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Figure 1: Pedestrians in Cornavin’s Railway Station (Geneva, Switzerland)

Abstract

My master thesis proposes a general methodology to model pedestrian destination choice
from WiFi localization in multi-modal transport facilities (e.g., airports, railway stations). It is
based on the output of Danalet et al. (2014) method to generate candidates of activity-episode
sequences from WiFi measurements, locations of activities on a map and prior information.
Destination choice is nested to the activity choice. An individual first chooses an activity
(Danalet and Bierlaire, 2015b), and then selects the destination where to perform it. We propose
an approach to model destination choice accounting for panel nature of data. We compare static,
dynamic strict exogenous and dynamic model with two different agent effect corrections inspired
by Wooldridge (2002) method.

In a case study using WiFi traces on EPFL campus, we focus on one activity type: cater-
ing. The choice set contains 21 alternatives on campus (restaurants, self-services, cafeterias,. . . ).
Our models reveal that the choice of a catering facility depends mostly on habits (e.g., where an
individual ate the previous time), distance to walk from the previous activity-episode (calculated
with a weighted shortest path algorithm) but less on destination specific determinants (e.g., price,
capacity). The models are successfully validated using the same WiFi dataset and we forecast
possible changes concerning catering destinations on the campus.
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1 Introduction

My master thesis proposes a framework to model pedestrian demand in multi-modal transport
hubs such as airports or train stations from WiFi localization. The use of those facilities increases,
both for trains (425 million passengers in 2008 in Switzerland, 477 million in 2013, +12%
(OFS, 2014)) and for planes (2 billion passengers in 2005 in the world, 3 billion in 2013, +50%
(Worldbank, 2014)). Historically, paper-and-pencil or telephone surveys were conducted to
collect data (information on people behavior and habits). They were expensive and could not be
performed often. Nowadays, modern hubs all propose “free Wi-Fi”. Localization data from cell
phones, tablets and computers can thus be collected from access points all around these hubs.
These data are cheap and can cover the whole facility. Their quality is however poor.

Recently, Danalet et al. (2014) developed a methodology to deal with the quality of these
data. Each measurement is associated to a point of interest (e.g., coffee shop, restaurant, ticket
machine,. . . ) in time using a measurement equation (Frejinger, 2008). Knowing people location
in time permits to generate probabilistic candidates of activity episode sequences. They can be
utilized to develop both an activity choice model (Danalet and Bierlaire, 2015b) and a destination
choice model. These two models are sequential. Liu et al. (2014) suggest that they are explored
together. Once an individual has chosen an activity, he selects the destination where to perform it
(Bierlaire and Robin, 2009). This report discusses the second step of the sequence. It especially
focuses on the development of a general methodology to describe and understand destination
choice for pedestrians in multi-modal transport hubs. We propose to model and forecast people
behavior based on WiFi data. It aims at optimizing these facilities (e.g., finding the optimal
location for ticket machines or predicting the potential market shares of a new coffee shop).

To be more specific, the project is part of a collaboration between “Ecole Polytechnique Fédérale
de Lausanne” (EPFL) and the Swiss Railway company (SBB) in the context of the project
“Léman 2030” (CFF, 2014). It includes an increase in trains offer (100’000 travelers expected in
2030, 50’000 in 2013, +100%) and huge changes in Geneva and Lausanne train stations. The
SBB is one of the most important property owners in Switzerland. Their lands have become a
major source of income. RailCity is the name given to the largest railway stations because of
their similarities to cities: more and more, train stations offer the opportunity not only to travel
but also to eat, drink, shop, or entertain oneself. In 2009, the revenue of these infrastructures
reached about 1.09 billion of Swiss francs (CFF, 2011).

In order to increase its revenues, the company wants to know how people behave when they
visit the facility. A random pedestrian for example enters the station between 7:45 AM (it is
the beginning of his activity-episode sequence) and 7:46 AM, buys a ticket between 7:49 AM





         

and 7:51 AM, gets a sandwich between 7:54 AM and 7:57 AM and then reachs the platforms at
8:01 AM to take a train scheduled at 8:04 AM (it is the end of his activity-episode sequence).
Once the activity is chosen (i.e., buying a ticket or getting a sandwich), a specific destination
needs to be chosen (i.e., a specific ticket machine or a specific luncheonette). He performs a
destination choice. As soon as the destination is known, a path needs to be defined. These
nested episodes represent pedestrians tactical and strategical behavior (Hoogendoorn et al.,
2002). Similar studies have already been made for a destination choice model in railway stations
(e.g., Ton (2014); Liu (2013)) or airports (e.g., Kalakou and Moura (2014b)). However, only
Ton (2014) is developed from WiFi traces. The others are based on stated/revealed preference
surveys. Pettersson (2011) also studies the behavior of pedestrians in train stations but he focuses
on the factors (e.g., information, geometry, habits) influencing the waiting location of people on
departure platforms.

The main goal of my thesis is to develop a general framework to model destination choice
and to apply it to the EPFL campus. Indeed, WiFi traces from April 2012 to June 2012 are
available (Danalet, 2015) and allow to track random employees and students on the campus and
to define their probabilistic activity-episode sequences. Individuals may have multiple sequences
over the observation period. A way to account for this panel nature of data to model individuals’
habits is to be developed (i.e., according to our researches, agent effect correction for pedestrian’s
panel data has never been explored before). Also, the paper aims at proposing several variants of
destination choice models on eating establishments (e.g., restaurants, self-services, cafeterias. . . )
in order to explain the factors that influence pedestrians’ decisions. The validation of these
models in order to perform some forecasting on the campus (e.g., increase of prices and opening
of a new establishment) is the final goal.

We review the existing literature concerning WiFi localization, pedestrians, activity and desti-
nation choices in Section 2. One explains the general equation, the data requirement, the data
merging and methodologies in Section 3. After that methodological part comes a case study on
the EPFL campus. Indeed, one applies the developed methodology and discuss several variants
of destination choice models for pedestrians in Section 4. It includes a validation and forecast-
ing. Recommendations for a future application in multi-modal transport hubs are available in
Section 5. The conclusions of the thesis and future work are presented in Section 6.





         

2 Literature review

The literature review is separated into three parts. Section 2.1 explores methods to capture indoor
pedestrians activities. In Section 2.2, existing destination choice models in multi-modal transport
hubs are analyzed. Finally, Section 2.3 discusses how we are able to utilize this information.

2.1 Activity-episodes detection

In Ton (2014), WiFi and Bluetooth traces are involved. The methodology to transform signatures
into activity sequences is not revealed. It is shortly discussed in Section 2.2. In Danalet et al.

(2014), data requirement consists of timestamps and localization data coming from WiFi network
traces and a semantically-enriched routing graph (SERG). A measurement is defined as:

m̂ = (x̂, t̂) (1)

where x̂ ∈ R3 is the position of the measurement and t̂ is the timestamps. The accuracy ξ defines
the distribution of the Euclidean distance between location estimate x̂ and actual location å:

x̂ = å + ξ (2)

In order to associate activity-episodes (including stop detection and semantics of the stop) to
these measurements, a semantically enriched routing graph (Goetz and Zipf, 2011) is defined as
a set of nodes corresponding to the type of potential destinations i.e., room, restaurant, shop. . . ,
i.e., all Points Of Interest (POI).

The methodology to detect candidates of activity-episode sequences performed by pedestrians
from the previously calculated digital traces follows a Bayesian approach explained in Danalet
et al. (2014). An activity-episode is defined as

a = (x, t−, t+) (3)

where x is the episode localization (or destination) and t+ − t− ≥ Tmin the time spent at that
location. A minimum threshold Tmin of five minutes is set like in Bekhor et al. (2013). It permits
to only keep activity-episodes longer than five minutes (and thus representing a destination
and not only a crossing point). The output of this probabilistic method is defined as a set of L

candidates of activity-episode sequences a1:Ki which are specific to an individual i. Basically an
activity-episode sequence is a list of Ki activity-episodes performed (i.e., visited POI) by one





         

tracked individual i during one day. Each candidate activity-episode sequence is associated with
the probability of being the actual one. Danalet et al. (2014) define this probability as a Bayes
formula (the subscript i is omitted to lighten the expressions):

P(a1:K |m̂1:J) ∝ P(m̂1:J |a1:K) · P(a1:K) (4)

It means that the activity probability P(a1:K |m̂1:J) that a1:K is the actual activity-episodes sequence
given the measurement m̂1:J is proportional to the product of the measurement likelihood
P(m̂1:J |a1:K) with a prior knowledge P(a1:K). As the goal is to compute the probability that the
performed episodes generated the observed measurement sequence, the equation is decomposed:

P(m̂1:J |a1:K) =

K∏
k=1

J∏
j=1

P(x̂k
j |xk) (5)

It is assumed that the only measurement error is a localization error. Similar to the land use
planning concept (Miller, 2010), the prior P(a1:K) is defined based on a potential attractivity
measure S x,i(t−, t+):

S x,i(t−, t+) =

∫ t+

t=t−
δx,i(t) · Ai(x, t)dt (6)

The idea is that the potential attractivity measure S x,i(t−, t+) between a start time t− and an end
time t+ for x ∈ POI and individual i is time dependent. It depends on the instantaneous potential
activity and a dummy variable δ for time-constraints (e.g., opening hours, schedules. . . ). The
attractivity Ai(x, t) defines the potential of a place (e.g., number of seating places for restaurants
or number of workers per room for an office) as explained in Danalet et al. (2014). Then the
prior can be calculated as

P(a1,K) =

K∏
k=1

S xk ,i(t
−
k , t

+
k )∑

x∈POI S x,i(t−k , t
+
k )

(7)

It assumes that consecutive activity-episodes are independent.

Danalet et al. (2014) propose an algorithm to merge data from localization and pedestrian
SERG to get candidates of activity-episode sequences. The generation of activity-episode se-
quences is divided in four steps. The first one introduces the concept of domain of data relevance
(DDR) introduced in Bierlaire and Frejinger (2008). The DDR defines a physical area where a
probabilistic measurement location linked to a POI is relevant. For each measurement m̂ j, all
possible activity-episodes sequences are generated for each individual. It leads to a recursively
built network.





         

The second step consists in generating activity-episodes start and end times as soon as a
sequence of potential episode locations is defined. The idea is to compare two consecutive
measurements m̂ j and m̂ j+1. Their timestamps and positions define a trip between them and thus
a travel time. In that way, considering a maximum walking speed and a shortest path algorithm
between both positions, bounds can be determined for the earliest and the latest start time and the
earliest and the latest end time. Start and end times are considered to be uniformly distributed
between these two bounds.

Third, once the distribution is known for the start and end times of each activity-episode,
the duration is estimated. activity-episodes with a lower bound smaller as Tmin are rejected. The
last part of the procedure is the sequence elimination procedure. As the number of paths in a
network growth exponentially with the number of measurements, there is a need for selection.
Candidates with small probabilities of occurrence are rejected. The complete algorithm is
available in Danalet et al. (2014). The methodology has been tested and validated on EPFL
campus.

In Dalumpines (2014), the data requirement consists in GPS data. A GIS-based episode
reconstruction toolkit (GERT) automatically extracts activity-episodes from GPS data and de-
rives information related to these episodes. This kit generates an input for route choice modeling.
The methodologies of Danalet et al. (2014) and Dalumpines (2014) are similar but the latter
classifies activity-episodes into different types using multinomial logit models. Also, the first
one deals with small scale problems (e.g., a multimodal facility, a campus. . . ) whereas the
second one fits better on a much larger framework (e.g., a transportation network).

2.2 Destination choice models for pedestrians

2.2.1 Influence of Space Syntax

Purpose and distance are intuitive factors used to explain a destination choice. When it comes to
a pedestrian destination choice model, more determinants have to be accounted for. Kalakou
and Moura (2014a,b) study the influence of space syntax (SS). SS is a theory and a set of
methods about space reflecting both the objectivity of space and the intuitive engagement with it
(Hillier, 2005). Important characteristics about space are connectivity, integration and visibility.
Connectivity is a factor that expresses the number of “neighbors” of each space. Integration is
the relation of one space with all others. According to Zhang et al. (2012) visibility is one of
the most influential factors in people’s behavior when moving in commercial areas. Ueno et al.





         

(2009) find out that the visibility, the number of turns and the distance affect pedestrians’ path
choice in railway stations.

2.2.2 An analogy with route choice modelling

Hoogendoorn and Bovy (2004) distinguish three levels of choices: the strategic level (Activity
pattern choice and departure time choice), the tactical level (Activity scheduling, destination
choice and route choice) and the operation level (walking behavior). An activity may be
performed at multiple destinations. Also, Daamen (2004) considers the tactical level and in par-
ticular the prevailing conditions of the network (travel time to reach each destination, queues. . . )
to model destination choice.

According to Hoogendoorn and Bovy (2004), the choice of an activity area is based on factors
such as the directness (number of sharp turns and rapid directional changes (Helbing, 1997)),
the distance and the level-of-service of the route, the necessity of performing that activity (e.g.,
is it mandatory?) and personal preferences. Furthermore, the choice of a route and the choice
of a destination are done simultaneously thus factors influencing both choices are considered.
This point may be subject to discussion. Unlike Hoogendoorn and Bovy (2004), Daamen (2004)
considers that the choice of an activity precedes the choice of a destination. We may contemplate
both approaches.

2.2.3 Destination choice models in airports

Kalakou and Moura (2014b) made a survey in Lisbon Portela’s airport and collected information
about space syntax and travelers’ habits. A discrete choice model was built to capture the
significant parameters that influence the choice of a destination. Four coffee shops were selected
as potential destinations. Space syntax parameters were introduced in the model. Visibility
from a mandatory place to visit (check-in, entrance) has a significant impact on the choice of a
destination. The integration level of the activity location adds value to a place for passengers
who only choose one coffee shop. Similarly, places having a good connectivity are more likely
chosen after the check-in.

Liu (2013) also studies pedestrian behavior in an airport on the basis of both revealed and
stated preference survey data. She develops an activity-destination choice model. Traveled
distance, congestion or the type of service have a significant impact on people’s decisions.
Models validated by Liu (2013) are used for forecasting: in more than 50% of the cases, the
prediction fits the observation.





         

2.2.4 Destination choice models in railway stations

Ton (2014) studies the route and activity location choice behavior of departing pedestrians
in the Utrecht railway station in Netherlands. Using WiFi and Bluetooth traces, she builds
both destination and path choice models. Her work is based on a framework proposed by
Hoogendoorn et al. (2002). It focuses on the strategical and tactical levels when faced with
discrete choices in a train station.

Ton (2014) defines an activity as a punch. The movement of a pedestrian contains several
punches (e.g., enter the station, visit a Burger King, leave via platform. . . ). Therefore the
possible activities are caught in a punch card. However, this list only tells if a pedestrian was
seen at one place or not (binary observation). It means that the sequence cannot be directly
derived from the punch card. Thus, the activity sequence must be determined. Ton (2014) does
not explain how she defines the chronological order of the punches. One limitation of the data
is that the list of activities performed by an individual is only available for one day because
everyone receives a new identification number everyday to respect privacy.

Using these activity sequences, Ton (2014) applies a binary discrete model to a choice of
a coffeeshop. Two Starbucks are selling coffees in the railway station and the aim is to capture
the factors that influence pedestrian destination choice. Traveled time from entrance to cof-
feeshop, total distance covered and having to take a detour are robust parameters. It is interesting
to note that the orientation is also significant. The fact that a coffeeshop is located on the right
hand side of the railway station (from the main entrance) increases its utility because pedestrians
are used to walk on the right.

2.3 Critics and comments

We discuss how we are able to account for the ideas developed in reviewed literature:

• Liu (2013) and Kalakou and Moura (2014b) are based on both SP and RP surveys.
– Socio-economic parameters can easily be taken into account with surveys, not with

WiFi traces since the data are partially anonymized.
• Kalakou and Moura (2014b), Liu (2013) and Ton (2014) destination choice models were

developed for destinations in only one building.
– Impact of SS in larger facilities (e.g., a campus) is unknown.

• Liu (2013) and Daamen (2004) emphasize the impact of congestion in destination choice
but using different approaches (CCTV and tactical-network models respectively).





         

– We have to find other indicators to consider congestion.
• The methodology developed by Ton (2014) is limited because the route choice is depen-

dent of the punch card’s simplicity and does not measure pedestrian’s habits.
– WiFi traces from Danalet et al. (2014) seem more relevant, and are thus used.

• Factors such as directness (Hoogendoorn and Bovy, 2004) or the works realized by
Helbing (1997) and Ueno et al. (2009) are mainly discussing route choice.

• Alternative specific parameters (e.g., the price, the quality, the well-being, the comfort
or aesthetic indicators) are barely described in pedestrian activity/destination choice’s
context but have an influence on people’s decision making (Deutsch et al., 2014).

The methodology developed by Danalet et al. (2014) is well fitted to create a destination choice
model, but it has some limitations. The algorithm defined by Danalet et al. (2014) associates the
WiFi measurements with POI1 inside a zone. Points of interest are represented as points while
they are areas in reality. It creates a problem when the accuracy of the measurement is good and
the “zone of interest” is large. In this case, the point of interest might not be inside the domain
of data relevance (DDR2). Thus, the actual point of interest, representing the possible activity
performed by the receiver, might not be considered.

