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ABSTRACT

Different approaches to the moving object detection in
multi-object tracking systems use dynamic-based models.
In this paper we propose the use of a discrete choice model
(DCM) of pedestrian behavior and its application to the
problem of the target detection in the particular case of
pedestrian tracking. We analyze real scenarios assum-
ing to have a calibrated monocular camera, allowing a
unique correspondence between the image plan and the
top view reconstruction of the scene. In our approach
we first initialize a large number of hypothetical moving
points on the top view plan and we track their correspond-
ing projections on the image plan by means of a simple
correlation method. The resulting displacement vectors
are then re-projected on the top view and pre-filtered us-
ing distance and angular thresholds. The pre-filtered tra-
jectories are the inputs for the discrete choice behavioral
filter used to decide whether the pre-filtered targets are
real pedestrians or not.

1. INTRODUCTION

In the last years the problem of the automatic multi-object
detection and tracking in video sequences has found a
wide range of applications in computer vision and auto-
matic surveillance systems. A promising track of research
is the combination of detection and tracking methods with
mathematical models of the content of the image. In this
spirit, different approaches have been developed. In the
case that ana priori knowledge of the target is available,
in terms of color, shape or texture cues, appearance mod-
els are formulated on the image plan ([1, 2, 3]). In [4]
and [5] objects are encoded in a state-space representa-
tion where the state vectors evolve over time driven by a
dynamic model. Information from the propagation model
and observations of the state variables are combined in a
more informative posterior distribution, under a more gen-
eral Bayesian framework. Closer to detection and tracking

of pedestrians are that works related to dynamic models
of human bodies (as a whole or as a composite system).
In [6] and [7] the dynamic models are based on physi-
cal approaches (e.g Lagrangian mechanics). We believe
that these models are well adapted to pedestrian behav-
ior in particular cases such as panic situations and build-
ing evacuation, where people do actually globally behave
like particles or fluids. Other approaches rely on gener-
ative models ([8]) computed from training examples for
different view angles. These models are formulated on
the image plan and are chosen a priori, without any val-
idation on real data. An interesting approach is that of
[9] where the authors try to model thepdf of the flow
vectors on the top view plan. However, they consider
aggregated data (flows) and do not take into account the
disaggregated nature of pedestrians. Most of the meth-
ods presented in literature approach the detection/tracking
problem with dynamic models defined mainly on the im-
age plan. This implies that the reproduced object dynamic
is not always meaningful and reliable, being an image-
plan projection of the 3D real world version. On the other
hand, the few methods that define models of object behav-
ior on the top-view reconstruction of the scene treat flow
data, i.e. aggregated dynamic information. In this paper
we propose a discrete choice model (DCM) for pedestrian
behavior. This modeling framework, extensively used in
econometrics and transportation theory (see [10, 11, 12]),
is quite flexible and completely disaggregated. In this op-
tic, the main contribution of this paper is the combination
of discrete choice theory, pedestrian behavioral modeling
and standard image processing techniques, such as image
correlation, to approach the pedestrian detection problem
in real and complex scenarios.
The paper is organized as follows. In section 2 we give a
short state-of-the-art about pedestrian behavior modeling.
In section 3 we provide an overview on discrete choice
model theory. We describe in details each modeling ele-
ment of our DCM in section 4 followed by the model es-



timation results in section 5. We deal with the our pedes-
trian detection algorithm in section 6, followed by the ex-
perimental results in section 7, concluding remarks in sec-
tion 8 and future works in section 9.

2. PEDESTRIAN BEHAVIOR

The state of the art of pedestrian behavioral modeling is
based on two main approaches:microscopicandmacro-
scopicmodels. The models belonging to the first category
are those describing the time-space behavior of individ-
ual pedestrians, such as thesocial forcemodel, theCellu-
lar Automatamodel and the model proposed by Hoogen-
doorn (see, respectively, [13],[14] and [15]). The mod-
els belonging to the second category are those describing
pedestrians with fluid-like properties. Examples of this
approach are [16] and [17]. For a deeper literature review
we refer the reader to [18]. In this context, our approach
belongs to themicroscopiccategory.

