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Chapter 1

Introduction

1.1 The Research Project and its Context

This master thesis contributes to a student project at EPFL that aims at participating in the
competition ‘World Solar Challenge’ 2007, a race for vehicles powered by solar energy. The goal of
this race is to drive across the Australian continent from north to south as fast as possible. This
competition has been held biannually since 1987. Competitors from universities and companies
from all over the world participate. The EPFL team is developing an innovative solar car in order
to participate.

The participating vehicles are powered exclusively by electricity. The energy used has to be
converted from solar radiation by photovoltaic cells during the race. The vehicles can use batteries
for energy storage. Computers external to the vehicle can be used to optimize their use during the
race. The goal of the present work is to develop and test methods for this purpose. This work
is done for a vehicle with given parameters. This is, we suppose that its construction can not be
influenced.

More concretely, the characteristics of the race relevant to the present optimization problem are
the following:

• A specific road from Darwin to Adelaide of 3000 km is given. The location of hills, the state
of the road and direction of the road at each location are initially known.

• All vehicles will start on October 21, 2007 at 8 am in Darwin. The vehicles can be driven
from 8 am until 5 pm each day. In the morning before 8, as well as in the evening after 5, the
collected solar energy can be stored in the batteries. The car that arrives first in Adelaide
wins the race.

• At the start, the batteries are full. The rules allow batteries that can store maximally 5 kWh
of nominal energy. All teams use batteries that can store exactly 5 kWh.

• The race rules force some additional stops at specific locations. These are known in advance.

• The highway is open to regular traffic, so legal circulation rules have to be respected as well
as limitations caused by other vehicles. Most road tracks are without speed limitations. The
model considered in this work takes only into account speed limitations.

The goal is to allocate the electric energy collected from solar radiation optimally to the drive
system or to the batteries on one hand side, respectively to allocate the energy stored in the battery
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optimally to the drive system over the time of the race. In order to optimize this allocation at one
moment, we need to plan the energy management for the whole race.

To do so, the problem is formulated as follows:

• We use a model linking energy input, energy consumption and dynamics of the car. Esti-
mations of the parameters for this model are assumed to be available. They are assumed to
be constant during the whole race. A more sophisticated model could take into account the
dynamics of these parameters as stochastic process during the race.

• Accurate energy management planning needs an estimation of some unforeseeable environ-
ment variables. In fact, the future intensity of solar radiation influences the energy input
into the system. Future wind speed and wind direction influence the resistive forces acting
on the vehicle. A stochastic model will be used to predict their evolution. This model uses
information from climate data time series and weather forecasts. Taking into account other
unforeseeable external variables such as the amount of traffic on the road is beyond the scope
of this work.

• The system is controlled by a one dimensional control variable, which is the driving power.
In an approximation, the vehicle’s speed can be considered as control of the system.

• The objective of optimization is to choose a control that minimizes the time-to-go until the
finish. For a stochastic problem formulation, it is to minimize the expected value of the
time-to-go.

1.2 Methodology

1.2.1 Restriction of the Work

The first step is to introduce a formulation for the optimization problem, provided that the uncertain
quantities for the future are known. Once this complete problem formulation is available, the
problem is simplified in different manners. This simple formulation is extended to a stochastic
formulation at the subsequent step. For some relevant simplified problems, optimization methods
are developed, and some of them are implemented and tested.

Meyer (2005) studies first approaches to the numerical resolution of the optimization problem.
The problem is splitted up into two partial problems that are initially considered as independent.

• A long term energy management problem. It consists in allocating the available energy over
the road tracks.

• A short term energy management problem. This is to optimize control over the next road
track, using the energy that is allocated to it at the previous step.

Here, the same basic structure is adapted.
The main challenge in long term optimization is to face uncertainty. A useful method to solve

this problem should provide a solution with the following properties.

• If the conditions are suddenly different than expected, one should immediately know which
quantity of energy should be allocated to the current road track, given the new circumstances.

• If the weather prediction changes, the solution should contain enough information such that
the optimal control can easily be updated on-line.
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• This requires that strategies should be planned as well for states that have not been foreseen
in an initial planning.

The issue of this work is to develop, implement and test such methods. The second important
challenge concerning long term optimization is to develop on-line policy update methods. This is
outlined, but only a trivial solution is treated here.