In the case of data collected with the Cisco Context Aware Mobility API with the Cisco
Mobility Services Engine (MSE) (Cisco, 2011), the domain of data relevance is defined as a
square around the measurement with sides of size 2 ∗ cF, where cF is called the confidence
factor. The WiFi device is estimated to be in this square with 95% probability. The minimum
observed cF is 16 meters (see Figure 2(c)) on EPFL campus. Some POI on campus clearly have
a surface bigger than a 16 ∗ 16 square. In this case, the intersection between the DDR (i.e., the
square with side 2 ∗ cF) and the point representing the POI might be empty, and so the actual
activity-episode is not detected.

This limitation is observed in the case study (see Section 4 for a detailed description). The
data collected in the library of the Rolex Learning Center (RLC) are good due to the lack of
walls or obstacles and due to the large number of WiFi antennas3(Sen et al., 2013; Nandakumar
et al., 2012). Figure 2(b) shows that the level of accuracy in the library is higher than on the
rest of the campus. Figure 2(c) show that some points of the library effectively lead to an empty
intersection between DDR and the POI. It is a limitation of the methodology but it can be
corrected by using an area instead of a point for representing POI.

1POI: Point Of Interest, see Section 2.1
2Domain of Data Relevance, see Section 2.1
3On Figure 2(a), the density does not look higher than in other buildings on the campus. However, the RLC has

only one floor, while all other buildings have more. This is just a visual effect due to projection on the map. In
reality, density of WiFi access points is actually higher





         

Figure 2: WiFi antennas and confidence factor (cF) on the EPFL campus

(a) WiFi antennas on the EPFL campus (http://map.epfl.ch)

60m40200Echelle 1: 3000

WiF

Sources: ©EPFL

(b) Confidence factor on the EPFL campus (Danalet, 2015)

(c) No intersection between DDR and POI (http://map.epfl.ch
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3 Methodology

In Section 3.1, we focus on the general model which considers nested choices of activity and
destination. Then, Section 3.2 describes the output of the algorithm developed by Danalet et al.

(2014) and characterizes activity-episode sequences. Finally, Section 3.3 presents suggestions
of destination choice model specification and an approach to account for the panel nature of
data.

3.1 General model

The complete methodology developed by Danalet et al. (2014) aims at modelling activity-
episode sequences. The choice of an activity-episode sequence is decomposed in two nested
choices: first, the choice of an activity pattern, and then, conditional on the activity pattern, the
choice of a destination. These decisions are not independent and we consider them together.
The probability of matching a set of J measurements m̂1:J (e.g., WiFi traces) for one individual i

is (Danalet and Bierlaire, 2015a):

Pi(m̂1:J) =
∑

a1:Ψ∈C

P(m̂1:J |a1:Ψ) · P(a1:Ψ), (8)

where

• P(m̂1:J |a1:Ψ) is the conditional probability that a set of measurements m̂1:J is generated
from an activity-episode sequence a1:Ψ = (a1, . . . , aψi , . . . , aΨi). A specific activity-episode,
for an individual i, is aψi = (x, t−, t+) (e.g., Café A, 12:05 PM, 13 PM). Frejinger (2008)
and Chen (2013) call this term a measurement equation. It permits to take into account
measurement errors due to the poor quality of WiFi localization, and

• P(a1:Ψ) is the probability of performing an activity-episode sequence a1:Ψ (see Section 2.1).

We develop Equation (8) to decompose the choice of an activity-episode sequence a1:Ψ between
the choice of an activity pattern A1:Ψ and the choice of a destination x:

Pi(m̂1:J) =
∑

a1:Ψ∈C

J∏
j=1

P(x̂ j|x
j
ψ) · P(A1:Ψ) ·

Ψ∏
ψ=1

P(x|A1:Ψ), (9)

where

•
∏J

j=1 P(x̂ j|x
j
ψ), is the product of conditional probabilities that a measurement location





         

is x̂ j knowing the episode location x j
ψ ∈ Point Of Interest (POI) (Danalet et al., 2014)

corresponding to measurement m̂ j,
• P(A1:Ψ) is the probability of performing an activity pattern A1:Ψ = (A1, . . . , Aψ, . . . , AΨi)

of Ψ activities. Also, an activity Aψ = (Ak, t−, t+) (e.g., Café, 12:05 PM, 1 PM) is
characterized by its start and end times and indexed by its type k, and

• P(x|A1:Ψ) is the conditional probability of choosing a specific destination x for a specific
activity-episode aψ knowing the complete activity pattern A1:Ψ.

Basically, the probability of reproducing the observations depends on the destination choice
which is nested to the activity choice and a measurement equation. The goal is to model the
activity-episode sequence a1:Ψ when observing m̂1:J from antennas. Here, we develop a frame-
work to model destination choice considering that the activity is known.

Figure 4 shows a simple example. A measurement in a railway station has three equidis-
tant possible POI (at distance d) inside the Domain of Data Relevance (DDR, see Section 2.1)
defined by measurement m̂. Café A and Café B are considered as cafés whereas the other one is
a platform. According to Equation (9), the probability of observing the measurement is:

P(m̂) =
1

2πσ2 e−
d2

2σ2 ·

(
P(Café) ·

(
P(Café A|Café) + P(Café B|Café)

)
+

P(Platform) · P(Platform 1|Platform)
)
,

(10)

so that the probability depends on two destination choice models (i.e., one for each activity
type) which are nested with an activity choice model and a measurement equation. We assume
that error in latitude and longitude are independently and normally distributed (Danalet et al.,
2014).

Figure 4: A measurement and its decision’s alternatives in a railway station framework

×
m̂

b
Café Bb

Platform 1

b

Café A

DDR





         

3.2 Activity-episode sequences

Section 3.2.1 describes activity-episode sequences a1:Ψ. Then, Section 3.2.2 shows how we can
use them and Section 3.2.3 especially focuses on the distances’ calculation.

3.2.1 Description of activity-episode sequences

Danalet et al. (2014) develop a framework for detecting pedestrian mobility pattern from WiFi
traces (see Section 2.1). The methodology explained in the paper is used to create candidate’s
lists of activity-episode sequences from WiFi traces. They are then used to develop a destination
choice model for pedestrians.

An activity-episode sequence a1:Ψ has several characteristics (sequence specific attributes).
An example is described in Figure 5 and Table 1. Each sequence is associated to an individual
(with a unique ID) tracked during one day and a probability of occurrence defined with its
log-likelihood (i.e., from the measurement equation). Activity-episode sequences also contain
several socio-economic (e.g., age, gender, or typology of visitor) and time specific attributes
(e.g., the day of the week and year of the sequence). As sequences may be calculated during a
period of several months, each individual has potentially more than one observation.

Within the sequence, there are one or more activity-episodes aψ. Each activity-episode is
related to a point of interest (POI, see Section 2.1). It is described by its start and end times
bounds (following a uniform distribution). Each POI associated to an activity-episode defines
an activity Aψ and a destination x. The activity is grouping destinations in categories. Typical
categories, or activity types, are working, eating, shopping, etc. Destinations are more detailed.
They have a name, coordinates and floor. Each type of destination is subject to an independent
choice model.

Figure 5: An activity-episode sequence pattern in a campus framework





         

Table 1: This sequence measured from a second year bachelor student (ID=10001) in civil
engineering contains 3 activity-episodes performed the June 29, 2012. This student
has been seen 112 times by the Cisco WiFi device (only the destinations are kept).
Each activity-episode is related to a point of interest. In that case the student first
visited the library, then printed something (still in the library) and finally went to eat
at the library’s self-service. These sequences are the input of our methodology. Each
activity-episode has an upper and lower bound for both start and end times (replaced by
their mean on this figure). The probability of occurrence of the sequence is defined by
its log-likelihood.

Nb of observations: 112, Date: 2012-06-29, loglikelihood = -125.5

Start_time End_time Floor Name Type

09:55:01 11:01:30 1 Library_name Library
11:04:39 11:30:03 1 Printer_Lib Printer
11:35:23 13:08:04 1 Self-service_Lib Restaurant

3.2.2 Characterization of activity-episode sequences

Each activity type corresponds to several possible destinations. For each destination, three types
of attributes exist: sequence attributes (it corresponds to attributes specific to the whole one-day
sequence), activity-episode attributes (it stands for attributes relative to one activity-episode
only) and alternative attributes (they are the destination specific attributes, they need to be
collected). They are defined and imaged with examples in Table 2.

Table 2: Table of attributes

Sequence attributes (a1:Ψ) Activity-episode attributes (aψ) Destination attributes (x)

Day of the year Activity-type Capacity
Log-likelihood Start/end times Price/Quality

Socio-economic attributes Coordinates Integration
Distance Floor Opening hours

3.2.3 Calculating distances

By comparing two consecutive activity-episodes of a same activity-episode sequence, one can
calculate the distances between the two destinations (and similarly for all elements in the choice
set in a discrete choice context). There are two possibilities to calculate the distances. First,
one can simply compute Euclidean distance between the consecutive activity-episodes of an





         

activity-episode sequence aψ,t−1 and aψ,t using the (x, y) coordinates of the points.

d(aψ,t−1, aψ,t) =

√
(aψ,t−1,x − aψ,t,x)2 + (aψ,t−1,y − aψ,t,y)2. (11)

It means that we relax the assumption of anisotropy (Kim and Hespanha, 2003) and thus
pedestrians can reach each point with a straight line path. A better way to calculate the distances
is by using a shortest path algorithm. It may already have been constructed if the methodology
explained by Danalet et al. (2014) has been strictly followed (indeed the path generation is based
on it). It takes into account the network anisotropy and thus we obtain realistic distances.

3.3 Modelling

Section 3.3.1 proposes some recommendations for the modelling whereas Section 3.3.2 describes
in detail agent effect correction.

3.3.1 A destination choice model

We develop a multinomial logit model with a linear-in-parameters formulation. The prob-
ability for an individual i of choosing a destination x compared to the other destinations
j ∈ {1, . . . , J}, j ∈ POI knowing the activity typeAk, and the activity pattern A1:Ψ is defined as:

P(x|A1:Ψ) =
eµVix∑J
j=1 eµVi j

. (12)

We decompose the utility in three categories: sequence attributes, activity-episode attributes and
destination attributes (see Table 2). Activity-episode sequences specific attributes are mainly
represented by the distances between the consecutive performed activities. The distance pa-
rameter is generic when the destinations all offer the same type of offer (e.g., a same type of
ticket machine). If the destinations studied are more heterogeneous, one uses alternative specific
parameters (e.g., for eating establishments).

Furthermore we suggest to split the parameters depending on the period of the day if time
of the day may change the purpose (e.g., one individual may visit a pub at 12 AM probably to
have lunch but at 11 PM to drink beers) or the reason of the visit (e.g., one individual visits the
same cafeteria every morning because it is the nearest destination but is disposed to change his
lunch place everyday). We propose to call that daily seasonality.





         

Still from the sequence, socio-economic parameters are difficult to take into account because
the data are usually partially anonymous. We suggest that the gender, the age and the type of
visitor are collected and introduced in the model as dummy variables to alleviate the alternative
specific constants.

The timestamps we propose to introduce in the distance calculation (see Section 3.2.3) are
activity-episode specific parameters. There are only few factors from this category that can be
added in the utility function. The activity type permits to select a specific type of activity and
the destination x to perform the selected activity which represents the choice that the individual
made. The floor of the destination is introduced in the case of a place without elevators.

Alternative specific parameters can be variables representing the congestion (capacity, queues),
the quality/price ratio, the space syntax (visibility, integration, directness, detour), the type
of services offered, aesthetics aspects, safety or the advertising (communication, information,
directional sign). The case study presented in Section 4 gives an example in the context of
catering destinations.

3.3.2 Accounting for panel nature of data

If the network traces are collected without anonymizing the identity of the individual too often,
activity-episode sequences are available for a long enough period to observe repeated destination
choices for the same activity type and a same individual. Thus it is possible to take into account
the habits of each individual i ∈ I (where I is the total sampled population of individuals).
Wooldridge (2002) develops a general methodology to deal with unobserved individual hetero-
geneity in dynamic panel data with discrete dependent variables. We apply it to a pedestrian
destination choice context.

The habits of an individual i are considered as the previous choice for the same type of activity
performed at a similar time of the day. It is represented as a dummy variable that takes the value
1 for the previously chosen alternative, 0 otherwise and -1 if no previous choice is available.
There is no strict and regular periodicity between 2 consecutive choices: it can be one day, two
weeks or several months, and it may change from individual to individual and from observation
to observation. The difficulty of considering activity-episode sequences over time is that the
problem becomes dynamic (Bierlaire, 2014).

The utility function at time t takes into account the choice performed at time t − 1. It means that
the observations and the error terms are not independent anymore. Figure 6 shows the interaction





         

Figure 6: Dynamic Markov model with correlation:x are explanatory variables, U utility func-
tions and i the revealed choices. ε represent error terms and t is time. The solid arrows
are causal relationships, the dashed arrows are measurement relationships, dotted
arrows are disturbance relationships and black arrows are correlation relationships.
Round boxes are latent variables and square boxes are observed variables (Walker,
2001; Aurélie Glerum, 2014).

Source: (Bierlaire, 2014)

between error terms, utility functions and choices performed. It leads to serial correlation and
agent effect issues (also known as one-way effect, i.e. time-invariant unobserved terms). We here
consider that the error terms are defined as the sum of two unobserved components. The first is
a time-invariant unobserved effect (i.e., σi in Equation (15)) and the second is an error term that
is independent and identically distributed over time and individuals (i.e., ui,t in Equation (15)).

If we assume that current choices are influenced by past choices, the individual error terms are
correlated over time. We thus need to correct for this correlation issue. According to Wooldridge
(2002), it is possible to manage this issue by defining a function ci that is (1) conditional to the
initial choice and (2) time-invariant observed characteristics of the individual. We consider the
following distribution:

ci|yi,0, zi ∼ Normal(α1 + α0yi,0 + α2zi, σ
2
i ). (13)





         

We rewrite the function ci as:

ci = α0yi,0 + α2zi + σi. (14)

σi is a parameter to be determined, normally distributed and independent of yi0 and zi. yi0 is the
first choice ever made by an individual i (i.e., the anchor point of the autoregressive dynamic).
zi reveals the individual behavior among the past period (e.g., average distance covered, most
frequently chosen destination. . . ). Thus the choice of the alternative x at time t performed by i

is rewritten as:

yx,i,t = βzx,i,t + ρyi,t−1 + α0yi,0 + α2zi + σi + ui,t. (15)

Basically, the choice that the individual i does depends on some parameters observed at time t,
his choice made at time t−1 and is corrected with his first choice ever performed, some observed
habits among the past observations, a normally distributed zero centered error distribution and
a common error term. The model is thus mixed in errors. It takes into account a panel effect
specific to each individual. The parameters β, ρ, α0, α2 and σi are estimated.

As suggested by Pirotte (1996), one has to consider short-term (within an individual vari-
ability) and long-term effects (between individuals variability). It means that some parameters
that used to be significant in the short-term (without panel effect) should be left in the model
even if they are not anymore.

Table 3: Definition of static and dynamic models. AE stands for Agent Effect. In the case study
(see Section 4), one decides to split the dynamic model with agent effect correction into
two submodels to fully understand the influence of each term of the Wooldridge (2002)
correction (e.g., α2 is equal to zero in one model).

Static model Dynamic strict exogenous model Dynamic with AE correction model

ρ = 0 ρ , 0 ρ , 0
α0 = 0 α0 = 0 α0 , 0
α2 = 0 α2 = 0 α2 , 0 or α2 = 0
σi = 0 σi = 0 σi , 0

We consider and compare three situations: a static model (no previous choice considered at
all), a dynamic strict exogenous with the period model (previous choice considered but with the
assumption that individuals have no memory on short observation periods. It means that the
choice is exogenous within a short period, but endogenous over time) and a dynamic situation
with panel data and agent effect model (previous choice considered and agent-effect issue cor-
rected). These cases are explained in Table 3.





         

The strict utility function may have the following shape:

Vi,x,t = AS Cx+βsocio−eco ∗ S OCIOECOi + βaltspeci f ic ∗ ALTS PECIFICx+

βdistance ∗ DIS T ANCEx + ρ ∗CHOICEi,t−1+

α0 ∗CHOICEi,t0 + α2 ∗ S OMEHABITS i,t̄ + σi,

(16)

where i is an individual, x a destination and t is the time. From an activity type to another (e.g.,
buying a ticket, visiting a shop, drinking a coffee. . . ), a specific model must be developed with
a specific panel of attributes. In this paper, we make the strong assumption that choices of
destinations for different types of activities are independent: sequences of activities are series of
independent choices.

In the event of a dynamic based on different seasonnalities (see Section 3.3.1) inside a same
model (e.g., morning habits, lunch habits. . . ), one suggests that each time period has its own
dynamic parameters (i.e., ρ, α0, α2) and that values of σi of each seasonnality are compared
to decide if individuals’ unobserved heterogeneity changes during the day (different values
depending on the day period), or not (similar values all day).





         

4 A case study on EPFL campus

We perform a case study on the Ecole Polytechnique Fédérale de Lausanne (EPFL) campus
(see Section 4.1). The methodology developed by Danalet et al. (2014) converts WiFi localiza-
tions collected from students and employees into activity-episode sequences. These data are
dated spring 2012. Due to privacy issues, they are partially confidential (see Section 4.2). In
Section 4.3, some descriptive statistics on the data are reported. The models are introduced and
discussed in Section 4.4. A validation and imaginary previsions are proposed in Sections 4.5
and 4.6. Issues encountered are presented in Section 4.7 and recommendations in Section 4.9.