3. DISCRETE CHOICE MODELS: AN
OVERVIEW

Discrete choice models in general, and random utility mod-
els in particular, are disaggregate behavioral models de-
signed to forecast the behavior of individuals in choice
situations. They assume that each alternative in a choice
experiment can be associated with a value, called utility.
The alternative with the highest utility is selected. The
utility of each alternative is a latent variable which is mod-
eled as a random variable depending on the attributes of
the alternative and the socio-economic characteristics of
the decision-maker. In its general formulation, the utility
function of alternativej, as perceived by decision maker
n is defined as follows:

Uin = Vin + εin (1)

whereVin is the deterministic part of the utility and it
is a (linear/non-linear) function of alternative’s attributes.
The εin term is random and represents uncertainty deriv-
ing from the presence of unobserved attributes, unknown
individual characteristics and measurement errors. Given
a set of alternativesCn, alternativei is chosen if:

P (i|Cn) = P [Uin ≥ Ujn∀j ∈ Cn] = P [Uin = max
j∈Cn

Ujn]

(2)
In our approach each pedestrian is treated as anagent. It
provides a great deal of flexibility, as the behavior of each
individual can be modeled independently. We model the
behavior of each agent as a sequence of specific choices
where they will decide to put their next step. In this con-
text, discrete choice theory represents a natural theoretical
framework.

A discrete choice model is defined by four elements: a
choice set, a set ofattributesdescribing the alternatives,
a set ofsocio-economicattributes describing the decision
maker and a random termε to capture the correlation struc-
ture between alternatives. We describe each of these ele-
ments in the following section.

4. MODELING ELEMENTS

4.1. The choice set

The definition of the choice set, in our specific case, co-
incides with the definition of the space model. We use a
dynamic and individual-basedspatial discretization rep-
resenting the physical space where the current pedestrian
can move the next step. The basic elements that we use to
define our spatial structure are illustrated in figure 1.

Figure 1: The basic geometrical elements of the space
structure

The decision maker current positionpdm, the current speed
direction−→v dm and the visual angleθ generate our region
of interestR ⊂ P within the walking planeP .
Starting from the current speed intensity valuevdm, we
assume that the decision maker has three different speed
regimes that are available:accelerated, constant speed
anddeceleratedthat correspond, respectively, to 1.5 times
vdm, vdm and 0.5 timesvdm. Along with the changes in
speed, the decision maker can modify his/her direction
in accordance with a predefined set of 11 radial direc-
tions as illustrated in figure 2. Differently from other ap-
proaches (cellular automata), we propose a radial scheme
that adapts to each individual. The size and orientation of
our space model depend in fact on the current speed vec-
tor of the decision maker. The choice setC = c1, ..., cN is
naturally defined by this spatial discretization. The combi-
nation of the 3 speed regimes and the 11 radial directions
create a set ofN = 33 dynamic alternatives (we indicate
an alternative also with the termcell), as shown in figure



Figure 2: Discretization of the space based on 3 speed
regimes and 11 radial directions. The numbers in the fig-
ure on the left represent the angular amplitude, in degrees,
of each direction.

3. We assume that each cell middle point is reachable in

Figure 3: The choice set. The cells are numbered starting
from the outher circle, from left to right.

a one-step movement by the decision maker, with an ad-
equate change in speed intensity and direction. We have
chosen a non uniform radial discretization with smaller
angles around the current direction axes. This is justified
by the aim to make the model more sensible to directional
changes with respect to the current direction. The size
of the choice set is chosen as a tradeoff between on one
side the need to have a compromise between the preci-
sion in our spatial discretization and the computational ef-
ficiency in the choice probabilities calculation and on the
other hand the fact that using a too fine spatial resolution
would give rise to alternatives too strongly correlated.

4.2. The alternative’s attributes

We define the deterministic utility of alternativej as per-
ceived by pedestriann as follows:

Ujn = β1∗destinationj+β2∗directionj+β3∗speedj (3)

where the three attributes are defined as

1. destination: if we consider the triangle that has for
vertex the current pedestrian position, the destina-
tion point (the last position in the current pedestrian

Figure 4: Given a destinationD and the current direc-
tion d, the angles defined by thedirectionanddestination
attributes are respectively, for alternativeCj , dÔCj and
DÔCj.

trajectory) and the center of the cellCj , thedesti-
nation value is the angle at the current pedestrian
vertex. It represents the angle between the cellCj

and the final destination (figure 4).