The short term optimization problem is not yet considered in this work. In fact, we think that
for the subsequent hour, relatively exact information about the weather will be available during the
race, and the optimization problem. We hope that this causes the problem to be simple compared
to the long term optimization problem.

The two optimization problems are not independent. The long term energy management should
use short term behavior values under the hypothesis that for any period, short term control is
optimized. Unforeseen optimization results for short term behavior should allow to adapt quickly
the resources allocated to the concerned time period.

1.2.2 Optimization Methods

Meyer (2005) proposes to use Dynamic Programming (DP) to solve this problem. In fact, the broad
methodology of DP and approximate DP, as exposed in Bertsekas (1995a), Bertsekas (1995b) and
Bertsekas & Tsitsiklis (1996), seems to offer many alternatives that are applicable to this dynamic
optimal control problem. Therefore we restrict the optimization methods used in this work to DP
related methods.

1.2.3 Contributions

All work has been been done on a model that is simplified, in order to avoid unnecessary compli-
cation for the method development. At the same time, we think that the model is sophisticated
enough, such that the main difficulties of the problem occur. The principle of the approaches found
should be extendable to a more complicated formulation. The following results that contribute to
the solution of the long term optimization problem have been found.

• We develop two methods that determine off-line the optimal discharge profile, provided that
the future values of the uncertain quantities are deterministically known. They have been
implemented, tested and compared.

• We give a stochastic model of weather forecast information based on climate data analysis.
This model is especially useful for testing optimization methods.

• An off-line stochastic DP algorithm with respect to that model has been developed. However,
this algorithm is likely not accessible for computation. Two approximative methods have thus
been developed and implemented, and their performance is compared.

1.3 Outline

In the second chapter, a formulation of the deterministic optimization problem is presented in
detail. Model simplifications for working out efficient optimization methods are proposed.

In the third chapter, we study DP methods for solving the deterministic long term energy
management problem.
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In Chapter 4, we introduce a stochastic weather forecast information model. Two approximative
off-line stochastic DP methods are discussed, tested and compared.

This is followed by a conclusion in Chapter 5, where the present work is set into the context of
the whole research project.
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Chapter 2

Deterministic Problem Formulation
and Analysis

Throughout this chapter, all quantities relevant to the optimization problem are supposed to be
known in advance with certainty. This is, we consider a deterministic approximation of the problem.

In Section 2.1, a formulation of the deterministic optimization problem is presented. It includes
the relation between the energy flows and dynamics of the vehicle, a model of the system’s control
and of the objective of optimization.

Section 2.2 is a review of Pudney (2000). This is a theoretical approach to this problem, where
properties of the optimal control function are analyzed.

In Section 2.3, we decompose the optimization problem into a short term optimization problem
and a long term optimization problem. Afterwards, we propose appropriate model simplifications
that facilitate the development of optimization methods.

2.1 Formulation of the Optimal Control Problem

The model does not describe in detail the processes in the vehicle electronics and in the motor. It
is designed to describe the relation between energy flow into the system, energy flow from and to
the batteries, and the dynamics of the vehicle. Here, dynamics expresses only the one dimensional
motion of the vehicle from the start towards the finish of the race.

• psol is the energy flow from the environment into the system. The value of this flow expresses
the quantity of solar energy transformed into electric energy. This is the energy to be allocated
to the drive system and to the battery. psol depends on the environment variables.

• I is the energy flow from or to the battery. It is positive if energy flows to the battery, and
negative if energy flows from the battery. This energy flow is the unique control of the system.

• pin is the energy flow to the drive system. Given the environment variables and the vehicle
parameters, pin determines the dynamics of the system.

This system is represented in Figure 2.1. In the following, the model and the corresponding
optimization problem are described in detail.
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Figure 2.1: This scheme summarizes the energy flows of the present model, as well as its relation
to the vehicles dynamics.

The State of the System

The independent variable of the system is the time t. The state of the system is described by three
state variables, st, vt and qt.

st
The distance of the vehicle from the start of the race at time t. We refer to this quantity
as location of the vehicle.

vt The speed of the vehicle at time t.

qt

The nominal energy stored in the batteries at time t. The symbol q is chosen, as the
common notation for charge. We will refer to it as charge of the battery or simply as
charge.