4.1 The EPFL campus

We work on the catering facilities destination choice and with the most likely candidate of
activity-episode sequences only (see Sections 3.1 and 3.2). Also, one considers that the destina-
tion and activity choice models are independent. Thus, P(x̂ j|x

j
ψ) and P(A1:Ψ) are equal to 1 in

Equation (9) if k = Restaurant, 0 otherwise. These assumptions are possible in this particular
case because:

1. The attractivity (see Section 2.1) of destination type Restaurant is higher than the attrac-
tivity of the other activity types. It means that if one considers more than one candidate of
activity-episode sequences, the Restaurants are likely to remain in the sequence. Changes
will probably occur for offices;

2. It is not likely that there are trades between two possible destinations (see Figure 7);

The catering destinations represent 21 possible alternatives (destinations) on the campus. Their
locations and types are represented on Figure 7. They are separated in 5 categories (restaurants,
self-services, cafeterias, caravans and others) depending on the sort of service they propose (see
Table 4). We follow the methodology introduced in the previous chapter (see Section 3).

More information is required in order to explain people destination choice. These factors
are related to the destination (destination specific attribute) and not to the individual (socio-
economic attribute). Services’ availability is described in Table 5. Factors such as prices,
outside/inside capacities, opening hours or quality surveys have been collected from the EPFL
restauration service. Collected data are explained below.

The activity-episode sequences contain socio-economic information such as the individual
anonymized and unique ID and the occupation (student or employee, see Section 4.2). They also





         

Table 4: Table of types of destinations

Destination Type

Cafe Le Klee Cafeteria
BC Self-service
BM Other
ELA Cafeteria
INM Cafeteria
MX Cafeteria
PH Other
L’Arcadie Cafeteria
L’Atlantide Self-service
Le Copernic Restaurant
Le Corbusier Self-service
Le Giacometti Cafeteria
Le Parmentier Self-service
Le Vinci Self-service
L’Esplanade Self-service
L’Ornithorynque and Cybercafé Self-service
Pizza Caravan
Kebab Caravan
Satellite Cafeteria
Le Hodler Self-service
Table de Vallotton Restaurant

collect the day of the year and the start and end times of the full sequence. Activity-episodes
contain start and end times and the location of the activity (destination). We compare two
consecutive activity-episodes of a same day to calculate the distance between all the possible
destinations (see Section 3.2.3). As people are tracked during a period of three months each
individual has several observations (activity-episode sequences). We use them to measure their
habits (previous, first and most frequent choices as explained in Section 3.3.2).

Cafeterias mostly offer coffee and sandwiches and can usually be used as workspaces outside
lunch hours. Self-services have at least one hot lunch menu and may also propose pizzas, meat
or pastas. Restaurants have several menus, propose a table service and are more expensive than
the other catering destinations.

Caravans sell kebabs, pizzas and French-fries. They can be considered as fast-foods. The
other catering areas are tables with an automatic coffee machine and a microwave. They are





         

Figure 7: Localization of destinations on the EPFL campus (http://map.epfl.ch). Destina-
tions circled in red opened more recently (see Section 4.6.2)



http://map.epfl.ch


         

Table 5: Table of services availability
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used for coffee breaks. Thus, catering destinations are not necessary visited with intent to have
lunch. As Table 6 suggests, some of them are open all day as others are only open for a couple
of hours during lunch time. The lunch period is the only moment of the day where all the eating
establishments on the campus are open.

Table 7 shows the maximum and minimum prices for a hot meal at each destination. One can see
that self-services all have a 7 CHF menu for students (Self-services get subsidies from EPFL)
except for self-service L’Ornithorynque and self-service L’Atlantide who have a menu for about
10 CHF. Restaurants are more expensive. Their cheapest meal is 18.5 CHF for Restaurant Le
Copernic and 25 CHF for Restaurant La Table de Vallotton. Caravans sell Kebabs for 7 CHF
and pizza (without fillings) for 8 CHF.

The only gap in these prices is between Restaurants and the rest of the destinations. Restau-
rants are mainly frequented by visitors, professors and employees. The maximum prices of
self-services and caravans still are below the restaurants’ cheapest menu’s price. Employees
must pay an additional amount of 1 CHF for self-services 7 CHF meals. There are no prices
differences on the other menus. Students pay at least 7 CHF for a hot meal and personnel at
least 8 CHF (except if they order a kebab).

The capacity (see Table 8) varies a lot between all the destinations. It is necessary to separate
the inside capacity from the outside capacity as they are not available in winter or when it rains.
Only caravans do not have an inside seating area. The inside capacity fluctuates between 25 and
320 seats. Furthermore some self-services offer up to 180 seats on their terrace. They are the
destinations with the highest capacities.

Since the campus is outside the city center, they need to accommodate all students and em-
ployees4 for lunch with affordable menus and a large capacity. In 2012, the food service
(restauration.epfl.ch) from EPFL made a survey (on both pen-and-paper and Internet supports)
concerning the quality of the food on the campus. People were asked to grade the quality of
food and to answer some questions about their habits and destination choice’s factors. The
results show that people choose their lunch destination because of determinants such as the
proximity, the price, the meal itself (which we could unfortunately not collect) or the time they
are willing to spend. These factors and the grades given to each destination are used in the model.

All the destinations got a grade superior to the mean (4). Furthermore, destinations with
higher prices have a better evaluation which means that the price reflects the quality of the food

4about 7100 students and 5400 employees in 2012 (vpri.epfl.ch)





         

Table 6: Opening hours and availability of destinations





         

Table 7: Table of student prices for a hot meal

Destination Cheapest Most expensive

Cafeteria Cafe Le Klee - -
Self-service BC 7 12
Other BM - -
Cafeteria ELA - -
Cafeteria INM - -
Cafeteria MX 7 7
Other PH - -
Cafeteria L’Arcadie 9.9 9.9
Self-service L’Atlantide 9.8 9.8
Restaurant Le Copernic 18.5 27
Self-service Le Corbusier 7 11
Cafeteria Le Giacometti - -
Self-service Le Parmentier 7 12
Self-service Le Vinci 7 12
Self-service L’Esplanade 7 9
Self-service L’Ornithorynque 7.65 11.05
Caravan Pizza 8 12
Caravan Kebab 7 10
Cafeteria Satellite - -
Self-service Le Hodler 7 14
Restaurant Table de Vallotton 25 31

and of the service. Small cafeterias also have good grades although they do not sell hot meals.
According to the survey, these destinations have a good relation with customers.

Each destination has several additional services. They are summarized in Table 5. Most
of the eating establishments have a terrace and sell food (of any kind) but only 67% offer a hot
meal. The majority of them is selling coffee and proposes a workspace. Also, 57% of places are
visible from the common sidewalk. Just 43% of the places sell sandwiches or have a Selecta
(automatic vending machine). One third of the destinations are part of the “Green Fork” (a
quality label) deal and only 14% of them sell tap beers or have a fidelity card.

Self-service L’Esplanade is the most complete catering destination. Nearly all services are
available and it is located in the middle of the campus. Only table service, tap beer and fidelity
card are missing. On the other hand, restaurants and self-service L’Ornithorynque only have
half of all the presented services. There is not much heterogeneity between destinations of a
same type.





         

Table 8: Table of capacities

Destination Inside Outside

Cafeteria Cafe Le Klee 70 0
Self-service BC 82 119
Other BM 60 10
Cafeteria ELA 98 68
Cafeteria INM 20 14
Cafeteria MX 50 25
Other PH 15 0
Cafeteria L’Arcadie 60 100
Self-service L’Atlantide 125 50
Restaurant Le Copernic 105 50
Self-service Le Corbusier 228 100
Cafeteria Le Giacometti 90 30
Self-service Le Parmentier 320 52
Self-service Le Vinci 240 52
Self-service L’Esplanade 225 180
Self-service L’Ornithorynque 250 120
Caravan Pizza 0 15
Caravan Kebab 0 0
Cafeteria Satellite 200 30
Self-service Le Hodler 128 0
Restaurant Table de Vallotton 80 0

4.2 WiFi traces on the campus

In their case study, Danalet et al. (2014) explain the nature of EPFL WiFi data (the data are
available in Danalet (2015)). People working or studying on the campus can connect to the WiFi
network (see Figure 2(a)) for free using their username. The authentication is made through
WiFi Protected Access using a radius server. It processes accounting by allowing to associate a
MAC address with the username.

In order to anonymize the data, the username and the MAC address are replaced by a in-
dividual and unique ID and a socio-economic attribute: the category of users. They are shown in
Table 9.

Also, the number of observations per occupation is specified. Employees represent the majority
of the total sample. The number of visits in eating establishments varies between 54 for students
in master of computer science and 152 for life sciences bachelor students. Note that these





         

Table 9: Category of traced individuals

Students Employees

Section Semester Number of observations Number of observations

Civil engineering 4 141

1323

Computer science 4 89
Computer science 8 54
Mathematics 2 109
Life science engineering 2 152
Physics 2 140

Total: 685 observations performed by 59 students and 1323 observations by 130 employees

activity-episodes are performed by 189 different individuals.

4.3 Descriptive statistics on activity-episodes

We compute some descriptive statistics about destination choice. The aim is to capture factors
that reveal people’s decision logic. Table 10 show that self-service L’Esplanade is the most
visited eating establishment on the campus. It makes sense since this destination is strategically
placed (in the middle of the school and surrounded with auditoriums). Then come the other
self-services and cafeterias. They are followed by the caravans and the restaurants.

Catering facilities located in the Rolex Learning Center (RLC) and Self-service Le Vinci
do not have many visits. Danalet et al. (2014) explain that it is, in particular, due to the higher
attractivity of the surrounding places (e.g., the library in the RLC and self-service Le Parmentier
next to the Vinci. See Section 2.1 and Section 2.3). Indeed eating and working areas are (nearly)
melted in the RLC and the seated capacity of the working area is about ten times bigger. Thus,
activity-episode sequences measured in the library are slightly biased due to the low precision
of the attractivity measure in the library (the number of seats is used as an aggregate measure of
occupation).

We present the catering destinations per daily seasonalities (i.e., morning, lunch, . . . , see
Section 3.3.1)5 in Table 11. Lunch time is the most attractive period in average. More than one
third of the visits are made between 11 AM and 2 PM. Note that some destinations are less
visited during this period. It is the case for self-service L’Atlantide, cafeteria Satellite, cafeteria

5Note that in Section 4.4, we change the definition of the seasonalities (periods of the day). Afternoon, dinner and
evening become afternoon





         

Table 10: Observed choices per destination

Destination Nb picks

Cafeteria Cafe Le Klee 4
Self-service BC 172
Other BM 47
Cafeteria ELA 145
Cafeteria INM 13
Cafeteria MX 86
Other PH 85
Cafeteria L’Arcadie 38
Self-service L’Atlantide 146
Restaurant Le Copernic 6
Self-service Le Corbusier 73
Cafeteria Le Giacometti 182
Self-service Le Parmentier 139
Self-service Le Vinci 2
Self-service L’Esplanade 448
Self-service L’Ornithorynque 102
Caravan Pizza 65
Caravan Kebab 68
Cafeteria Satellite 142
Self-service Le Hodler 36
Restaurant Table de Vallotton 9

MX or PH (others) which are destinations where it is common to take coffee breaks. Similar
observations can be done in the afternoon. Destinations that are visited out of the lunch time all
have a working space and/or additional services (e.g., coffee or tap beers). We consider now
more specifically the lunch period. As students courses usually finish at 11 AM, 12 PM and
1 PM, one can expect several peaks in the demand. Destinations are aggregated by types (see
Figure 8).

The lunch demand is separated into 3 peaks. There is one small peak between 11 AM and
12 PM because most of the self-services and restaurants only open at 11:30 AM. People reach a
catering facility during this period to avoid queues and get a table more easily. The biggest peak
is between 12 PM and 1 PM as the majority of students and people of the personnel lunch during
this period. Then the third peak between 1 PM and 2 PM concerns students that finish their
courses late and some employees. Cafeterias reach their maximum attendance during that period.
It is possibly due to the fact that some people drink a coffee after their lunch. Also, individuals
going to a restaurant do not move before 12 PM because their table is probably reserved.





         

Table 11: Choices performed depending on the time of the day

7AM-11:30AM 11:30AM-2PM 2PM-6PM 6PM-8PM 8PM-11PM Total

Cafeteria Cafe Le Klee 1 1 2 4
Self-service BC 50 69 42 11 172
Other BM 11 14 16 5 1 47
Cafeteria ELA 37 55 53 145
Cafeteria INM 2 7 4 13
Cafeteria MX 38 22 26 86
Other PH 35 16 26 6 1 84
Cafeteria L’Arcadie 11 19 8 38
Self-service L’Atlantide 72 18 56 146
Restaurant Le Copernic 6 6
Self-service Le Corbusier 73 73
Cafeteria Le Giacometti 45 56 81 182
Self-service Le Parmentier 82 55 2 139
Self-service Le Vinci 2 2
Self-service L’Esplanade 95 148 162 44 449
Self-service L’Ornithorynque 102 102
Caravan Pizza 12 35 5 13 65
Caravan Kebab 11 19 24 14 68
Cafeteria Satellite 37 14 74 11 6 142
Self-service Le Hodler 36 36
Restaurant Table de Vallotton 8 1 9

Total 457 802 579 159 11 2008

Figure 8: Demand peaks during lunch hours (one hour periods)





         

Figure 9: Durations (in minutes) of observations depending on the type of destination

The durations of activity-episodes depending on the destination type is shown in Figure 9.
They have been separated into three nearly equal categories. The first one reflects short visits
(between 5 and 14 minutes). They can be interpreted as short breaks or as visits to buy a snack
or a drink. The second one represents long breaks (between 15 and 45 minutes) to perform
activities such as having lunch or spend an hour to rest. The last one stands for long activities.
One can see on the figure that visiting a restaurant may take more than 45 minutes. Also,
studying for a course or spending free time in a cafeteria can take more than an hour.

We take a look at the choices performed by some individuals (see Table 12). Civil engi-
neering students have some habits. Indeed nearly all individuals have a preference for one or
several destinations. This is also true for students from other sections and for employees. The
repetition of the same catering destination choice over time for a same individual motivates to
consider habits. The choice of a catering destination at time t was the same as the choice of a
catering destination at time t − 1 in 79% of the cases during the morning, in 40% of the cases
during lunch hours and in 33% of the cases after lunch (i.e., only when a previous choice was
performed).

According to the literature review, the distance to walk has a significant impact in both route and
destination choices. On the campus, if a student finishes his course at the extreme east (BS) and
decides to lunch at the extreme southwest (BC) he has to walk about 1200 meters if he takes the
shortest path (only 700 in Euclidean distance). By looking at Euclidean distances, students and





         

Figure 10: Distribution of Euclidean distances

employees have a preference for short distances but may change their habits sometimes. Indeed
the average Euclidean distance covered is 110 meters (109 for students and 100 for employees).

Since a pedestrian network is available, realistic shortest path can be calculated between two
destinations. They are more realistic than Euclidean distances. We compare the Euclidean and
real distances covered to reach the chosen destination.The Euclidean distances reduces all the
non-null paths (i.e. paths shorter than 20 meters are omitted) by 90% in average compared to
paths calculated with a weighted shortest path algorithm (the complete algorithm is available
in Danalet et al. (2014)). However, the standard deviation is high (around 100%). Using such
algorithms takes into account the anisotropy of the place (Kim and Hespanha, 2003). Figures 10
and 11 represent the distribution of Euclidean and real distances walked by the individuals.

The trends are similar as before except that the distances to reach a catering destination are
longer. In average, both students and employees walk 175 meters to visit an eating establishment.
5% of individuals cover a distance longer than 500 meters to reach their catering destination.
This weighted shortest path algorithm does not provide distances between all points of the
pedestrian network. This is due to the coding of the network (i.e., some doors need an access
card and are assumed to be closed). This study uses a sample of 4,5 millions paths. About 10%
of the possible distances are not calculated. However the distance to reach the chosen catering
destination is always available.





         

Table 12: Choices performed by civil engineering students: the bold numbers represent the most
frequently chosen destination of one individual and the italic numbers, its first chosen
destination.
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Figure 11: Distribution of real distances

We consider the weather since we have daily data from Meteosuisse. During the case study, the
average maximum temperature was 15◦C and two third of the days were dry. It was a typical
Swiss spring.

Individual’s choices are related to two important factors: the distance and the habits. Indeed
people seem to prefer a catering destination close to their previous location and a destination
they know well (they have already visited). Also, students and employees do not necessary visit
a destination for the purpose of eating. More characteristics such as offering work places, coffee
or tap beers may influence people’s choice of catering destination.

4.4 Modelling of destination choice

4.4.1 Description of the models

Considering the points highlighted in Section 4.3, we develop linear in parameter Multinomial
and Mixed Logit Models. Before we describe these models in detail, one needs to define the
dynamic variables. One proposes that the previous choice is the previous catering destination
visited by a same individual during a similar period of the day (see Table 14). It means that the
time interval between the activity-episode sequences varies (e.g., it can be one day or weeks





         

depending on the availability of information and the frequency of observations) and that we have
daily seasonalities (see Section 3.3.1). We decide to merge afternoon, dinner and night time
periods to have enough observations; we call that period afternoon. The daily seasonalities are
thus: morning, lunch and afternoon. Models focused on the specific lunch period are available
in Tinguely et al. (2015).