2. direction: it represents the angle between the cell
Cj and the current pedestrian direction (figure 4).

3. speed: is the module of the difference between the
current pedestrian speed and the speed that charac-
terizes the cellCj .

Theβ parameters represent the weights of each attribute
and are estimated from real data by maximum likelihood
estimation using the Biogeme optimization package1. For
reasons that will become clearer in the next sections, we
do not define anysocioeconomiccharacteristic for the de-
cision maker. For the same reasons, we use for the detec-
tion process, only attributes related to the individual be-
havior and we do not consider parameters related to the
interactions between pedestrians. A more complete ver-
sion of the discrete choice model for pedestrian dynamic
can be found in [19].

4.3. The random term

Different assumptions about the random term give rise to
different models. In this paper we present across nested
logit (CNL) formulation (see [12]). The general formula-
tion of the CNL model is derived from the Generalized
Extreme Value model ([20]) where theε term is Gum-
bel distributed. The probability of choosing alternativei
within the choice setC of a given choice maker is:

P (i|C) =
yi

∂G
∂yi

(y1, ..., yN )

µG(y1, ..., yN )
(4)

1http://roso.epfl.ch/biogeme



based on the following generating function:

G(y1, ..., yN ) =
∑
m

∑
j∈C

αjmyµm

j


µ

µm

(5)

wherem is the number of nests,αjm ≥ 0 ∀j, m; µ > 0;
µm > 0 ∀m; µ ≤ µm ∀m. We assume a correlation struc-
ture dependent on the speed and direction and we identify
four nests (m = 4): accelerated, not accelerated, center
andnot center. The corresponding nest parameters (µm)
that have to be estimated are:µacc, µno acc, µc andµno c.
This correlation structure is illustrated in figure 5. We fix
the degrees of membership to the different nests (αjm) to
the constant value 0.5, i.e. each alternative can belong to
two nests. The CNL formulation allows to model flexi-
ble correlation structures between alternatives keeping a
closed form solution for the probability expressions.

NOACC

ACC   
(accelerated)

(not accelerated)

ACC
(accelerated)

NOC
(not center)

(center)
C

NOC
(not center)

Figure 5: left: Nesting based on speed,right: Nesting
based on direction.

5. DATA SET AND ESTIMATION RESULTS

The data used to calibrate the model consist in 36 pedes-
trian trajectories manually extracted from real video se-
quences. The estimation results are reported in table 1.

Variable Coeff Asympt t-test
name estimate std err
β1 -0.0395 +0.002 -19.202
β2 -0.0313 +0.0021 -14.959
β3 -0.8899 +0.0072 -12.231

µacc +3.9492 +1.1073 +2.6633
µc +1.4239 +0.2795 +1.5167

Summary statistics
Sample size = 1401
Init log-likelihood = -4863.819
Final log-likelihood = -3586.05

Table 1: Estimation of the utility and nest parameters

The signs of the estimatedβ coefficients reflect the ten-
dency of an individual to keep his/her current direction, to

Figure 6: The histogram of the revealed choice frequen-
cies. The horizontal axes represents the alternative labels
and the vertical axes the frequency of each alternative.
Cells 6, 17 and 28 correspond all to the current direction.
Cell 17 corresponds also to the current speed value.

move towards his/her final destination and to keep the cur-
rent speed value. This is shown in figure 6. The modelled
correlation structure is partially confirmed by the estima-
tion of two µ coefficients. All the estimated coefficients
are statistically significant, as shown by thet-test values
in table 1. It is important to note that the DCM model
have been calibrated with a time step of 0.9 seconds. This
is important because the model results remain valid and
applicable to video sequences with a low frame rate. This
follows from the natural observation that a walking pedes-
trian does not take a decision about its next step 25 or 30
times per second (we do not need a high frame rate to cal-
ibrate the model).
We will now present the pedestrian detection system.

6. THE PEDESTRIAN DETECTION SYSTEM

An overview of our system is shown in fig 7. We describe
here the three basic modules.