For simplicity of the notation, we drop the index t sometimes, and the state of the system is
denoted by

x = (s, v, q) = xt = (st, vt, qt). (2.1)

Energy Flow into the System

There are several alternatives in modeling the power of solar irradiance incident on a panel. They
are not discussed here in detail. For more information, we refer to Duffie & Beckman (1980),
Pudney (2000) and Meyer (2005). The present model is taken from Meyer (2005). The panel is
modeled as a horizontal surface of 1.8 m × 5 m. The energy flow into the system, psol, decomposes
in two parts. The first one, Ihoriz is the solar power available under perfect atmospheric conditions.
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It is called clear-sky intensity and is approximated by

Ihoriz =
3
8
Wmax

(
3 sin(αsol)−

1
4

sin(2αsol) +
1
3

sin(3αsol)
)

, (2.2)

where αsol is the angle of incidence of the beam irradiance, a function of time and location, and
Wmax is a constant. To obtain psol, Ihoriz is multiplied by some loss factors that are explained in
Table 2.1.

The energy flow into the system is then given by

psol = ηMPPTηpanelApanelBIhoriz. (2.3)

B

The brightness factor B is the ratio between the irradiate power per horizontal surface and
the clear-sky intensity. This quantity is determined by the brightness of the atmosphere,
that diminishes especially if the sky is cloudy. It varies in function of time and of location.
In this chapter, this function is treated as if it would be known in advance. An accurate
model must treat it as a random function. This is discussed in Chapter 4.

Apanel The surface of the vehicles solar panel.

ηsolar

The energy efficiency of the solar cells. This can be modeled as a function of temper-
ature, of the irradiate spectrum and of the solar incidence angle. In this model, it is
approximated by a constant factor ηsolar.

ηMPPT
The Maximum Power Point Tracker links the solar panel to the electric chain of the
vehicle. Its energy efficiency is approximated by a constant factor.

Table 2.1: Factors for the energy input model.

The Model of the Drive System

This part of the model links the energy flow to the drive system, pin, to the driving force at the
wheels F . All losses in the vehicle electronics and the motor are summarized in this dependence.
The most simple model uses a constant efficiency factor η, that is

F =
pout

v
=

ηpin
v

, (2.4)

where pout is the output power of the drive system (Meyer 2005).
This model is used here, in order to simplify the development of optimization methods. However,

a more accurate model would use an empiric loss function

pin − pout = L(v, pout). (2.5)

The Battery Model

The battery model links the energy flow I into the battery to the difference psol − pin. The sim-
ple model (Pudney 2000) that we use here approximates I by two constants, the battery charge
efficiency ηcharge, and the battery discharge efficiency ηdischarge. Explicitly, this is

I =





(psol − pin)ηcharge if psol − pin > 0;
(psol−pin)

ηdischarge
otherwise .

(2.6)
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Models where I depends in addition on the battery charge q are more accurate (Pudney 2000).
This dependence is neglected here. The reason is again that we wish to have a simple model for
developing optimization methods.

Dynamics

Resistive forces due to friction with the road and to aerodynamic forces are modeled by

R(s, v, wx) = mgcrr1 cos(θ(s)) + Ncrr2v +
1
2
ρSxCx(v − wx)2, (2.7)

where s and v are the state variables location and speed. wx is the wind speed component in the
direction of motion of the vehicle. This is, similar to the brightness factor, a quantity that is treated
as uncertain in the model from Chapter 4. Here, we treat it as if it would know its evolution with
respect to time and location with certainty. It depends on the wind speed w and the wind direction
wα, that are both functions of t and s, and as well on the driving direction αroad that is a function
of s.

The parameters/constants of the model are

m The mass of the vehicle.

g Gravity acceleration, g ≈ 9.81m
s2

θ(s) The gradient of the road at location s. cos(θ(s)) is approximated by 1.

crr1/crr2 Coefficients of rolling resistance.

N Number of wheels of the vehicle.

ρ Density of the air. ρ ≈ 1.22 kg
m3 .

Sx Frontal surface of the vehicle.

Cx Aerodynamics coefficient.

We suppose that these parameters are known and constant during the whole race. This is an
approximation that can be revisited. For an accurate energy management planning, the (stochastic)
degradation of their values during the race might have to be considered.

Gradient

The gradient force acting on the car is

G(s) = −mg sin(θ(s)). (2.8)

The State Equations

Using this model, the evolution of the state of the system follows the law:

ds

dt
= v (2.9)

10



dv

dt
= a =

1
mR

(F −R + G) (2.10)

dq

dt
= I, (2.11)

where mR is the effective mass of the vehicle, compensating forces due to its rotational dynamics.
It is the sum of the vehicle’s mass m and a relatively small constant term.

