noticed that the disaggregate demand
modelling has not gained much attention. The existing works mainly focus on the routing
problems for vehicle rebalancing and staff relocating. Therefore, we would like to focus more
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on the demand module of the framework and analyze its dynamics. Today’s systems/products
are more customer-oriented and specialized, which means that they are put in the center of the
system. Thus, our motivation stems from this idea and encourages us to identify the demand
structure of the system at all decision levels. Please note that we refer to both vehicle and
parking spot demand with the notion demand unless specified.

We understand from the proposed framework that VSSs cannot be investigated from only one
point of view. Because of the close relation of the demand component with pricing and parking
availability, we think that all of them should be examined simultaneously instead of putting
assumptions on the components that are less of interest.

With technological improvements, the systems tend to provide new features to the customers.
The user can be informed about an updated price through a mobile application which gives the
decision maker flexibility to change the prices dynamically. To serve rebalancing, for instance,
the price of the trip can be decreased such that a user drives the car to the high demand low
supply area. In order to preserve the balance in the system, the customers may be directed to
other cars rather than their first choice with again some pricing incentives.

One other problem faced in such systems is parking the vehicles, especially in CSSs. The
decision maker may introduce trip types where the customers book a parking spot at the
destination in advance. The decision maker can either utilize that parking spot until that time or
fully block it from reservation until it arrives.

However, these ideas raise another question: is the disaggregate demand really worth modelling?
To investigate this, we want to compare a system with no prior information on future demand and
with perfect information of it. The gains and losses between these two extreme configurations
should be significantly on behalf of perfect information case so that it would be meaningful to
construct a model. In order to examine this, one needs to know all the parameters of the system.
The cost of the workforce, the value of time, the distribution of demand, and parking fees could
be listed among those parameters.

We will do this comparison by simulating the system with the given specifications. By this
way, it will also be compatible to any kind of system in which one wants to analyze whether
it is important or not to model the demand. The so-called simulation will include three main
components: demand, pricing, and parking availability. This will enable us to change any
parameter and investigate the effects of them.

Upto now, we were discussing about CSSs and BSSs mostly. But the reason behind the fact that
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we want to build a framework which is applicable to all VSSs is that different kind of vehicles
in a VSS are showing up recently. An interesting example to the new type of vehicles in a
VSS is launched in 2018 in Biel, Switzerland by company ENUU (ENUU, 2019). This newly
introduced LEV takes advantages both from a car and a bicycle as discussed before. We aim to
analyze the system requirements for this LEV sharing system and provide an application of the
framework that we have constructed.

From the decision maker point of view there exists another question to be answered: the objective
that the company wants to achieve. We have discussed on some outcomes of the system, i.e. the
revenue, the level of service, the demand that is satisfied/lost. With the help of this framework,
all of these components can be monitored and analyzed. The problem can be solved with a
multi-objective approach or only one of the objectives can be chosen which represents the
mission of the company. One should note that these objectives are not necessarily produce
similar results. The work of Jorge and Correia (2013) is a very good example to such application.
Therefore, there still exists research gap in defining the objective of the system.

5 Conclusion and Future Work

Through the review of available literature, we have identified a lack of a unified approach of
modeling all VSS aspects, with respect to different planning horizons, and a holistic solution
approach to the related problems. Consequently, the goal of our work is to create a framework
for VSS management that will encompass all decision-making tasks of the system and provide
the best possible solution to the problems related to them. In order to achieve this, we have
to simultaneously take into account all aspects of the system, i.e., to consider the impact
the solutions of different problems have on each other. The contribution of this paper is to
provide a wider perspective on the design and operations of shared mobility systems. While
the literature has focused mainly on specific problems such as the routing aspect, many other
methodological challenges are associated with such systems. The proposed framework provides
a methodological map and attempts to cover the most important challenges of these mobility
systems.

Our further goal is the apply the framework to a system of shared LEVs, and design framework
components tailored to the unique characteristics of such vehicles. To the best of our knowledge,
the specific problems arising in the LEV sharing systems have not yet been addressed in the
literature, and this paper represents the first consideration of such system.
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Moreover, studies taking place in automobile industry are mostly oriented at autonomous
vehicles recently. This brings new queries about VSSs. In an autonomous case, a VSS will
basically be a taxicab community without any drivers. The users will be able to get on and
off anywhere they like and the autonomous car continues to the origin of the next customer if
there is any. From the user’s perspective, the fact that they will not spend any time to park the
vehicle makes the VSS experience even better. However, the company has to think about the
other effects, such as traffic congestion within the city. Therefore, although the vehicles are
smart enough to be able to drive without a driver, they still need to be routed so that the negative
effects of the system are minimized.

We have also seen that the literature lacks of disaggregate demand forecasting in the operational
level. Therefore, we are going to focus firstly on the demand modeling and forecasting. We will
try to avoid unrealistic assumptions to represent the real-world system better. Moreover, the
dynamic pricing module is also of interest for our future work.
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