Similarly, the first choice is the first catering destination ever visited by this same individ-
ual during the selected day period. Finally, we propose to use the most frequent choice to
describe one individual average behavior among the past period (see Section 3.3.2). The most
frequent choice stands for the most visited catering destination, during one period of the day,
before the actual choice. In the event of a tie, the most visited destination is randomly selected
among the destinations with the same number of visits. We consider three main variants as
defined in Table 13 and we also add two submodels to the dynamic with agent effect correction’s
variant.

1. A static model with no previous choice considered where each observation is independent;
2. A dynamic strict exogenous model where the previous choice is considered but with the

assumption that individuals have no memory on short observation periods (thus, the choice
is based on exogenous factors within a short period, but on endogenous determinants over
time);

3. Two dynamic models with panel data and agent effect correction. The previous choice
is considered and two approaches are used to correct for agent effect issue using the
principles described in Section 3.3.2:

a) Only the first choice is considered to correct agent effect issue;
b) The first and most frequent choices are considered to correct agent effect issue;

Table 13: Definition of static and dynamic models for the case study. Both first models are
Multinomial Logit whereas the ones with agent effect correction are Mixed Logit

Static model Dynamic strict exogenous model Dynamic models with agent effect correction

First choice First and most frequent choices

ρ = 0 ρ , 0 ρ , 0 ρ , 0
α0 = 0 α0 = 0 α0 , 0 α0 , 0
α2 = 0 α2 = 0 α2 = 0 α2 , 0
σ = 0 σ = 0 σ , 0 σ , 0

There are 21 catering destinations on the EPFL campus, thus 21 utility functions. Table 14 clari-
fies the variables introduced in the models. We estimate the parameters for all four models using
Python Biogeme software (Bierlaire, 2003; Bierlaire and Fetiarison, 2009) in Section 4.4.2.





         

Table 14: Specification table: each variable has possibly 21 different values. The daily sea-
sonalities are: morning is from 7 AM to 11:29 AM, lunch is from 11:30 AM to 2
PM, afternoon is from 2 PM to 6 PM, dinner is from 6 PM to 8 PM, night is from 8
PM to 11 PM. If the day period constraint is false, the variable is 0. Distances are
measured in meters. A good weather is a dry day and at least a max daily temperature
of 20◦C. βDIS T ANCE_LUNCHTYPE and βEVALUAT IONTYPE are type specific (see Table 4).
αFIRS T_CHOICE, αMOS T_CHOS EN are day period specific and are only considered in the
dynamic models with agent effect correction. ρPREVIOUS _CHOICE are day period specific
and null in the static model (see Table 13). Missing values are equal to -1 in the dataset.
AS Cx and σx are alternative specific

Parameter Variable Variable description Season

AS Cx 1 1 if not Esplanade, 0 otherwise

βDIS T_LUNCHTYPE lunch_distance
distance from the previous activity-episode lunch
0 otherwise

βDIS T_MORNING morning_distance
distance from the previous activity-episode morning
0 otherwise

βDIS T_AFT ERNOON a f ternoon_distance
distance from the previous activity-episode afternoon
0 otherwise

βNO_DIS T ANCE_AV distance_not_av
1 if no distance is available
0 otherwise

βEVALUAT IONTYPE evaluation_survey
average quality grade on a [1;6] scale lunch
0 otherwise

βPRICE_S TUDENT price_min_student
price for the cheapest hot meal if student lunch
0 otherwise

βPRICE_EMPLOYEE price_min_employee
price for the cheapest hot meal if employee lunch
0 otherwise

βT AP_BEER beer_av
1 if tap beer is available afternoon
0 otherwise

βDINNER dinner_av
1 if dinner is available dinner
0 otherwise

βCAPACITY_T ERRACE capacity_terrace
outside number of seats if the weather is good lunch
0 otherwise

βCAPACITY_INS IDE capacity_inside
inside number of seats lunch
0 otherwise

ρPREV_MORNING_CHOICE previous_choice
1 if the destination was the previous destination morning
0 otherwise

αMOS T_CHOS EN_MORNING most_ f req_choice
1 if the destination was the most frequented morning
0 otherwise

αFIRS T_MORNING_CHOICE f irst_choice
1 if the destination was the first destination morning
0 otherwise

ρPREV_LUNCH_CHOICE previous_choice
1 if the destination was the previous destination lunch
0 otherwise

αMOS T_CHOS EN_LUNCH most_ f req_choice
1 if the destination was the most frequented lunch
0 otherwise

αFIRS T_LUNCH_CHOICE f irst_choice
1 if the destination was the first destination lunch
0 otherwise

σmorningx 1 1 if not Esplanade, 0 otherwise morning
σlunchx 1 1 if not Esplanade, 0 otherwise lunch





         

4.4.2 Estimation of the models

One shows a summary of the results in Table 15. The complete results (also containing
Alternative Specific Constants (ASC) and σ values) and one typical utility function are available
in Appendices A and B. The afternoon habits are not significant and thus removed from the
models. Also, the values of σmorningx and σlunchx for a specific destination are not similar at all
so we keep both terms (see Section 3.3.2). It means that individuals have a different behavior
depending on the period of the day when they chose a catering destination. It makes sense since
the criterion and sensibility to chose an establishment to drink a coffee are likely not to be the
same as the ones to chose for a place to lunch. Also, the destination specific parameters shown
in Table 5 and not represented in the models are not significant.

Table 15: Table of estimates. Number of observations = 1868. Parameters without superscript
are significant with a 95% confidence. * stands for a confidence level between 70%
and 95% and ** for a confidence level lower than 70%. Double star parameters are
thus not significant

Static Strict exogenous First choice First and most freq

Parameters Value t-test Value t-test Value t-test Value t-test

βDIS T_LUNCH_CAFET -0.00703 -16.69 -0.00629 -14.49 -0.00412 -8.23 -0.00348 -6.79
βDIS T_LUNCH_RES T -0.00276 -2.18 -0.00271 -2.11 -0.00173 -0.82** -0.00292 -1.35*
βDIS T_LUNCH_S ELF -0.00646 -19.99 -0.00555 -16.66 -0.00393 -10.51 -0.00339 -9.06
βDIS T_MORNING -0.00379 -5.97 -0.0028 -4.32 -0.00241 -2.84 -0.00237 -2.68
βDIS T_AFT ERNOON -0.00061 -1.31* -0.0011 -2.35 -0.00076 -1.3* -0.0012 -1.94*
βNO_DIS T ANCE_AV -4.89 -13.84 -4.31 -12.32 -3.45 -8.59 -3.13 -7.75
βEVALUAT ION_CAFET 1.79 9.98 1.74 9.58 2.28 8.44 2.54 7.71
βEVALUAT ION_S ELF 1.88 9.66 1.8 9.04 2.37 8.05 2.78 7.74
βPRICE_S TUDENT -0.0681 -2.07 -0.0512 -1.51* -0.0776 -1.45* -0.0776 -1.16*
βPRICE_EMPLOYEE -0.0054 -0.18** -0.0049 -0.16** -0.024 -0.48** -0.010 -0.17**
βT AP_BEER 0.669 3.62 0.49 2.55 0.759 3.02 0.742 2.89
βDINNER 0.943 3.35 0.865 3.09 0.634 1.73* 0.786 2.16
βCAPACITY_T ERRACE 0.00162 1.84* 0.00215 2.29 0.00258 2.39 0.00149 1.33*
βCAPACITY_INS IDE 0.00277 1.29* 0.00386 1.69* 0.00365 1.28* 0.00439 1.36*
ρPREVIOUS _LUNCH_CHOICE 0 0 1.78 16.44 0.507 3.6 0.0143 0.09**
αMOS T_FREQ_LUNCH_CHOICE 0 0 0 0 0 0 1.77 14.26
αFIRS T_LUNCH_CHOICE 0 0 0 0 1.03 7.91 0.827 6.33
ρPREVIOUS _MORNING_CHOICE 0 0 3.21 19.4 0.721 3.03 0.143 0.52**
αMOS T_FREQ_MORNING_CHOICE 0 0 0 0 0 0 2.43 10.27
αFIRS T_MORNING_CHOICE 0 0 0 0 1.67 8.37 0.417 1.63*

L(0) −5037.914 −5037.914 −5037.914 −5037.914
L(β̂) −3238.926 −2870.976 −2352.137 −2182.172
ρ2 0.357 0.43 0.533 0.567





         

The values and signs of exogenous parameters are close between all models. The static model
(Table 20) is the restricted version of the dynamic strict exogenous model (Table 21) which
also is the restricted version of both dynamic with agent effect correction models (Tables 22
and 24). The addition of the previous lunch’s choice (at time t − 1) decreases the t-test of the
parameters related to the choice of the catering destination at time t. A similar effect is observed
with the addition of both agent effect issue’s corrections. As suggested by Pirotte (1996) (see
Section 3.3.2), long-term parameters measure the variability within individuals and thus alleviate
the weight of short-term significants (i.e., reduce their t-tests).

In each model, the opening hours are considered as the availability of the destination (closed
catering destinations cannot be visited even if pedestrians could technically reach them). Now,
we examine parameters’ sign and t-test to describe and analyze the results of the models. Ca-
pacities (number of seats) of terraces and inside spaces have a positive parameter’s sign. It
means that people have a preference for catering destinations with a bigger capacity. It makes
sense since having an important number of places increases the chance to find a seat. Also, the
destinations with terraces are more likely to be visited when the weather is sunny.

The distance from the previous activity-episode is significant in the choice of an establish-
ment. The sign is negative independently of the period of the day which represents the fact that
people prefer a close destination. In the morning, the main activity that can be performed in a
catering destination is having a coffee. In the afternoon, it can be several things like having a
coffee, working or drinking a beer. The comparison between the parameters of both these time
periods shows that individuals prefer to walk less in the morning than in the afternoon. A possible
explanation is that coffee is available nearly everywhere but descent workspaces or tap beers are
much rarer so people accept to travel longer. Another possible reason is that people tend to have
a coffee next to their following activity-episode (instead of next to the previous activity-episode).
This has not been explored. Other possible explanations include looking for a sunny terrace or
for a place selling ice creams, since the data collection took place in the beginning of the summer.

At lunch time, the distance covered from the last activity-episode depends on the type of
destination chosen. For example, individuals are more likely to walk when going to a restaurant
as the choice set is small for this destination type (only two restaurants on campus). On the other
hand, students and employees prefer a near self-service or cafeteria compared to a far one. The
fact that this kind of destinations is distributed everywhere on the campus can be an explanation.

Note that individuals visiting a caravan or another catering destinations (PH and BM) are
not sensitive to distance (i.e., the parameters are not significant). It is not a surprise since those
places have their own distinctive offers. People accept to cover more distance if they want a





         

specific type of meal. The parameter accounting for the non-availability of distances is negative
as well. It means that catering destinations that are the least connected to the network are less
likely to be visited.

The minimum price for a hot meal is not significant in dynamic models for both students
and employees but we decide to keep it anyway because we expected it to be. As explained in
Section 3.3.2, it may be the fact that the price is considered as a short-term determinant in our
models. Moreover, prices have low variability on the campus; this also explains why cost is not
significant in our models. We give an explanation to these parameters anyway.

Price has a negative sign for students. It makes sense as they are not willing to spend 25 CHF to
go to the restaurant and prefer catering destinations with 7 CHF meals or caravans. Employees
may look for eating establishments with higher prices because the price is connected with the
food quality. Therefore, the price is not significant at all for them. Also, working people earn a
salary and bills can be attributed to the company expenses.

Evaluations have a positive sign for both cafeterias and self-services. It means that individuals
choose a cafeteria or a self-service as a destination depending on the average quality of the
offer. Evaluations are not significant for caravans and restaurants. Eating establishment that
offer dinner are more likely to be visited between 6 PM and 8 PM.

The availability of tap beer after midday increases the utility of a catering destination. In-
deed, some individuals may want to relax more than work in the afternoon and the evening.
Only three destinations offer tap beers on the campus; the well-known Satellite bar, the cafeteria
of the Rolex Learning Center (Klee) and cafeteria L’Arcadie.

Habits are significant in all dynamic models. The previous choice made by people at lunch time
has a parameter with a positive sign. It means that students and employees have some habits
when choosing for an eating destination. As an example, if the previous time they ate on the
campus for lunch, they chose to eat at self-service Le Corbusier, they are more likely to pick this
alternative again.

Also, the correcting terms have a positive sign and a strong t-test. However, the previous
choice becomes non-significant with the double agent effect correction which may mean that
average behavior among the observation period is stronger as the previous choice (it better
explains the long-term behavior). We think that the choice of a destination for lunch may appear
as an erratic phenomenon around one anchor destination (e.g., the first choice).





         

Similar observations are done concerning the morning behavior. The t-tests are even higher than
the ones for the lunch period. It means that individuals have strong habits in the morning. They
tend to always chose the same destination to drink a coffee.

The most robust explanatory variables of the models are the distance and the morning and
lunch habits. Prices or services availability are less robust determinants. Probably because prices
are relatively cheap and uniform (except for restaurants) and because a same type of catering
destinations usually proposes the same services in every destinations. Also, both corrections of
agent effect seem to improve the models since their ρ2 parameter are much higher. We verify
this impression in the next chapter (see Section 4.4.3).

4.4.3 Comparison of the models

All four models estimated in Section 4.4.2 have close values of parameters. We compare these
models to find which one fits the data the best. A log-likelihood ratio test is performed. We
can use this test because the models are nested. The static model is the restricted model of the
dynamic strict exogenous model which is the restricted model of both dynamic with panel data
and agent effect issue correction models. Also, the model considering the first choice is the
restricted version of the one accounting for both the first and the most frequent choices. The
statistic

− 2(L(β̂R) − L(β̂U)) (17)

is χ2 distributed, with degrees of freedom equal to

KU − KR (18)

with K, the number of parameters of each model (Unrestricted and Restricted). If the result
of Equation (17) is bigger than the percentile of the chi square distribution, then we can reject
the null hypothesis (at a chosen level of confidence) and the unrestricted model is preferred
to the restricted one. We perform the log-likelihood ratio test on each model according to the
specification made in Table 13. Table 16 presents the results.

Both models, accounting for panel nature of data and correcting agent effect, are statistically
better (with more than 95% confidence) than the second one which is statistically better than the
static one as well.





         

Table 16: Table of likelihood ratio test. DSE stands for Dynamic Strict Exogenous, DAEC
stands for Dynamic with Agent Effect Correction.

Static DSE DAEC first choice DAEC first and most frequent choices

L(β̂) -3238.926 -2870.976 -2352.137 -2182.172
Nb of parameters 34 36 78 80

Loglikelihood ratio test
Static vs DSE:−2(−3238.9 + 2870.9) = 736 > 5.99
DSE vs AEC (first choice):−2(−2870.9 + 2352.137) = 1036 > 58.12
DAEC (first choice) vs DAEC (first and most frequent choices):−2(−2352.137 + 2182.172) = 340 > 5.99

4.5 Validation

We perform an aggregated validation on our models. The dataset is separated into two subsam-
ples: one to calibrate the models, the second one to simulate the future destination choices and
compare the output of the models with the actual choices. The first sample represents the past
choices of individuals and the second sample contains their most recent observation. Basically
we use people’s past choices to estimate the models (first sample) and we forecast their most
recent observation of a destination to have lunch or coffee (second sample). People with only
one observation are removed because they do not fulfill the dynamic conditions (thus the dataset
is not exactly the same that the one used for estimation in Table 15. We keep 1512 observations
to calibrate the models and 144 to simulate future choices). An example of sample separation is
given on Figure 12.

Figure 12: Separation of the total sample for calibration and simulation: the black dots repre-
sent the activity-episodes used for calibration whereas gray dots represent activity-
episodes used for simulation.

Dynamic models with agent effect correction are simulated as Mixed Logit Models because
they have two error terms and one of them is normally distributed (see Section 3.3.2) whereas
both static and dynamic strict exogenous models only have a single error term and are thus
simulated as Multinomial Logit Models. Table 17 summarizes the results. A similar validation





         

Table 17: Validation of the models (morning and lunch hours). Observed and estimated choices
performed by 144 individuals on their most recent activity episode

Observed
Predicted

Static Strict exo First choice First and most freq

Nb % Nb % Nb % Nb % Nb %

Cafeteria Cafe Le Klee 0 0% 0 0.2% 0 0.1% 0 0.2% 0 0.1%
Self-service BC 15 10.4% 10 7% 10 6.9% 10 6.7% 11 7.5%
Other BM 1 0.7% 3 2.2% 2 1.6% 2 1.5% 3 2%
Cafeteria ELA 14 9.7% 8 5.3% 7 4.8% 8 5.7% 7 4.9%
Cafeteria INM 1 0.7% 1 0.8% 1 0.7% 2 1.2% 2 1.7%
Cafeteria MX 6 4.2% 6 4.3% 6 4.4% 4 2.9% 6 3.9%
Other PH 6 4.2% 5 3.8% 5 3.7% 4 2.9% 4 2.4%
Cafeteria L’Arcadie 6 4.2% 2 1.1% 3 1.8% 2 1.3% 2 1.5%
Self-service L’Atlantide 7 4.9% 10 7.1% 10 6.9% 7 4.7% 6 4.5%
Restaurant Le Copernic 1 0.7% 1 0.7% 2 1.1% 2 1.3% 2 1.4%
Self-service Le Corbusier 4 2.8% 12 8.5% 10 7.2% 10 6.9% 10 7%
Cafeteria Le Giacometti 13 9% 12 8.1% 12 8.1% 12 8.3% 14 9.4%
Self-service Le Parmentier 8 5.6% 13 8.8% 12 8.6% 14 9.6% 11 7.5%
Self-service Le Vinci 1 0.7% 0 0.1% 0 0.1% 0 0.1% 0 0.1%
Self-service L’Esplanade 23 16% 26 18% 25 17.7% 27 18.7% 27 18.7%
Self-service L’Ornithorynque 15 10.4% 15 10.5% 17 11.7% 17 12% 17 11.7%
Caravan Pizza 6 4.2% 3 2.3% 4 2.5% 4 2.8% 4 2.9%
Caravan Kebab 5 3.5% 3 2.1% 3 2% 3 2.4% 3 1.9%
Cafeteria Satellite 5 3.5% 7 4.8% 7 5.1% 8 5.5% 7 4.8%
Self-service Le Hodler 6 4.2% 5 3.6% 6 4.3% 6 4.2% 7 4.9%
Restaurant Table de Vallotton 1 0.7% 1 0.7% 1 0.6% 1 1% 1 1%

is performed on lunch hours in Tinguely et al. (2015) and two validations on the morning period
and the complete day are available in Appendix B, Tables 26 and 27 respectively.