6.1. The hypothetical moving objects

We initialize the target detection algorithm using a rectan-
gular grid of points on the top-view plan with a resolution
of 0.5 m. The grid is than projected back on the image
plan and each hypothetical moving object position is fil-
tered using a pre-computed foreground mask, as shown in
figure 8. The choice of a top-view grid allows greater pre-
cision and keeps the possibility to fully use any a priori
knowledge we can have on the scene (position of exits,
stairs, elevators, buildings etc ...). The algorithm projects
the full grid only for the first frame as initialization step
(figure 9). After a refresh periodTR, we repeat the proce-



Figure 7: Flow data in the proposed algorithm.

Figure 8: left: binary mask,center: foreground,right :
original frame.

dure using a smaller grid placed along a fixed-width bor-
der of the scene to be able to detect new incoming objects
(figure 10). For each hypothetical moving object position
we have to associate a corresponding moving region. For
simplicity, we use a rectangular region (bounding box).
To compute the size of the bounding box we suppose an
averaged height of people equal to 170 cm, ignoring the
error introduced by this approximation. From the moving
object position on the top view we project the parameters
of the scaled bounding box on the image plan by means
of the calibrated camera (figure 11). This automatic scale
selection is a simple and useful tool to distinguish regions.

6.2. The computation of visual displacements

Once we have the hypothetical moving regions on the fore-
ground we start to track them using a classical correlation
method. We compute the visual displacement between a
target region̂rn

t−1 at timet − 1 and the associated region
rn
t at timet as the vector defined by themaximumof the

correlation function between the two regionsC(r̂n
t−1, r

n
t ).

The visual displacement is then projected on the top-view
plan . The sequence of the projected displacements con-
stitutes the pedestrian trajectory. The update of the region

Figure 9: The top view grid used to initialize the algo-
rithm.

Figure 10: The top view grid used eachTR frames.

of interest follows:

r̂n
t = λr̂n

t−1 + (1− λ)rn
t (6)

where theλ ∈ [0, 1] coefficient weights the contribution
of the target and the associated regions.

We will now present the dynamic-based pedestrian detec-
tion. The basic idea is to perform the target detection
looking at his dynamic. In this spirit, we implement two
filtering steps: apre-filtering, where we use two thresh-
olds on the (top-view) projected displacement vectors and
a DCM-based filtering, where we use the calibrated dis-
crete choice model on the output data of the previous step
to give a score tohuman-liketrajectories.

6.3. The pre-filtering step

The sequence of visual displacements obtained by image
correlation is stored into a buffer whose length represents
the evaluation period for the trajectories. In this stage
we verify the projected displacementsdn

t and direction
changes∆θn

t of the hypothetical moving objects, defined
as:

dn
t = pn

t − pn
t−1, (7)

∆θn
t = θn

t − θn
t−1 (8)



Figure 11: left: the approximation of the Top-View plan
by the image plan with a monocular camera,right : size
estimation.

wherepn
t represents the position of the visual trackern at

time t, andθn
t represents the direction of the displacement

between the positionspn
t andpn

t−1. Following the idea to
filter targets based on their dynamic, we give a cumulative
scoreto a pedestrian trajectory over an evaluation period
T . We implement these ideas with simple thresholds on
the projected displacement vectors defining:

It =
{

0 if ‖dn
t ‖ ≤ td and‖∆θn

t ‖ ≤ tθ
−1 otherwise

wheretd and tθ are the thresholds on one-step distance
and direction change. Studies on pedestrian dynamics ([18])
show that the average speed value (in free-flow condi-
tions) of a pedestrian is about 1.34 m/s. Our frame rate
is 10 fps so we fixtd to 13 cm. With analogous considera-
tions we settθ to 120 degrees. TheIt is the one-step score
given to a trajectory. We assign at each tracker anacti-
vationvalue representing the starting score and we decre-
ment it at each ’bad’ step. The final score for a tracker,ST ,
is evaluated assuming a certain toleranceξ to bad steps
along the trajectory. We keep the tracker if the following
condition is satisfied:

ST =
1
T

T∑
t=1

It ≥ Sinf (9)

whereSinf represents the minimum score for a good tra-
jectory. In our experiments we useξ = activation−Sinf

activation ≥
0.3, which means a margin of30% (we tollerate 3 ’bad’
steps over 10). The important parameters that have to be
tuned are theactivationand the evaluation periodT .

