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Abstract. Car sharing systems (CSSs) are one of the environmentally
beneficial solutions in urban transportation. However, the operators still
struggle to make these systems profitable. One of the main contribu-
tors in operational cost is rebalancing operations. Therefore, it is im-
portant to identify strategies that are tailored according to the needs of
the considered system. To overcome this challenge, this work proposes
a simulation-optimization framework that compares different rebalanc-
ing operations strategies in one-way station-based car sharing systems
in terms of cost and level of service. The simulation module utilizes
the Multi-Agent Transport Simulation Toolkit (MATSim) whilst the re-
balancing operations are determined in the optimization module. The
framework allows us to explore the different uncertainties that can occur
in the system, such as fluctuations in trip demand thanks to the MAT-
Sim. The results of the framework help the operator to better analyze
the system and the best rebalancing strategy under different scenarios.
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1 Introduction and literature review

Car sharing systems are considered to be one of the sustainable mobility so-
lutions. The higher parking and vehicle utilization, the more can environment
benefit from its usage. From the user perspective, it becomes attractive as they
share the fixed costs of owning a car, such as insurance, maintenance, and park-
ing, with other system users. On the other hand, this requires smart decisions at
every decision level, i.e., strategic, tactical, and operational. This paper focuses
on the tactical and operational level decisions [1]. We kindly ask the reader to
refer to [1] for the car sharing system terminology.

Initial systems are formed as round-trip, and later with the technology, they
are replaced with station-based one-way and free-floating systems. However, in-
creasing user flexibility leads to more complex challenges for the operator. These
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include rebalancing operations, trip demand forecasting, and disaggregate mode
choice at the operational level.

Rebalancing operations are applied in systems, where one-way trips are al-
lowed, to reduce the vehicle imbalance in the service area. The rebalancing oper-
ations can be static or dynamic. In the former, the operations are conducted at
night or when the system is low in operation [2], whereas in the latter, they are
done during the system operating hours. In general, the network is expanded to
a time-space graph to represent the dynamic structure [3,4|, which increases the
computational complexity of the problem. Therefore, the works propose heuristic
algorithms to overcome the burdens of the computational complexity.

Obtaining and utilizing disaggregate data for trip demand forecasting is ef-
fortful. It requires a detailed survey, analysis, and computational time, whereas
using such data is essential to reflect the heterogeneity of the population and see
the direct effects on individuals. Traditional four-step trip-based models (FSMs),
that include trip generation, trip distribution, mode choice, and traffic assign-
ment, cannot answer complex questions as they are static and sequential. There-
fore, the literature proposes transport simulation toolkits that are activity-based
multi-agent platforms to be able to analyze each agent. Some examples to such
toolkits are the Multi-agent Transport Simulation Toolkit (MATSim), SimMo-
bility, and mobiTopp [5].

In the literature, most works focus on one specific subject rather than having
a holistic approach. Furthermore, although activity-based multi-agent transport
simulation toolkits can handle the disaggregate data, they lack the representa-
tion of the supply side. To fill this gap, we introduce a framework, that consists
of three main components: the agent-based transport simulator, rebalancing op-
erations optimization that follows a rebalancing operations strategy, and choice
modeling that affects the plans of the agents. We use this framework to iden-
tify the best rebalancing strategy in combination with agent-based modeling
for a one-way station-based car sharing system with operator-based rebalanc-
ing operations solutions, which is not studied in the literature, to the best of
our knowledge. This way both supply and demand sides of car sharing systems
are considered. We utilize MATSim as a transport simulator because of the
possibility to simulate car sharing transport mode [6]. The disaggregate nature
of MATSim allows a detailed analysis regarding the most suitable rebalancing
operations strategy.

2 Methodology

The proposed framework is presented in Figure 1. In our case, the transport
simulation refers to MATSim but any other transport simulation toolkit can be
used. We kindly ask the reader to refer to [7] for further details on MATSim.
MATSim receives the daily plans of the agents (i.e., the start and end times of
each activity, the transport mode, and purpose of the trip) as well as the system
parameters (i.e., location of stations and facilities, car sharing system mem-
bership information, initial vehicle and parking configuration, socio-economic
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Fig. 1: The framework

characteristics of the agents, and public transport schedule). Then, MATSim
simulates the given day, calculates the utilities of each agent, each agent replans
their day according to their utilities in the previous iteration and the given day is
simulated once again until the pre-specified number of iterations, I, is reached.
We refer to this loop iterations as inner-loop iterations and present it in red
arrows in Figure 1.

The output of the simulation gives the realized car sharing trips, which helps
us to compute the final state of the vehicles and parking spots. This information
is passed to the rebalancing operations optimization module and the initial vehi-
cle configuration of the following day is determined according to the rebalancing
strategy. The initial vehicle and parking configuration is modified accordingly
and the feedback loop is then closed by triggering the next iteration of the outer-
loop iterations, which are shown in black arrows in Figure 1. The change in initial
configuration modifies the choices of the agents in the next outer-loop iteration.
Here, an outer-loop iteration corresponds to a one simulated day and run for
pre-specified number of times, O, to observe the convergence.