The trends are similar between observations and estimated choices. These results are positive
since they show that even a basic static model simulates reasonable forecasting on a small
validation sample. The errors mainly come from the estimation of self-services. The number of
destination type’s choices (e.g., Self-service, cafeteria. . . ) is accurate for each model. It means
that our models are good at forecasting the destination type choice but then are less accurate
to select a specific destination. The reason could be that the variability of services’ availability
for destinations of a same type is narrow. Also, the fact that catering destinations are relatively
evenly distributed on the campus (see Figure 7) does that individuals usually have equidistant
possible destinations of a same type. This latter point is especially true for self-services.





         

We expected the accuracy to be better for both dynamic models with panel data and agent
effect correction as they are statistically better than both other models (see Section 4.4.3) but
according to Table 17, it seems that it is not the case. We propose to use a least squares’ method
to measure objectively the accuracy of each model:

S m =

21∑
x=1

(Ox − Ex,m)2 (19)

where Od is the percentage of Observations for destination x and Ex,m is the expected number of
visitors based on the choice probabilities for destination x and model m. The best model is the
one that minimizes the least squares’ method (S m). The results are shown in Table 18.

Table 18: Least squares’ method. DAEC stands for Dynamic with Agent Effect Correction

Static Strict exogenous DAEC first choice DAEC first and most frequent choices

S static = 104 S strict_exogenous = 89 S f irst_choice = 94 S f irst_and_most_ f requent_choices = 83

The model that minimizes the difference between observations and estimated choices is the
dynamic with both agent effect corrections (first and most frequent choices) which is also the one
that fits the data the best (Section 4.4.3). The static and strict exogenous models show accurate
forecasting as well. The dynamic model with only one agent effect correction performs less for
validation than other models. The first choice may not be very representative of individuals’
habits on short periods. We see that the first and most frequent choices is a better measurement
of habits.

With these results, one considers that our models validate successfully the methodology and
recommend the use of the first and most frequent choices as representative of people’s habits in
destination choices. The first choice only, as described by Wooldridge (2002) does not perform
well.

4.6 Forecasting

Between 2012 and 2015, some changes occurred on the EPFL campus. We forecast the
variations in market shares related to the self-services prices’ increase in Section 4.6.1 and to
the programmed opening of new catering destinations in Section 4.6.2.





         

4.6.1 Sensibility to the price

The price policy on the campus obliges some self-services to serve a subsidized menu. Between
2008 and summer 2014, the price was set to 7 CHF for the students and 8 CHF for the employees.
Since the beginning of the 2014/2015 academic year, both these prices increased by 1 CHF. We
apply this change to the most complete model (model with both first choice and most frequently
chosen destinations corrections) to see the impact of this measure on the market shares. We
expect a small variation due to the low significance of the prices for both employees and students.

Figure 13: Market shares after the increase of prices in self-services

Figure 13 shows the market shares, during lunch hours, for each type of destination. The
variation is negligible. Few people are more likely to select a cafeteria instead of a self-service.
Within self-services, the price of L’Ornithorynque remains unchanged (i.e., 7.65 CHF) and thus,
the destination attracts slightly more individuals (+2%).

Even if the increase of prices on the campus did probably not change the market shares im-
portantly, we think that the price variable in the model is not robust enough to allow accurate
price policy forecasts. Significant changes in market shares only occur with radical changes
(e.g., doubling the prices starts to motivate individuals to chose another destination type, often a
cafeteria).





         

4.6.2 Opening of a fast food

The EPFL is constantly evolving. In summer 2013, new facilities opened north of the campus
(the Arcades) and on the campus itself. It includes a conference center, a hotel, shops and new
catering facilities. One of these facilities that used to sell cold food and tee (Tekoe) closed
and lets its place to a Swiss fast food company named Holy Cow. It serves “good and healthy”
burgers and is popular among students. The details of the new destination are available in
Table 29 in Appendix B.

We propose to apply our best model (model with both first choice and most frequently chosen
destinations corrections), adding this new alternative to simulate its estimated market share
among the population, according to our model specification. Usually, forecasting is performed
via revealed (RP) and stated (SP) preference surveys. Having these two sets of data permit to
adjust the alternative specific constant (ASC) of the existing and predicted alternatives (Cherchi
and de Dios Ortúzar, 2006). Since the reproduction of market shares can be sensitive to the
ASC, it is necessary to address this issue.

We haven’t performed any SP data collection and we perform forecast based uniquely on
RP data from WiFi traces. It shows the opportunities of such data in forecasting market shares.
We first assume that the type of the opening destination is “caravan” (i.e., fast food). Also,
we suppose that its alternative specific constant and sigmas are the same as the Kebab caravan
(which also used to sell burgers) because it is the most look-alike existing catering destination.
However, this approach leads to an issue: the errors terms of the new alternative and the bor-
rowed existing alternative may be correlated.

We suggest that these two destinations are included in a nest (thus a Nested Logit (NL) specifi-
cation). Since there is no way of estimating the nest parameter θ, we try an interval of values
between 1 (MNL with independent error terms) and +∞ (NL with perfectly correlated error
terms). With θ = 1, the model is a logit, and the new alternative gathers shares from all other
alternatives. When θ → ∞, the new burger restaurant will mostly gather shares from the other
burger alternative. We cannot know the exact value of θ and must evaluate the impact of all its
different values on market shares predictions.

We compare the estimated market shares for different values of θ in Figure 14 during lunch hours.
One can see that the more correlated the error terms are (i.e., the largest θ is), the least individuals
visit Holy Cow (because if individuals have to choose between two identical destinations, they
will select the cheapest). As we do not know the real value of the parameter, one estimates that
the new Burger can attract between 0.3% (θ = 10) and 1.6% (θ = 1) people among the sample.





         

Figure 14: Market shares of destinations Kebab and Holy Cow (lunch hours) depending on the
value of θ

It corresponds to a market share similar to the ones of restaurants and caravans. As the fast food
is open from 11AM to 10PM, one also estimates the market share during the complete day.

Figure 15: Market shares of destinations Kebab and Holy Cow (all day) depending on the value
of θ

The results are different. Holy Cow is capable to maintain a market share of 2.2% for the





         

complete day, independently of the correlation with the caravan Kebab whereas they were
highly correlated during lunch hours. The large market share for the full day compared to lunch
break is due to the availability of dinner and proximity from the previous activity episode, both
significant in the model. We think that it may be realistic to consider that Holy Cow attracts a
lot of people for dinner.

4.6.3 Opening of a self-service

We also forecast the impact on the market shares of the opening of a new self-service named
L’Epicure. The model has more determinants concerning cafeterias and self-services. L’Epicure
serves salads (menu), snacks, coffee and deserts thus, it looks more like a cafeteria. The details
of the new self-service are available in Table 29 in Appendix B. We apply the same methodology
as before. We propose to borrow the alternative specific parameters from cafeteria Le Giacometti
because they are both destinations selling the same kind of food and similar opening hours.

Figure 16: Market shares of destinations Le Giacometti and L’Epicure (lunch) depending on the
value of θ

One sees that the market share of self-service L’Epicure varies between 0.15% and 0.5% during
lunch hours. It is small but understandable because the number of similar establishments is high.
Also, the price is relatively expensive for a salad (8.5 CHF) which makes individuals chose
another destination. We suppose that self-service l’Epicure and cafeteria Le Giacometti are
not too correlated, thus the expected market share is close from 0.5%. Figure 17 considers the





         

market shares during the complete day.

Figure 17: Market shares of destinations Le Giacometti and L’Epicure (all day) depending on
the value of θ

If one considers the complete day, the market share may reach between 0.6% and 1.6%, with a
likely value close to 1%. It is small as well. The destination is far from the offices which can
explain why it does not attract many visitors.

For both Holy Cow and L’Epicure, the expected market shares are sensitive to the correla-
tion of their error terms with the borrowed ones. Also, the fact that these destinations are not
part of people’s habits makes that they are less likely to visit them.

4.6.4 Absolute market shares

We estimate that Holy Cow may reach a daily market share of 2.2% whereas L’Epicure may
only reach 1%. Now, we make the assumption that the forecast samples are representative of
the population on the campus and that everybody visits a catering destination to eat. Market
shares are multiplied by the complete population (i.e., 12’500 people) to represent the results as
an absolute number of visitors.

According to Table 19, Holy Cow would serve between 266 and 293 hamburgers per day. It





         

Table 19: Absolute number of visitors: all 12’500 people on the campus eat at a catering
destination. The daily demand repartition and the market shares of the forecast
samples are representative of the total population.

Catering destination Period of the day θ=1 θ=2 θ=5 θ=10

Caravan Holy Cow
Lunch only 202 155 87 39
Complete day 293 270 266 266

Self-service L’Epicure
Lunch only 65 16 5 3
Complete day 198 111 85 81

is relatively small compared to the 750 daily menus they produce in their other restaurants6.
We do not have similar numbers for catering destinations on the campus. We assume that they
also have more daily visitors than the 85 to198 visitors predicted at Self-service L’Epicure. The
results show that L’Epicure will have more difficulties to find its costumers than Holy Cow.
Forecasts during lunch period are sensitive to the correlation between error terms and thus hard
to interpret.

4.7 Limitations of the case study

The validation revealed encouraging results. However, we emphasize some limitations that
we encountered during the case study. They are related to the number of observations and
individuals, the nature of data and the models specification.

The number of observations in catering destinations is relatively small (i.e., about 2000 observa-
tions performed by 200 individuals). We built weekly models (i.e., one for each day of the week)
and daily seasonal models (i.e., one for each period of the day, see Section 3.3.1) but the number
of observations was too small for the models to converge properly. This is due to two reasons:
(1) some destinations are absent from some submodels and (2) most robust parameters in the
complete model are not/less significant in those submodels because of the lack of observations.
We managed this situation by working on full models only. The problem of these models is
that their runtime is long (i.e., between ten hours and two days for the models with agent effect
correction, depending on the computational power and the complexity of the correction) and that
they do not perform so well when the density of observations is small (i.e., during the afternoon).
In our case, the seasonality in term of period of the day is strong (i.e., the behavior of individuals
changes depending of the time of the day), so that building models for each period of the day
would have been much more convenient.

62250 hamburgers served per day in 2012, in 3 restaurants (Source: http://go.epfl.ch/holycow)
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The fact that the dataset is small also influences some of our specification. It is especially true
with the Wooldridge correction terms (see Section 4.4.1). The first choice made by individuals
is significant in our model with single agent effect correction. It means that the first observation
usually fits the actual choice. It may be due to luck because we think that this parameter do not
make that much sense in our case study (i.e., it would have been more convenient to observe the
first destination choice of the semester). What’s more we made a short sensitivity analysis on the
second agent effect correction (i.e., the most frequented destination). When two destinations are
previously selected the same number of times, we randomly select the most frequently chosen.
It occurs quite often in our dataset, so that we decided to generate five samples. After we es-
timate our model with every samples, it appeared that the final log-likelihood varied significantly.

The nature of data does that we do not know exactly the purpose of each visit. It is espe-
cially true after lunch when the only significant variables introduced in the model are the
distance and the availability of tap beer. Also, we could not obtain the list of menus that
were served during the observation period (because of privacy and missing information) so we
admitted that individuals would order the cheapest hot meal.

There are still some points that may be improved concerning the definition of the previous
choice. As explained in Section 4.4.1, the definition of time is not strict between activity-episode
sequences. The time interval between actual, previous and first choices varies. Fixing time
intervals between consecutive activity-episodes (e.g., one day or one week) was not significant
(because of the lack of observations?). One suggests that a better solution is found to clearly
model the influence of habits over time.

Furthermore, some destinations still have a strong alternative specific constant t-test (see Ap-
pendix B). The number of determinants for these alternatives is too small to describe properly the
possible reasons of the choice. Also, activity-episodes happening after lunch lack of explanatory
variables. As explained in Section 4.4.2, the problem is that destination specific parameters
defining ancillary services and habits are not significant during this period of the day.

To perform the validations we split the total sample into two small samples (see Table 17).
Thus, we are only able to say that our models are accurate during the three months of the
observation period. It would be interesting to collect similar data from a latest period to measure
the ability at forecasting of the models with a new dataset.





         

4.8 Future utilization of the data

Although the goal of the presented case study is to test and validate the methodology developed
in Section 3, we can think of some direct applications on the EPFL campus. In Section 4.6.1 and
Section 4.6.2, we show how we are able to perform some basic forecasting. Here, one proposes
a quick overview of possible future applications:

1. A decision help tool for EPFL restauration service (new policy): we think that including
point-of-sale data (“camipro”)7 could highly improve the models because one could know
what tracked people actually bought in a catering destination. The restauration service
could use it in order to predict some price policies or change on the Campus. It would
however require a lot of authorizations to obtain this information.

2. A model to estimate the influence of queues among students and employees: Pocketcam-
pus8 is developing a “No queue” smart phone application. It aims at tracking how big
the queues (via Bluetooth) at catering destinations are, so that individuals can make a
decision. Using these data could permit to include congestion in future development.

The data (a dataset and a dynamic model) are available online in Tinguely (2015).

4.9 Recommendations

We base on the experience and limitations obtained from this case study (see Section 4.7)
to formulate some recommendations. They are related to the improvement of the existing
destination choice models.

• Add more socio-economic attributes to the WiFi traces.
– The age, the occupation of employees or the gender would permit to improve the

models and to measure the possible heterogeneity within the population.
• Collect data for a one year period.

– It is likely that the habits change every semester for students because of the schedules.
Also, destinations with high inside capacities are probably more visited during winter.

• Try to enrich the data with additional tools.
– As specified in Section 4.8, adding Camipro data or information on queues would

permit to improve significantly the models.

7Students and employees can pay the majority of their transactions with a personal electronic card.
8Pocketcampus is a smart phone application developed by a team of graduate students. It proposes information

about the campus (map, events), academic life (schedule, moodle) or catering destinations (evaluation, menus),
http://www.pocketcampus.org/
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5 Recommendations

We formulate some recommendations in order to simplify the future application (e.g., in multi-
modal transport hubs) of the methodology developed in Section 3. Section 5.1 advises on data
collection, Section 5.2 on data processing, Section 5.3 on destination choice modelling and
Section 5.4 on forecasting.

5.1 Collection of data

The first step is the data collection. It is necessary to directly specify the future need in data in
order to get what is needed. We propose to:

• Add socio-economic attributes to the measurements.
– Although measurements from WiFi or Bluetooth are usually anonymized, one sug-

gests that as many socio-economic attributes as possible are integrated (e.g., age,
gender, occupation, . . . ). It permits to alleviate the alternative specific constants
and to consider segmental market shares (e.g., commuters vs leisures vs employees,
young people vs old people,. . . ) in the modelling part. This information can simply
be asked during the (mandatory?) registration to the wireless network.

• Collect data for at least a complete year.
– We consider that the influence of weather and holidays must be accounted for. It

permits to observe seasonal variations and change of habits over time. The longer,
the better.

• Track at least 1000 individuals.
– One recommends to track as many individuals as possible to perform accurate

estimating and forecasting. Also, it is important to have a representative sample of
the population (i.e., commuters, travelers, employees,. . . ).

5.2 Data processing

When the data are collected, one suggests to apply the methodology developed by Danalet et al.

(2014) to generate candidates of activity-episode sequences from the measurements. Then, one
advises to:

• Consider areas of interest (AOI) instead of points of interest (POI)





         

– As discussed in Section 2.3, the intersection between the domain of data relevance
(DDR) and POI can be empty. It means that some measurements are not connected
to any POI. It can happen when the confidence factor (cF) is high. One recommends
to use AOI instead of POI to address this issue.

• Merge and improve the data.
– Follow the methodology developed in Section 3 to translate candidates of activity-

episode sequences into destination type specific datasets. It requires to collect
destination specific attributes for each destination from each destination type. It may
take time to gather these attributes, especially if there are many destinations.

• Perform descriptive statistics.
– It is absolutely necessary to visualize the data before modelling destination choice.

Performing simple data processing (e.g., pivot table, graphics,. . . ) can directly show
which variables have an influence on the destination choice. It also allows to verify
if the sample is representative of the total population.