6.4. Filtering with DCM

The pre-filtered trajectories are the input for the behav-
ioral filter. We have to take into account that the trajecto-
ries are generated by image correlation so often they are
not regular and present jumps. For these reasons we use
just individual attributes in the DCM. It would not be reli-
able to insert collision avoidance parameters and crowd

density parameters because we are still deciding about
whether a tracker is placed on a pedestrian or not, i.e.
pedestrian detection. Once we have detected the targets,
we can start to track them using a more complete discrete
choice model to improve the robustness of the tracker it-
self, but this work is under progress in our group and out
of the scope of this paper.
Each step done by a pedestrian along his trajectory repre-
sents a choice made by the individual and it is character-
ized by a probability value given by the model. We detect
pedestrians giving a mark to the trajectoryk based on the
cumulative value of probabilities:

Mk =

∑l=L
l=1,j∈Cn

Pjl∑l=L
l=1,j∈Cn

max Pjl

≥ th (10)

wherej ∈ Cn is the alternativej in the choice setCn, l is
the current step,L is the number of steps in the trajectory
k andPjl is the step probability. This thresholding oper-
ation measures how much the collected score is far from
the maximum probability score.

7. EXPERIMENTS AND RESULTS

For our experiments we have used two outdoor video se-
quences2. In figure 12, 13, 14, 15 and 16 we show our
results. In figure 12 and 13 we plot the number of fil-

Figure 12: The number of filtered trackers in our first se-
quence, as a function of the evaluation timeT for three
different grid resolutions

tered trackers as a function of the trajectory length (i.e.
the evaluation timeT ) for different resolutions of the top
view grid for both the test sequences. It is interesting to
note that the number of moving regions associated with
the moving points present a quite good stability. It means
that we have a good degree of independence from the
choice of the grid resolution and the evaluation time. In
figure 14 the three families of curves correspond to three
different evaluation periods. For each couple of curves,

2The interested reader can find the elaborated video sequences at
http://lts1pc19/antonini/indexpage.html



Figure 13: The same graphic as the previous figure for
the second video sequence using two different grid reso-
lutions.

Figure 14: The variation of the filtered trackers as a func-
tion of the activation parameter. It shows the different
roles of pre-filtering and filtering stages.

the dotted one represents the number of trackers after the
pre-filtering while the solid one refers to the output of fil-
tering stage. We note that for low activation values (lower
starting score of trackers), most of the filtering task is per-
formed by the pre-filtering module. The DCM does not
perform in this case any further filtering (the two curves
overlap). Increasing the activation value (for example to
avoid to loose at once good trackers) we see that a con-
sistent further selection is done by the behavioral filter, as
expected. In figure 15 we show an example of trajectories
after pre-filtering (top figure) and filtering (down figure).
Finally, in figure 16 we show two frames from the two
tested video sequences.

8. CONCLUSIONS

In this paper we have approached the moving object de-
tection step of a multi-object tracking system using a dis-
crete choice model for pedestrian dynamics. The use of
this framework allows, in further applications, to take into
account parameters that are not only strictly related to pure
physical and dynamical aspects. Moreover, DCM are cal-
ibrated on real data so they reflect the real behavior of in-
dividuals ( at least in that choice situations where is dom-
inant the so calledrational behavior). Our application to

Figure 15:Top: Pre-filtered trajectories,Down: Filtered
trajectories.

target detection shows that this methodology is effective
in complex real scenarios, with a large visual field, clut-
tered background and occlusions.

9. FUTURE WORKS

An immediate extension of this work is the use of the de-
tected pedestrians to initialize a behavioral-based track-
ing system. We are developing an extended version of
the behavioral model (space occupation by other pedes-
trians, collision avoidance) in a non-linear non-gaussian
state space framework. A drawback of our approach is the
presence of multiple trackers on the same target (for ex-
ample, on different parts of the human body). We are cur-
rently working to merge the trajectories generated by these
trackers to have a statistical evaluation about the number
of pedestrians in the scene. We aim also to improve the
system by incorporating a deeper image analysis for the
hypothetical moving regions, including a multi-scale ap-



Figure 16: Two frames from the two test sequences.

proach.
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