Within MATSim, the generalized cost of car sharing travel from activity ¢—1
to activity ¢ is shown in Equation (1) [7].

Utrav,q,cs = Qs T 56,(;5 *Ct - tr + ﬁc,cs cCq - d + Bt,walk : (ta + te) + Bt,cs -t (1)

The first term, a.g, refers to the alternative specific constant of the car shar-
ing alternative. The second term relates to the time whilst the third is the
distance dependent component of the fee. The access and egress times to and
from the stations are considered in the fourth term and the coefficient of the
last term represents the marginal utility of an additional unit of time spent on
traveling with car sharing, where ¢ is the actual in vehicle travel time.

For the other modes such as walking, private car, public transportation, and
bike, the utility of traveling is shown in Equation (2).
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Utra'u,q,mode = Qmode T ﬂc,mode *Cq - d + ﬁt,mode -t (2)

For the current state of research, we test two different rebalancing strategies.
In the first strategy, do mothing, the final configuration of the cars from the
previous iteration is taken as an initial configuration for the following iteration.
In the second strategy, rebalance, we follow a heuristic approach. The minimum
vehicle inventory reached per station during the day is defined as the minimum
number of vehicles required for that station. If the total number of available
vehicles is more than the total number of minimum required vehicles per station,
we sequentially distribute the excess number of vehicles among stations. Finally,
this obtained configuration becomes the initial configuration for the following
outer-loop iteration.

3 Results

We use the Sioux Falls, South Dakota, USA case study to experiment our frame-
work. This network represents a simplified version of the real network and can
be seen in Figure 2. 24 car sharing stations are placed at each intersection of
the network. The provided plans file consists of 84110 agents and the 100% of
the population is used for the experiments. There are three event types, i.e.,
home, work, and secondary. The four facility types are home, work, secondary,
and education. The available transport modes are car, public transport, bike,
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walk, and one-way car share. Although the literature states that the willingness
to walk to a car sharing station changes between 400 and 800 meters [8], we set
the search distance of a car sharing vehicle to 200 meters as Sioux Falls is a very
small network. We assume that static rebalancing is deployed and the operations
happen instantaneously. As we are using a heuristic approach, the rebalancing
optimization takes less than a second showing that it is suitable for operational
level decisions.

For preliminary experiments, we run 100 inner-loop, and 10 outer-loop iter-
ations. When we look at Figures 3 and 4, we see that the transport simulation
converges at around 70 iterations. This observation is important as determining
the cut-off iteration number saves considerable amount of computation time.
Furthermore, Figure 3 gives us some insights on the mode share. The respective
mode shares for the modes car, public transport, bike, walk, and one-way car
share are 70.9%, 9.6%, 9.6%, 9.7%, and 0.2%. Regarding the trip purpose, we
observe that 56% percent of the activities are work related whereas 44% are
secondary activities such as from home to secondary or vice versa.
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Figure 5 shows the results for both strategies. The outer-loop iterations are
depicted in the x-axis and the y-axis shows the number of rentals at each outer-
loop iteration for both strategies. We see that rebalance strategy is more stable
than the do nothing strategy. Also, in line with the intuition, the rebalance
strategy leads to higher number of rentals than the do nothing strategy. The
fluctuations for each strategy can be explained by the fact that unnecessary
rebalancing operations are conducted which leads to few number of parking
spots in some specific stations where the drop-off demand is high. For the do
nothing strategy, the trend of number of rentals is negative, i.e., the number of
rentals is less and less with increasing number of iterations. This is expected
due to the fact that the pick-up stations have less and less vehicles and drop-off
stations do not have enough parking spots to serve the drop-off demand.

After analyzing the fluctuations, we observe that the number of rentals tend
to decrease for some number of iterations after reaching a relatively high number
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of iterations for do nothing strategy whereas for rebalance strategy, the behavior
is opposite, i.e., the number of rentals tend to increase after reaching a relatively
low value. This also results in the positive and negative trends of the strategies.

4 Conclusion and future work

In this work, we introduce a holistic framework that aims to compare different
rebalancing strategies involving agent-based transport simulation, rebalancing
operations optimization, and choice modeling. Later, we present a case study
based on Sioux Falls, USA, and preliminary results for two rebalancing strategies.
Future work includes investigating the results with higher number of outer-loop
iterations to see the convergence and generalize results. We also plan to include
more sophisticated rebalancing strategies as well as simplistic approaches such as
equal distribution of vehicles. Furthermore, incorporating user-based rebalancing
strategies, where operator offers incentives to the users for specific trips, would
be interesting as the choices of the users would depend on the pricing. Finally,
as transportation involves discrete choice by its nature, we aim at including a
choice model that takes pricing into consideration in the framework.
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