5.3 Destination choice modelling

Once the datasets are ready, we propose to start the destination choice modelling. In particular,
we suggest to:

• Model the measurement equation
– In the context of railway stations or airports, one suggests that the measurement

equation is used to account for the probabilistic nature of the Bayesian approach
and the low quality of measurements. Indeed, different activities and different
destinations can be really close of each other (e.g., see Figure 4) which may lead to
conflicting candidates of activity-episode sequence. This was unlikely in the case
study presented in Section 4. The use of a measurement equation addresses this
issue.

• Account for the panel nature of data.
– We emphasize in this paper the significance of habits. Intuitively, it may also be the

case in a multi-modal transport framework. The approach developed in Section 3.3.2
may be followed. Also, one suggests to explore different types of routine (i.e., routine
concerning the period of the day and the day of the week). Strong seasonalities are
likely to be observed, particularly among employees and commuters. We propose to
impose a periodicity between successive activity-episode sequences to have a strict
definition of time.

• Develop the Wooldridge correction.





         

– As shown in Section 4.5, the addition of the first and most frequent choices not
only corrects for agent effect issue but also improves significantly the models. It is
recommended to add more of these average variables as discussed in Section 3.3.2
(e.g., average distance covered by each individual).

5.4 Forecasting

After understanding pedestrians behavior, forecasting is the second purpose of destination choice
modelling. We propose to:

• Conduct a stated preference (SP) survey to improve forecasting.
– We show in Section 4.6 that forecasting is subject to some strong hypothesis. We can

relax them by asking people their opinions (e.g., on the opening of new infrastruc-
tures). SP surveys also allow to better understand the reasons of people’s decisions
(e.g., in the case study (see Section 4), we assume that individuals order the cheapest
menus which have a low variability. This assumption makes that the price only has
little impact in the models).

• Explore segmental forecasting.
– The acceptation of a new price policy or the move of a ticket machine can lead to

different reactions among the population. Thus, it is necessary to perform the most
disaggregated forecasts as possible.





         

6 Conclusion

My master thesis proposes a framework to model pedestrians destination choice in multi-model
facilities from WiFi localization. It is part of Danalet et al. (2014) research to model activity-
episode sequences when observing measurements from antennas. The probability of reproducing
the observations depends on the destination choice which is nested to the activity choice and a
measurement equation. Here, one develops a methodology (see Section 3) to model destination
choice considering that the activity is known.

The input of my work consists of activity-episode sequences. One activity type (e.g., eat-
ing) represents one destination choice model. Once it is selected, all the possible destinations to
perform this activity are considered. The attributes to explain destination choice are collected.
These attributes are either sequence specific (e.g., ID, distance, socio-economic determinants),
activity-episode specific (e.g., location, start and end times) or destination specific (e.g., opening
hours, capacity, price).

Individuals may have multiple sequences over the observed time period. Panel nature of
data and how to correct agent effect issue are accounted for using Wooldridge (2002) approach.
Three types of models are developed: a static model, a dynamic strict exogenous model and
two variants of dynamic model with panel data and agent effect correction (thus, a total of four
models). They reveal the importance of the previous choice, and of habits among the observation
period. We emphasize that taking into account the previous choice and correcting for agent effect
issue contribute to improve significantly the fitting of destination choice models for pedestrians
on the data.

We present a case study on the EPFL campus (see Section 4). Eating is considered as the
activity type. 21 eating establishments represent the destination choices for this activity. These
destinations are decomposed into types (i.e., cafeteria, self-service,. . . ) depending on the ser-
vices they propose. We develop two Multinomial and two Mixed Logit models following the
steps described before.

The models reveal four major points (see Section 4.4.2). First, individuals prefer destina-
tions close to their previous activity-episode. It means that they reduce the distance to walk for
reaching an eating establishment. This is especially observed when people need to chose for
a destination to have coffee in the morning and to have lunch in a cafeteria or a self-service.
Individuals are more willing to walk if they want to visit a destination serving a specific type of
food. Second, the choice of a catering destination to lunch or take a coffee in the morning at
time t is connected to the previous catering destination choice performed at time t − 1. Indeed,





         

if one eating establishment has been visited the previous time, it is more likely to be chosen again.

The results show that correcting agent effect leads to restore the orthogonality between er-
ror terms but also and above all to improve significantly the fit of the models with the data.
In particular, we suggest that the agent effect correction is as complete as possible. The most
frequented destination before the actual choice is a particularly significant correction. Third, we
observe strong seasonalities during the day. Individuals have different behaviors in the morning,
lunch and afternoon because the purpose of the visit is not the same. Fourth and final point,
ancillary services (e.g., selling sandwiches, having a fidelity card. . . ) and prices do not seem
to influence people’s choice because destinations of a same type all propose the same range of
services (and prices).

We split our dataset into two samples to validate the models (see Section 4.5). The first
sample contains the past observations of the individuals and is used to estimate the parameters.
The second one represents the choice that is about to be done by the individuals and permits
to simulate the decisions, according to the estimated models. We consider that the models are
successfully validated since the predicted market shares of the catering destinations are similar
to the observed ones. The model that performs the best (i.e., the model that minimizes the
difference between observations and predictions) is the one with the most complete agent effect
correction (i.e., first and most frequent choices).

We keep this model to perform some forecasting on the EPFL campus (see Section 4.6). The
impact of a recent change in price policy and the opening of two new catering destinations (a
fast food and a self-service) is estimated. The non-significance of prices makes that the increase
of prices does not affect market shares much. This is an issue of our models. It could be solved
by complementing WiFi data with a stated preference (SP) survey. Concerning the opening of
the new facilities, we are able to predict an interval of market shares depending of the correlation
with the most lookalike destination. It is however hard to determine if those results are realistic.
A stated preference survey would address this problem.

Some limitations have been revealed during the case study (see Section 4.7). The number
of observations and individuals is relatively small. It prevents from doing submodels. This is an
issue in case of distinctive behavior depending on the day of the week or the period of the day.
Furthermore, the nature of data makes that one does not know exactly the purpose of each visit.
Thus, some variables are destination specific determinants (e.g, the price, evaluations) whereas
they should ideally be individual specific (i.e., individuals do not all visit a destination to order
the cheapest meal and do not have the same feeling on destinations). Some periods of the day
still lack of specifications.





         

Of course, it is still possible to improve the models (see Section 4.8). Destination choice
models usually consider Space Syntax parameters. We did not implement such determinants in
the models but we think that they may be significant. One could merge WiFi localization with
point-of-sale data (called Camipro on EPFL campus) in order to model specifically the goal of
the visit of a catering destination (e.g., buy a sandwich, a coffee or a menu). This would however
invade individuals’ privacy. Also, considering queues would permit to account for congestion.

In future works, the methodology itself should be enhanced.As a first approach, we assumed in
the case study that time interval between consecutive choices was undefined (mainly because of
the lack of data). Time between activity-episode sequences should be clearly defined to measure
the impact of time (see Section 4.4.1). We present a full equation in Section 3.1. It considers
the nested activity and destination choices and the measurement equation together. One should
model everything together in a simple case (i.e., with only two activity types and only few
destinations).

My thesis reveals that WiFi localization is suitable to model destination choice for pedes-
trians. We should consider applying the methodology to a multi-modal facility context. Railway
stations, airports, stores or public buildings are as many new opportunities to understand and
model pedestrian destination choice using WiFi localization.

We think that the methodology is well fitted to be adapted in those facilities (see Section 5).
First, it would allow to understand pedestrians’ behavior (e.g., sensitivity to the distance, daily
routine,. . . ). Second, it is useful to optimize the organization of existing infrastructure (e.g.,
what happens if we move the location of a ticket machine?) and to design effective new facilities
(e.g., from our model we find out that people are really sensitive to travel time, so we suggest to
add treadmills). The utilization of wireless measurements is likely to be a widespread practice
in future years.
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A Detailed utility functions

We show here a generic utility function (Eq. (20)). The types are either self-service, restaurant,
cafeteria, caravan or others. The 21 alternative description and variables are available in
Section 4.1. Two forecasting scenarios (see Section 4.6.2) include a 22nd alternative (Holy Cow
and L’Epicure). The daily seasonalities are morning (7 AM to 11:30 AM), lunch (11:30 AM to
2 PM) and afternoon (2 PM to 10 PM).

Vd = AS Cd + βDIS T ANCE_LUNCHTYPE ∗ lunch_distance_d

+ βDIS T ANCE_MORNING ∗ morning_distance_d

+ βDIS T ANCE_AFT ERNOON ∗ a f ternoon_distance_d

+ βNO_DIS T ANCE_AV ∗ distance_not_av_d

+ βEVALUAT IONTYPE ∗ evaluation_survey_2013_d

+ βPRICE_S TUDENT ∗ lunch_price_min_student_d

+ βPRICE_EMPLOYEE ∗ lunch_price_min_employee_d

+ βT AP_BEER_AFT ER_LUNCH ∗ beer_a f ter_lunch_ f ilter_d

+ βDINNER ∗ dinner_ f ilter_d

+ βMET EO_T ERRACE ∗ meteo_terrace_ f ilter_d

+ βCAPACITY_INS IDE ∗ cap_inside_ f ilter_d

+ ρPREVIOUS _CHOICE_MORNING ∗ previous_choice_ f ilter_morning_d

+ αMOS T_FREQUENT_CHOICE_MORNING ∗ most_ f requent_choice_ f ilter_morning_d

+ αFIRS T_CHOICE_MORNING ∗ f irst_choice_ f ilter_morning_d +N(0, σ2
morningd

)

+ ρPREVIOUS _CHOICE_LUNCH ∗ previous_choice_ f ilter_lunch_d

+ αMOS T_FREQUENT_CHOICE_LUNCH ∗ most_ f requent_choice_ f ilter_lunch_d

+ αFIRS T_CHOICE_LUNCH ∗ f irst_choice_ f ilter_lunch_d +N(0, σ2
lunchd

)

+ ρPREVIOUS _CHOICE_AFT ERNOON ∗ previous_choice_ f ilter_a f ternoon_d

+ αMOS T_FREQUENT_CHOICE_AFT ERNOON ∗ most_ f requent_choice_ f ilter_a f ternoon_d

+ αFIRS T_CHOICE_AFT ERNOON ∗ f irst_choice_ f ilter_a f ternoon_d +N(0, σ2
a f ternoond

)
(20)

Other models were developed. In particular, daily models (i.e., one for Mondays, Tuesdays. . . )
and daily seasonal models (i.e., one for the morning, lunch and afternoon). The small sample
size makes that they do not work well (problem of convergence or non-significance of important
parameters). If there is enough data, one recommends to develop smaller (disaggregated)
models.





         

B Detailed results

B.1 Detailed estimations

Table 20: Static model

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC_ARC -1.47 0.318 -4.60 0.00
2 ASC_ATL -0.966 0.325 -2.97 0.00
3 ASC_BC -0.369 0.397 -0.93 0.35
4 ASC_BM 0.666 0.324 2.06 0.04
5 ASC_COP 1.03 0.590 1.74 0.08
6 ASC_COR -0.235 0.141 -1.67 0.10
7 ASC_ELA -1.33 0.435 -3.06 0.00
8 ASC_GIA 0.204 0.392 0.52 0.60
9 ASC_HOD -0.130 0.393 -0.33 0.74

10 ASC_INM -2.92 0.608 -4.81 0.00
11 ASC_KEB 0.770 0.247 3.11 0.00
12 ASC_KLE -3.34 0.647 -5.17 0.00
13 ASC_MX -1.34 0.351 -3.81 0.00
14 ASC_ORN -0.797 0.134 -5.93 0.00
15 ASC_PAR -0.381 0.268 -1.42 0.15
16 ASC_PH 1.36 0.323 4.23 0.00
17 ASC_PIZ 0.980 0.237 4.14 0.00
18 ASC_SAT -1.32 0.473 -2.79 0.01
19 ASC_VAL 1.49 0.734 2.02 0.04
20 ASC_VIN -4.02 0.715 -5.62 0.00
21 BETA_CAPACITY_INSIDE 0.00277 0.00257 1.08 0.28
22 BETA_DINNER 0.943 0.289 3.26 0.00
23 BETA_DISTANCE_AFTERNOON -0.000606 0.000545 -1.11 0.27
24 BETA_DISTANCE_LUNCH_CAF -0.00703 0.000506 -13.88 0.00
25 BETA_DISTANCE_LUNCH_REST -0.00276 0.00128 -2.16 0.03
26 BETA_DISTANCE_LUNCH_SELF -0.00646 0.000418 -15.45 0.00
27 BETA_DISTANCE_MORNING -0.00379 0.000826 -4.59 0.00
28 BETA_EVALUATION_CAFET 1.79 0.0929 19.26 0.00
29 BETA_EVALUATION_SELF 1.88 0.125 15.04 0.00
30 BETA_METEO_TERRACE 0.00162 0.000878 1.85 0.07
31 BETA_NO_DISTANCE_AV -4.89 0.420 -11.66 0.00
32 BETA_PRICE_EMPLOYEE -0.00537 0.0333 -0.16 0.87
33 BETA_PRICE_STUDENT -0.0681 0.0369 -1.85 0.06
34 BETA_TAP_BEER_AFTER_LUNCH 0.669 0.180 3.71 0.00

Summary statistics
Number of observations = 1868
Number of estimated parameters = 34

L(β0) = −5035.914
L(β̂) = −3238.926

−2[L(β0) − L(β̂)] = 3593.005
ρ2 = 0.357
ρ̄2 = 0.350





         

Table 21: Dynamic strict exogenous model

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ASC_ARC -1.23 0.347 -3.53 0.00
2 ASC_ATL -1.01 0.363 -2.78 0.01
3 ASC_BC -0.227 0.458 -0.50 0.62
4 ASC_BM 0.823 0.340 2.42 0.02
5 ASC_COP 1.25 0.580 2.16 0.03
6 ASC_COR -0.200 0.156 -1.28 0.20
7 ASC_ELA -1.00 0.457 -2.20 0.03
8 ASC_GIA 0.394 0.414 0.95 0.34
9 ASC_HOD 0.110 0.397 0.28 0.78

10 ASC_INM -2.42 0.647 -3.74 0.00
11 ASC_KEB 1.07 0.289 3.70 0.00
12 ASC_KLE -2.83 0.661 -4.28 0.00
13 ASC_MX -1.27 0.400 -3.19 0.00
14 ASC_ORN -0.823 0.147 -5.61 0.00
15 ASC_PAR -0.429 0.303 -1.42 0.16
16 ASC_PH 1.42 0.344 4.12 0.00
17 ASC_PIZ 1.15 0.259 4.43 0.00
18 ASC_SAT -1.12 0.487 -2.29 0.02
19 ASC_VAL 1.88 0.733 2.57 0.01
20 ASC_VIN -3.71 0.716 -5.19 0.00
21 BETA_CAPACITY_INSIDE 0.00386 0.00295 1.31 0.19
22 BETA_DINNER 0.865 0.281 3.07 0.00
23 BETA_DISTANCE_AFTERNOON -0.00111 0.000558 -1.98 0.05
24 BETA_DISTANCE_LUNCH_CAF -0.00629 0.000523 -12.02 0.00
25 BETA_DISTANCE_LUNCH_REST -0.00271 0.00126 -2.16 0.03
26 BETA_DISTANCE_LUNCH_SELF -0.00555 0.000429 -12.92 0.00
27 BETA_DISTANCE_MORNING -0.00280 0.000775 -3.61 0.00
28 BETA_EVALUATION_CAFET 1.74 0.0982 17.68 0.00
29 BETA_EVALUATION_SELF 1.80 0.138 12.98 0.00
30 BETA_METEO_TERRACE 0.00215 0.000947 2.27 0.02
31 BETA_NO_DISTANCE_AV -4.31 0.398 -10.83 0.00
32 BETA_PRICE_EMPLOYEE -0.00490 0.0325 -0.15 0.88
33 BETA_PRICE_STUDENT -0.0512 0.0354 -1.45 0.15
34 BETA_TAP_BEER_AFTER_LUNCH 0.490 0.183 2.67 0.01
35 RHO_PREVIOUS_LUNCH_CHOICE 1.78 0.114 15.61 0.00
36 RHO_PREVIOUS_MORNING_CHOICE 3.21 0.176 18.19 0.00

Summary statistics
Number of observations = 1868
Number of estimated parameters = 36

L(β0) = −5037.914
L(β̂) = −2870.976

−2[L(β0) − L(β̂)] = 4333.877
ρ2 = 0.430
ρ̄2 = 0.423





         

Table 22: Dynamic model with agent effect correction (first choice only) (1): here the results
with 250 draws (results are similar with more draws).

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ALPHA_FIRST_LUNCH_CHOICE 1.03 0.180 5.73 0.00
2 ALPHA_FIRST_MORNING_CHOICE 1.67 0.262 6.38 0.00
3 ASC_ARC -3.47 0.830 -4.18 0.00
4 ASC_ATL -2.84 1.02 -2.79 0.01
5 ASC_BC -1.74 0.818 -2.13 0.03
6 ASC_BM -1.33 0.899 -1.48 0.14
7 ASC_COP -0.873 1.15 -0.76 0.45
8 ASC_COR -0.707 0.260 -2.71 0.01
9 ASC_ELA -1.97 0.729 -2.70 0.01

10 ASC_GIA -0.198 0.599 -0.33 0.74
11 ASC_HOD -0.181 0.634 -0.28 0.78
12 ASC_INM -5.42 1.42 -3.82 0.00
13 ASC_KEB 1.12 0.456 2.45 0.01
14 ASC_KLE -4.50 1.12 -4.03 0.00
15 ASC_MX -5.06 0.811 -6.24 0.00
16 ASC_ORN -1.43 0.312 -4.57 0.00
17 ASC_PAR -1.21 0.450 -2.69 0.01
18 ASC_PH 0.698 0.488 1.43 0.15
19 ASC_PIZ 1.08 0.436 2.49 0.01
20 ASC_SAT -2.68 0.727 -3.69 0.00
21 ASC_VAL 2.06 1.81 1.14 0.26
22 ASC_VIN -16.4 22.3 -0.74 0.46
23 BETA_CAPACITY_INSIDE 0.00365 0.00394 0.93 0.35
24 BETA_DINNER 0.634 0.360 1.76 0.08
25 BETA_DISTANCE_AFTERNOON -0.000765 0.000621 -1.23 0.22
26 BETA_DISTANCE_LUNCH_CAF -0.00412 0.000669 -6.17 0.00
27 BETA_DISTANCE_LUNCH_REST -0.00173 0.00222 -0.78 0.44
28 BETA_DISTANCE_LUNCH_SELF -0.00393 0.000485 -8.09 0.00
29 BETA_DISTANCE_MORNING -0.00241 0.00101 -2.39 0.02
30 BETA_EVALUATION_CAFET 2.28 0.206 11.09 0.00
31 BETA_EVALUATION_SELF 2.37 0.244 9.73 0.00
32 BETA_METEO_TERRACE 0.00258 0.00110 2.35 0.02
33 BETA_NO_DISTANCE_AV -3.45 0.550 -6.28 0.00
34 BETA_PRICE_EMPLOYEE -0.0238 0.0568 -0.42 0.68
35 BETA_PRICE_STUDENT -0.0776 0.0572 -1.36 0.17
36 BETA_TAP_BEER_AFTER_LUNCH 0.759 0.249 3.05 0.00
37 RHO_PREVIOUS_LUNCH_CHOICE 0.507 0.162 3.12 0.00
38 RHO_PREVIOUS_MORNING_CHOICE 0.721 0.263 2.74 0.01





         

Table 23: Dynamic model with agent effect correction (first choice only) (2)

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

39 SIGMA_LUNCH_ARC 1.53 0.664 2.31 0.02
40 SIGMA_LUNCH_ATL 2.21 0.521 4.25 0.00
41 SIGMA_LUNCH_BC 0.953 0.206 4.64 0.00
42 SIGMA_LUNCH_BM -0.123 0.579 -0.21 0.83
43 SIGMA_LUNCH_COP -3.47 0.893 -3.89 0.00
44 SIGMA_LUNCH_COR 0.847 0.454 1.87 0.06
45 SIGMA_LUNCH_ELA -0.865 0.273 -3.17 0.00
46 SIGMA_LUNCH_GIA 0.584 0.251 2.33 0.02
47 SIGMA_LUNCH_HOD -0.941 0.345 -2.73 0.01
48 SIGMA_LUNCH_INM -2.40 0.636 -3.77 0.00
49 SIGMA_LUNCH_KEB -2.84 0.470 -6.03 0.00
50 SIGMA_LUNCH_KLE -1.88 0.296 -6.35 0.00
51 SIGMA_LUNCH_MX 0.0871 0.300 0.29 0.77
52 SIGMA_LUNCH_ORN 0.544 0.262 2.08 0.04
53 SIGMA_LUNCH_PAR -1.02 0.245 -4.16 0.00
54 SIGMA_LUNCH_PH 1.86 0.560 3.32 0.00
55 SIGMA_LUNCH_PIZ 0.367 0.259 1.42 0.16
56 SIGMA_LUNCH_SAT 0.183 0.661 0.28 0.78
57 SIGMA_LUNCH_VAL 2.04 1.98 1.03 0.30
58 SIGMA_LUNCH_VIN -5.68 9.44 -0.60 0.55
59 SIGMA_MORNING_ARC -1.83 0.352 -5.20 0.00
60 SIGMA_MORNING_ATL -0.124 0.779 -0.16 0.87
61 SIGMA_MORNING_BC -2.07 0.295 -7.02 0.00
62 SIGMA_MORNING_BM 3.66 0.756 4.84 0.00
63 SIGMA_MORNING_COP -0.735 0.697 -1.06 0.29
64 SIGMA_MORNING_COR 1.14 0.263 4.35 0.00
65 SIGMA_MORNING_ELA 0.571 0.337 1.70 0.09
66 SIGMA_MORNING_GIA -1.15 0.272 -4.23 0.00
67 SIGMA_MORNING_HOD -0.340 0.618 -0.55 0.58
68 SIGMA_MORNING_INM -0.304 0.370 -0.82 0.41
69 SIGMA_MORNING_KEB -1.79 0.793 -2.26 0.02
70 SIGMA_MORNING_KLE 0.321 0.547 0.59 0.56
71 SIGMA_MORNING_MX 3.28 0.463 7.08 0.00
72 SIGMA_MORNING_ORN -0.538 0.273 -1.97 0.05
73 SIGMA_MORNING_PAR -1.24 0.387 -3.20 0.00
74 SIGMA_MORNING_PH 0.915 0.928 0.99 0.32
75 SIGMA_MORNING_PIZ -1.44 0.465 -3.10 0.00
76 SIGMA_MORNING_SAT 2.03 0.307 6.61 0.00
77 SIGMA_MORNING_VAL -1.50 2.77 -0.54 0.59
78 SIGMA_MORNING_VIN -7.22 11.4 -0.63 0.53

Summary statistics
Number of observations = 1868
Number of estimated parameters = 78

L(β0) = −5037.914
L(β̂) = −2352.137

−2[L(β0) − L(β̂)] = 5371.553
ρ2 = 0.533
ρ̄2 = 0.518





         

Table 24: Dynamic model with agent effect correction (first and most frequent choices) (1): here
the results with 250 draws (results are similar with more draws).

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

1 ALPHA_FIRST_LUNCH_CHOICE 0.827 0.203 4.07 0.00
2 ALPHA_FIRST_MORNING_CHOICE 0.417 0.289 1.44 0.15
3 ALPHA_MOST_CHOSEN_LUNCH 1.77 0.126 14.03 0.00
4 ALPHA_MOST_CHOSEN_MORNING 2.43 0.278 8.74 0.00
5 ASC_ARC -6.71 1.44 -4.66 0.00
6 ASC_ATL -4.52 1.05 -4.30 0.00
7 ASC_BC -1.30 0.609 -2.14 0.03
8 ASC_BM -0.793 1.00 -0.79 0.43
9 ASC_COP 2.13 1.01 2.11 0.04

10 ASC_COR -0.756 0.263 -2.87 0.00
11 ASC_ELA -1.19 0.688 -1.73 0.08
12 ASC_GIA 0.501 0.688 0.73 0.47
13 ASC_HOD 0.0118 0.539 0.02 0.98
14 ASC_INM -5.54 1.57 -3.54 0.00
15 ASC_KEB 1.37 0.445 3.08 0.00
16 ASC_KLE -6.64 1.63 -4.06 0.00
17 ASC_MX -3.03 0.632 -4.79 0.00
18 ASC_ORN -1.44 0.247 -5.82 0.00
19 ASC_PAR -0.864 0.397 -2.18 0.03
20 ASC_PH -0.0246 0.642 -0.04 0.97
21 ASC_PIZ 1.14 0.505 2.26 0.02
22 ASC_SAT -1.48 0.578 -2.55 0.01
23 ASC_VAL 0.700 2.34 0.30 0.76
24 ASC_VIN -7.52 2.34 -3.21 0.00
25 BETA_CAPACITY_INSIDE 0.00439 0.00338 1.30 0.19
26 BETA_DINNER 0.786 0.362 2.17 0.03
27 BETA_DISTANCE_AFTERNOON -0.00116 0.000638 -1.81 0.07
28 BETA_DISTANCE_LUNCH_CAF -0.00348 0.000683 -5.09 0.00
29 BETA_DISTANCE_LUNCH_REST -0.00292 0.00147 -1.98 0.05
30 BETA_DISTANCE_LUNCH_SELF -0.00339 0.000453 -7.49 0.00
31 BETA_DISTANCE_MORNING -0.00237 0.00112 -2.12 0.03
32 BETA_EVALUATION_CAFET 2.54 0.244 10.41 0.00
33 BETA_EVALUATION_SELF 2.78 0.276 10.06 0.00
34 BETA_METEO_TERRACE 0.00149 0.00119 1.24 0.21
35 BETA_NO_DISTANCE_AV -3.13 0.532 -5.88 0.00
36 BETA_PRICE_EMPLOYEE -0.0102 0.0779 -0.13 0.90
37 BETA_PRICE_STUDENT -0.0776 0.0835 -0.93 0.35
38 BETA_TAP_BEER_AFTER_LUNCH 0.742 0.251 2.95 0.00
39 RHO_PREVIOUS_LUNCH_CHOICE 0.0143 0.137 0.10 0.92
40 RHO_PREVIOUS_MORNING_CHOICE 0.143 0.339 0.42 0.67





         

Table 25: Dynamic model with agent effect correction (first and most frequent choices) (2)

Robust
Parameter Coeff. Asympt.

number Description estimate std. error t-stat p-value

41 SIGMA_LUNCH_ARC -4.21 0.676 -6.23 0.00
42 SIGMA_LUNCH_ATL -0.686 0.187 -3.67 0.00
43 SIGMA_LUNCH_BC -0.199 0.206 -0.96 0.33
44 SIGMA_LUNCH_BM 3.27 0.887 3.68 0.00
45 SIGMA_LUNCH_COP 0.881 0.453 1.95 0.05
46 SIGMA_LUNCH_COR -0.695 0.299 -2.33 0.02
47 SIGMA_LUNCH_ELA -0.668 0.428 -1.56 0.12
48 SIGMA_LUNCH_GIA -1.10 0.372 -2.96 0.00
49 SIGMA_LUNCH_HOD 0.801 0.283 2.83 0.00
50 SIGMA_LUNCH_INM -1.79 0.658 -2.73 0.01
51 SIGMA_LUNCH_KEB 0.501 0.276 1.81 0.07
52 SIGMA_LUNCH_KLE -1.29 0.573 -2.25 0.02
53 SIGMA_LUNCH_MX -1.69 0.248 -6.83 0.00
54 SIGMA_LUNCH_ORN 0.177 0.251 0.71 0.48
55 SIGMA_LUNCH_PAR -0.444 0.620 -0.72 0.47
56 SIGMA_LUNCH_PH 3.61 0.660 5.47 0.00
57 SIGMA_LUNCH_PIZ -3.21 0.726 -4.42 0.00
58 SIGMA_LUNCH_SAT -0.123 0.195 -0.63 0.53
59 SIGMA_LUNCH_VAL 4.26 1.57 2.72 0.01
60 SIGMA_LUNCH_VIN 2.68 0.643 4.16 0.00
61 SIGMA_MORNING_ARC -2.56 0.598 -4.29 0.00
62 SIGMA_MORNING_ATL 3.10 0.633 4.91 0.00
63 SIGMA_MORNING_BC 1.50 0.226 6.64 0.00
64 SIGMA_MORNING_BM -0.414 1.21 -0.34 0.73
65 SIGMA_MORNING_COP -0.401 0.324 -1.24 0.22
66 SIGMA_MORNING_COR 0.755 0.253 2.98 0.00
67 SIGMA_MORNING_ELA -0.491 0.396 -1.24 0.21
68 SIGMA_MORNING_GIA -1.28 0.256 -5.02 0.00
69 SIGMA_MORNING_HOD 0.154 0.150 1.03 0.30
70 SIGMA_MORNING_INM 2.93 0.780 3.76 0.00
71 SIGMA_MORNING_KEB -3.75 0.562 -6.67 0.00
72 SIGMA_MORNING_KLE -3.19 0.321 -9.93 0.00
73 SIGMA_MORNING_MX 0.130 0.363 0.36 0.72
74 SIGMA_MORNING_ORN -0.327 0.278 -1.18 0.24
75 SIGMA_MORNING_PAR 0.575 0.307 1.87 0.06
76 SIGMA_MORNING_PH -1.30 0.254 -5.13 0.00
77 SIGMA_MORNING_PIZ -1.21 0.266 -4.56 0.00
78 SIGMA_MORNING_SAT 1.32 0.178 7.40 0.00
79 SIGMA_MORNING_VAL -0.157 1.58 -0.10 0.92
80 SIGMA_MORNING_VIN -1.76 0.510 -3.45 0.00

Summary statistics
Number of observations = 1868
Number of estimated parameters = 80

L(β0) = −5037.914
L(β̂) = −2182.172

−2[L(β0) − L(β̂)] = 5711.485
ρ2 = 0.567
ρ̄2 = 0.551





         

B.2 Complementary results and tables

Table 26: Validation of the models (morning). Choices performed by 88 individuals

Observed
Predicted

Static Strict exo First choice First and most freq

Nb % Nb % Nb % Nb % Nb %

Cafeteria Cafe Le Klee 0 0% 0 0.1% 0 0.1% 0 0.1% 1 1.6%
Self-service BC 7 8% 6 6.8% 7 7.7% 6 7% 8 9.3%
Other BM 2 2.3% 2 2.6% 2 2.1% 2 2.1% 3 3.1%
Cafeteria ELA 10 11.4% 6 6.6% 5 5.6% 6 6.4% 5 5.8%
Cafeteria INM 1 1.1% 1 1.1% 1 0.7% 2 2.8% 4 4.3%
Cafeteria MX 6 6.8% 7 7.8% 7 8.5% 3 3.5% 6 6.4%
Other PH 5 5.7% 5 5.8% 5 5.2% 4 4.4% 3 3.6%
Cafeteria L’Arcadie 3 3.4% 1 1.7% 2 2.5% 3 2.9% 2 2.4%
Self-service L’Atlantide 9 10.2% 11 12.6% 11 12.3% 8 9.3% 7 8.5%
Restaurant Le Copernic 0 0% 0 0.5% 0 0.2% 1 0.8% 1 0.7%
Self-service Le Corbusier 0 0% 2 1.8% 1 1.4% 2 1.8% 2 1.9%
Cafeteria Le Giacometti 11 12.5% 9 10.8% 12 13.2% 11 12.3% 11 12.9%
Self-service Le Parmentier 0 0% 2 2.3% 1 1.6% 2 2.4% 2 1.8%
Self-service Le Vinci 0 0% 0 0% 0 0% 0 0.1% 0 0.1%
Self-service L’Esplanade 18 20.5% 22 24.7% 20 22.4% 23 26.4% 19 21.8%
Self-service L’Ornithorynque 0 0% 2 1.8% 1 1.5% 2 1.8% 2 2.3%
Caravan Pizza 4 4.5% 3 3.9% 3 3.7% 4 4.2% 3 2.9%
Caravan Kebab 5 5.7% 2 2.8% 3 3.2% 2 1.8% 2 2.7%
Cafeteria Satellite 7 8% 5 5.9% 7 7.9% 8 9.1% 6 7%
Self-service Le Hodler 0 0% 0 0.2% 0 0.2% 0 0.5% 1 0.7%
Restaurant Table de Vallotton 0 0% 0 0.2% 0 0.1% 0 0.3% 0 0.1%

Table 27: Validation of the models (all day). Choices performed by 175 individuals

Observed
Predicted

Static Strict exo First choice First and most freq

Nb % Nb % Nb % Nb % Nb %

Cafeteria Cafe Le Klee 0 0% 0 0.2% 0 0.2% 1 0.5% 1 0.3%
Self-service BC 23 13.1% 14 8.2% 14 7.8% 12 6.9% 13 7.4%
Other BM 3 1.7% 5 2.8% 4 2.4% 3 1.9% 4 2.1%
Cafeteria ELA 15 8.6% 9 5.2% 9 5.2% 9 5.4% 8 4.6%
Cafeteria INM 1 0.6% 1 0.8% 1 0.8% 2 1.4% 3 1.4%
Cafeteria MX 5 2.9% 7 3.8% 7 4.2% 9 5.1% 6 3.7%
Other PH 8 4.6% 9 4.9% 9 5.1% 5 3% 6 3.6%
Cafeteria L’Arcadie 7 4% 3 1.5% 4 2.2% 4 2.5% 4 2.3%
Self-service L’Atlantide 5 2.9% 12 6.7% 9 5% 7 4.1% 8 4.6%
Restaurant Le Copernic 1 0.6% 1 0.5% 1 0.8% 2 1% 1 0.8%
Self-service Le Corbusier 4 2.3% 8 4.7% 7 3.8% 8 4.4% 8 4.6%
Cafeteria Le Giacometti 18 10.3% 16 9% 17 9.5% 17 9.6% 17 9.7%
Self-service Le Parmentier 12 6.9% 14 8% 13 7.3% 13 7.3% 10 5.9%
Self-service Le Vinci 1 0.6% 0 0.1% 0 0.1% 1 0.6% 0 0.1%
Self-service L’Esplanade 31 17.7% 38 21.5% 38 21.9% 39 22.6% 43 24.7%
Self-service L’Ornithorynque 11 6.3% 11 6.5% 13 7.5% 12 6.8% 13 7.3%
Caravan Pizza 4 2.3% 5 3.1% 5 3.1% 5 3% 6 3.2%
Caravan Kebab 6 3.4% 5 2.7% 5 2.6% 6 3.3% 5 2.7%
Cafeteria Satellite 13 7.4% 12 7.1% 13 7.2% 13 7.4% 12 7%
Self-service Le Hodler 5 2.9% 4 2.2% 5 2.6% 4 2.5% 5 2.7%
Restaurant Table de Vallotton 2 1.1% 1 0.6% 1 0.6% 1 0.7% 2 1.2%
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Table 29: Destination specific attributes 2
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C Future utilization of data

We give here the codes and variables’ definition in case of a future utilization of the data. Also,
a simplified version is available online (Tinguely, 2015).

C.1 Codes for Pythonbiogeme

Here the specifications for Pythonbiogeme. Again, for one alternative only. Complete codes and
expressions’ definition are available in the electronic version.

#### Destination choice model on EPFL campus from Wifi traces ####

# Author: Loic Tinguely , EPFL

# Date: Wed Jun 17 18:24:40 2015

from biogeme import *

from headers import *

from loglikelihood import *

from statistics import *

######## Parameters to be estimated ##########

# Arguments:

# 1 Name for report. Typically , the same as the variable

# 2 Starting value

# 3 Lower bound

# 4 Upper bound

# 5 0: estimate the parameter , 1: keep it fixed

# Alternative specific constant

ASC_1 = Beta('ASC_1', 0, -100, 100, 0 )

# Alternative specific parameters

BETA_PRICE_STUDENT = Beta('BETA_PRICE_STUDENT ', 0, -100, 100, 0 )

BETA_PRICE_EMPLOYEE = Beta('BETA_PRICE_EMPLOYEE ', 0, -100, 100, 0 )

BETA_DINNER = Beta('BETA_DINNER ', 0, -100, 100, 0 )

BETA_TAP_BEER_AFTER_LUNCH = Beta('BETA_TAP_BEER_AFTER_LUNCH ', 0, -100,

100, 0 )

BETA_EVALUATION_SELF = Beta('BETA_EVALUATION_SELF ', 0, -100, 100, 0 )

BETA_EVALUATION_CAFET = Beta('BETA_EVALUATION_CAFET ', 0, -100, 100, 0 )

BETA_EVALUATION_REST = Beta('BETA_EVALUATION_REST ', 0, -100, 100, 1 )

BETA_EVALUATION_CARAVAN = Beta('BETA_EVALUATION_CARAVAN ', 0, -100,

100, 1 )

BETA_EVALUATION_OTHER = Beta('BETA_EVALUATION_OTHER ', 0, -100, 100, 1 )

BETA_METEO_TERRACE = Beta('BETA_METEO_TERRACE ', 0, -100, 100, 0 )





         

BETA_CAPACITY_INSIDE = Beta('BETA_CAPACITY_INSIDE ', 0, -100, 100, 0 )

# Activity -episode sequence specific parameters

BETA_DISTANCE_LUNCH_REST = Beta('BETA_DISTANCE_LUNCH_REST ', 0, -100,

100, 0 )

BETA_DISTANCE_LUNCH_SELF = Beta('BETA_DISTANCE_LUNCH_SELF ', 0, -100,

100, 0 )

BETA_DISTANCE_LUNCH_CAF = Beta('BETA_DISTANCE_LUNCH_CAF ', 0, -100,

100, 0 )

BETA_DISTANCE_LUNCH_OTHER = Beta('BETA_DISTANCE_LUNCH_OTHER ', 0, -100,

100, 1 )

BETA_DISTANCE_LUNCH_CARAVAN = Beta('BETA_DISTANCE_LUNCH_CARAVAN ', 0,

-100, 100, 1 )

BETA_DISTANCE_MORNING = Beta('BETA_DISTANCE_MORNING ', 0, -100, 100, 0 )

BETA_DISTANCE_AFTERNOON = Beta('BETA_DISTANCE_AFTERNOON ', 0, -100,

100, 0 )

BETA_NO_DISTANCE_AV = Beta('BETA_NO_DISTANCE_AV ', 0, -100, 100, 0 )

# Wooldridge correction parameters

ALPHA_MOST_CHOSEN_LUNCH = Beta('ALPHA_MOST_CHOSEN_LUNCH ', 0, -100,

100, 0 )

ALPHA_MOST_CHOSEN_MORNING = Beta('ALPHA_MOST_CHOSEN_MORNING ', 0, -100,

100, 0 )

RHO_PREVIOUS_LUNCH_CHOICE = Beta('RHO_PREVIOUS_LUNCH_CHOICE ', 0, -100,

100, 0 )

RHO_PREVIOUS_MORNING_CHOICE = Beta('RHO_PREVIOUS_MORNING_CHOICE ', 0,

-100, 100, 0 )

RHO_PREVIOUS_AFTERNOON_CHOICE = Beta('RHO_PREVIOUS_AFTERNOON_CHOICE ',

0, -100, 100, 1 )

ALPHA_FIRST_LUNCH_CHOICE = Beta('ALPHA_FIRST_LUNCH_CHOICE ', 0, -100,

100, 0 )

ALPHA_FIRST_MORNING_CHOICE = Beta('ALPHA_FIRST_MORNING_CHOICE ', 0,

-100, 100, 0 )

ALPHA_FIRST_AFTERNOON_CHOICE = Beta('ALPHA_FIRST_AFTERNOON_CHOICE ', 0,

-100, 100, 1 )

SIGMA_LUNCH_1 = Beta('SIGMA_LUNCH_1 ', 0, -100, 100, 0 )

SIGMA_MORNING_1 = Beta('SIGMA_MORNING_1 ', 0, -100, 100, 0 )

SIGMA_AFTERNOON_1 = Beta('SIGMA_AFTERNOON_1 ', 0, -100, 100, 1 )

EC_SIGMA_LUNCH_1 = SIGMA_LUNCH_1 * bioNormalDraws('EC_SIGMA_LUNCH_1 ',

'ID')

EC_SIGMA_MORNING_1 = SIGMA_MORNING_1 *

bioNormalDraws('EC_SIGMA_MORNING_1 ', 'ID')

########## Expressions ###########

# Period of the day





         

one = 1

lunch11 = (H_START == 11 * M_START > 29.9) > 0

lunch12 = H_START == 12

lunch13 = H_START == 13

dinner18 = H_START == 18

dinner19 = H_START == 19

morning7 = H_START == 7

morning8 = H_START == 8

morning9 = H_START == 9

morning10 = H_START == 10

morning11 = (H_START == 11 * M_START < 29.8) > 0

afternoon14 = H_START == 14

afternoon15 = H_START == 15

afternoon16 = H_START == 16

afternoon17 = H_START == 17

night20 = H_START == 20

night21 = H_START == 21

night_end21 = H_END == 21

night_end22 = H_END == 22

night = (night20 + night21 + night_end21 + night_end22) > 0

afternoon = (afternoon15 + afternoon16 + afternoon17 + afternoon14) > 0

morning = (morning8 + morning9 + morning10 + morning7 + morning11) > 0

dinner = (dinner18 + dinner19) > 0

lunch = (lunch11 + lunch12 + lunch13) > 0

after_lunch = afternoon + night + dinner

rain_and_cold_max_20 = SUN_AND_HEAT_MIN_20 == 0

# Socio -economic

first_year = SEMESTER == 2

perso = SECTION_ID == 5

student_true = STUDENT == 1

# Alternative specific

capacity_at_lunch_inside_av_1 = lunch * CAPACITY_INSIDE_1

capacity_at_lunch_outside_av_1 = lunch * CAPACITY_OUTSIDE_1

meteo_terrace_av_1 = ( SUN_AND_HEAT_MIN_20 * TERRACE_AV_1 ) *

capacity_at_lunch_outside_av_1

cap_inside_av_1 = capacity_at_lunch_inside_av_1

morning_coffee_1 = morning * CAFE_AV_1

distance_filter_1 = DISTANCE_1 > -1

distance_no_av_1 = DISTANCE_1 == -1

lunch_distance_1 = lunch * (( distance_filter_1 * DISTANCE_1 ) + (

distance_no_av_1 * 0 ) )

morning_distance_1 = mroning * (( distance_filter_1 * DISTANCE_1 ) + (

distance_no_av_1 * 0 ) )





         

afternoon_distance_1 = after_lunch * (( distance_filter_1 * DISTANCE_1

) + ( distance_no_av_1 * 0 ) )

lunch_hot_meal_av_1 = lunch * HOT_MEAL_AV_1

lunch_price_min_1 = ( lunch * MIN_PRICE_1 ) * lunch_hot_meal_av_1

beer_in_the_afternoon_dinner_night_av_1 = after_lunch * TAP_BEER_AV_1

service_at_table_lunch_av_1 = ( lunch * SERVICE_TABLE_AV_1 ) * perso

sandwich_lunch_av_1 = lunch * SANDWICH_AV_1

evaluation_filter_1 = EVALUATION_2013_1 > -1

evaluation_2013_1 = ( evaluation_filter_1 * EVALUATION_2013_1 ) * lunch

dinner_av_1 = DINNER_HOT_MEAL_AV_1 * dinner

lunch_price_min_student_1 = ( lunch * MIN_PRICE_1 ) * student_true

lunch_price_min_employee_1 = ( lunch * MIN_PRICE_1 ) * perso

# Wooldridge correction

last_choice_filter_1 = LAST_CHOICE_LAST_TIME_TRUE_1 > -1

no_previous_choice_filter_1 = LAST_CHOICE_LAST_TIME_TRUE_1 == -1

last_choice_true_1 = ( last_choice_filter_1 *

LAST_CHOICE_LAST_TIME_TRUE_1 ) + ( no_previous_choice_filter_1 * 0 )

previous_choice_morning_filter_1 = PREVIOUS_CHOICE_MORNING_TRUE_1 > -1

no_previous_choice_morning_filter_1 = PREVIOUS_CHOICE_MORNING_TRUE_1

== -1

previous_choice_morning_1 = ( previous_choice_morning_filter_1 *

PREVIOUS_CHOICE_MORNING_TRUE_1 ) + (

no_previous_choice_morning_filter_1 * 0 )

previous_choice_afternoon_filter_1 = PREVIOUS_CHOICE_AFTERNOON_TRUE_1

> -1

no_previous_choice_afternoon_filter_1 =

PREVIOUS_CHOICE_AFTERNOON_TRUE_1 == -1

previous_choice_afternoon_1 = ( previous_choice_afternoon_filter_1 *

PREVIOUS_CHOICE_AFTERNOON_TRUE_1 ) + (

no_previous_choice_afternoon_filter_1 * 0 )

first_choice_true_filter_1 = FIRST_CHOICE_TRUE_1 > -1

first_choice_filter_1 = FIRST_CHOICE_TRUE_1 *

first_choice_true_filter_1 * lunch

first_choice_true_morning_1 = FIRST_CHOICE_AFTERNOON_TRUE_1 > -1

first_choice_morning_1 = FIRST_CHOICE_MORNING_TRUE_1 *

first_choice_true_morning_1 * morning

first_choice_true_afternoon_1 = FIRST_CHOICE_AFTERNOON_TRUE_1 > -1

first_choice_afternoon_1 = FIRST_CHOICE_AFTERNOON_TRUE_1 *

first_choice_true_afternoon_1 * after_lunch

most_chosen_filter_1 = MOST_CHOSEN_1 > -1

most_chosen_filter_lunch_1 = MOST_CHOSEN_1 * most_chosen_filter_1 *

lunch

most_chosen_morning_1 = MOST_CHOSEN_MORNING_1 > -1

most_chosen_filter_morning_1 = MOST_CHOSEN_MORNING_1 *

most_chosen_morning_1 * morning





         

####### Utility function (fixed to 0 parameters are removed) ########

V1 = ASC_1 \

+ ALPHA_FIRST_LUNCH_CHOICE * first_choice_filter_1 \

+ ALPHA_FIRST_MORNING_CHOICE * first_choice_morning_1 \

+ ALPHA_MOST_CHOSEN_LUNCH * most_chosen_filter_lunch_1 \

+ ALPHA_MOST_CHOSEN_MORNING * most_chosen_filter_morning_1 \

+ RHO_PREVIOUS_MORNING_CHOICE * previous_choice_morning_1 \

+ RHO_PREVIOUS_LUNCH_CHOICE * last_choice_true_1 \

+ BETA_DISTANCE_LUNCH_CAF * lunch_distance_1 \

+ BETA_DISTANCE_MORNING * morning_distance_1 \

+ BETA_DISTANCE_AFTERNOON * afternoon_distance_1\

+ BETA_NO_DISTANCE_AV * distance_no_av_1 \

+ BETA_TAP_BEER_AFTER_LUNCH *

beer_in_the_afternoon_dinner_night_av_1 \

+ BETA_EVALUATION_CAFET * evaluation_2013_1 \

+ BETA_DINNER * dinner_av_1 \

+ BETA_PRICE_STUDENT * lunch_price_min_student_1 \

+ BETA_PRICE_EMPLOYEE * lunch_price_min_employee_1 \

+ BETA_METEO_TERRACE * meteo_terrace_av_1 \

+ BETA_CAPACITY_INSIDE * cap_inside_av_1 \

+ EC_SIGMA_MORNING_1 * morning \

+ EC_SIGMA_LUNCH_1 * lunch

############ Specifications for estimation #############

# Associate utility functions with the numbering of alternatives

V = {1: V1}

# Associate the availability conditions with the alternatives

av = {1 : OPEN_AV_1}

# The choice model is a Logit , with availability conditions

prob = bioLogit(V,av ,CHOICE)

# Iterator on individuals , that is on groups of rows.

metaIterator('personIter ','__dataFile__ ','panelObsIter ','ID')

# For each item of personIter , iterates on the rows of the group.

rowIterator('panelObsIter ','personIter ')

#Iterator on draws for Monte -Carlo simulation

drawIterator('drawIter ')

#Conditional probability for the sequence of choices of an individual

condProbIndiv = Prod(prob ,'panelObsIter ')

# Integration by simulation

probIndiv = Sum(condProbIndiv ,'drawIter ')

# Likelihood function

loglikelihood = Sum(log(probIndiv),'personIter ')

BIOGEME_OBJECT.ESTIMATE = loglikelihood

# Parameters





         

BIOGEME_OBJECT.PARAMETERS['NbrOfDraws '] = "250"

BIOGEME_OBJECT.PARAMETERS['RandomDistribution '] = "HALTON"

BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm '] = "CFSQP"

BIOGEME_OBJECT.PARAMETERS['checkDerivatives '] = "0"

BIOGEME_OBJECT.PARAMETERS['numberOfThreads '] = "6"

############### Specifications for the validation ##############

# The choice model is a mixture Logit , with availability conditions

prob1 = bioLogit(V,av ,1)

log1 = mixedloglikelihood(prob1)

# Defines an iterator on the data

rowIterator('obsIter ')

simulate = {'Prob. KLE': prob1}

# Simulation

simulate_mixture = {'Prob. KLE': log1}

BIOGEME_OBJECT.SIMULATE = Enumerate(simulate_mixture ,'obsIter ')

# Statistics

nullLoglikelihood(av ,'obsIter ')

choiceSet = [1]

cteLoglikelihood(choiceSet ,CHOICE ,'obsIter ')

availabilityStatistics(av ,'obsIter ')

# Parameters

BIOGEME_OBJECT.PARAMETERS['NbrOfDraws '] = "250"

BIOGEME_OBJECT.PARAMETERS['numberOfThreads '] = "1"

BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm '] = "CFSQP"

BIOGEME_OBJECT.PARAMETERS['dumpDrawsOnFile '] = "1"

###### Specifications for forecasting with new alternative ######

from biogeme import *

from headers import *

from nested import *

from loglikelihood import *

from statistics import *

#Nest parameter (1 = independent , infinite = correlated)

MU = Beta('MU', 5, -100, 100, 0 )

#Definition of nests:

# 1: nests parameter

# 2: list of alternatives. The alternative 3 is new and borrows the

parameters of alternative 2.

nonnested = 1.0 , [1]

nested = MU , [2,3]

nests = nonnested ,nested





         

# The choice model is a mixturelogit , with availability conditions

prob1 = nested(V,av ,nests ,1)

prob2 = nested(V,av,nests ,2)

prob3 = nested(V,av,nests ,3)

log1 = mixedloglikelihood(prob1)

log2 = mixedloglikelihood(prob2)

log3 = mixedloglikelihood(prob3)

# Defines an itertor on the data

rowIterator('obsIter ')

simulate = {'Prob. KLE': prob1 ,

'Prob. BC': prob2 ,

'Prob. BM': prob3 ,}

simulate_mixture = {'Prob. KLE': log1 ,

'Prob. BC': log2 ,

'Prob. BM': log3}

BIOGEME_OBJECT.SIMULATE = Enumerate(simulate_mixture ,'obsIter ')

# Statistics

nullLoglikelihood(av ,'obsIter ')

choiceSet = [1,2,3]

cteLoglikelihood(choiceSet ,CHOICE ,'obsIter ')

availabilityStatistics(av ,'obsIter ')

BIOGEME_OBJECT.PARAMETERS['NbrOfDraws '] = "250"

BIOGEME_OBJECT.PARAMETERS['checkDerivatives '] = "1"

BIOGEME_OBJECT.PARAMETERS['numberOfThreads '] = "1"

BIOGEME_OBJECT.PARAMETERS['moreRobustToNumericalIssues '] = "0"

BIOGEME_OBJECT.PARAMETERS['optimizationAlgorithm '] = "CFSQP"

BIOGEME_OBJECT.PARAMETERS['dumpDrawsOnFile '] = "1"





         

C.2 Strict definition of variables

Figure 18: Definition of the variables in the dataset (1)





         

Figure 19: Definition of the variables in the dataset (2)
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