Control

The system has a one dimensional control variable. It is equivalent whether I, pin, pout or a is
controlled. In fact, using equations 2.2, 2.3, 2.4, 2.7, 2.8 and 2.10, an implicit relation between each
of those two quantities is established. From an intuitive understanding of the system, it is clear
that each one of these mutual relations must be strictly increasing, thus bijective. The existence of
the inverse function explains that it is mathematically equivalent to choose any of those controls.

Boundary Conditions

The race starts at ti = 0 with full batteries. It it finishes at location sf = 3011 km. The boundary
conditions are thus

si = 0; vi = 0; qi = qfull. (2.12)
sT = sf . (2.13)

Here, T is the time when the race finishes, and qfull = 5 kWh = 18 MJ.

Constraints

The constraints on the state variables to be respected are

0 ≤ v ≤ Vmax(s); (2.14)
0 ≤ q ≤ qfull. (2.15)

The upper speed constraint Vmax(s) describes speed limitations forced by the rules of the race or
by the shape/state of the road. At locations where the speed is not limited, it is set to the maximal
speed the vehicle can reach.

The constraints on the control are

Bcharge ≤ pin − pout ≤ Bdischarge (2.16)

pin ≤ Pmax, (2.17)

the constraints on the maximum power flow from/ to the battery and the maximum motor power
constraint.

Objective Function

The objective of optimization in this model is to minimize T, the time when the race finishes. In
the stochastic approach we follow in Chapter 4, we consider the objective to minimize the expected
value of T.

With respect to the competitive character of the race, an other objective function could be
formulated: Namely, to maximize the probability to win or to arrive faster than a certain competitor
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at finish line. In this case, the problem would fit into the framework of stochastic games (Bertsekas
& Tsitsiklis 1996). This is beyond the scope of this work. In fact, our approach is to consider the
simplest relevant formulation of this optimization problem.

2.2 Literature Review: Analysis of the Optimal Control Function

This section is a review of the findings presented in Pudney (2000). He studies properties of the
optimal control for the deterministic problem formulated above, by adding different hypotheses.
This section is essential to get a deeper intuition about the problem.

Optimality of a Constant Speed Strategy

First, we consider the restrictive hypotheses

1. solar irradiance does not depend on location;

2. driving force does not depend on location;

3. perfect drive system;

4. perfect battery; and

5. infinitely big battery.

Under these hypotheses, it is shown that the optimal control of the problem contains only three
types of sequences: Maximal power driving, constant speed and maximal regenerative breaking.

Inefficient Battery

We relax the perfect battery hypothesis, and battery charging is supposed to be constantly efficient,
at efficiency ηcharge < 1. All other above hypothesis are maintained. An optimal strategy contains
two constant driving speeds, a low discharging speed if the instantaneous irradiance is ‘small’ and
a high charging speed if it is ‘big’. During transition between the speeds or if irradiance is between
‘big’ and ‘small’, the car is driven exactly with solar power.

By introducing hills into this model, the above strategy principles do not change, provided that
the maximum power of the motor is big enough to maintain the charging speed at the steepest point
of the road. This result might be surprising, but it is due to the perfect drive system hypothesis.

A more general battery model than the one described before allows the energy efficiency of the
battery to vary with I, the energy flow from/to the battery. If we allow this variation under the
above hypothesis, the speed that maximizes the distance traveled during a clear day on a level road
is an increasing continuous function of the apparent solar power. For values of the Aurora solar car
(2001), it increases from 80 to 90 km

h , when solar power increases from 0 to 2000 W (Pudney 2000).

Inefficient Drive System

The next hypotheses we consider are

1. Solar irradiance does not depend on location;

2. Driving force does not depend on location;
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3. Perfectly efficient battery.

The principle of maintaining a constant speed does not change. The driving modes of maximal
power and maximum regenerative braking are adapted under the realistic hypotheses that power
losses increase with driving power. If we consider hills, the principle of constant speed changes.
The optimal speed policy is to accelerate before a hill from this constant speed. The driving speed
variation and the driving power variation can be kept small that way.

Spatially Varying Irradiance

The brightness factor can vary considerably spatially, if parts of the sky are covered by clouds.
With a perfectly efficient battery, an optimal strategy accelerates under clouds and slows down
under clear sky. With drive system parameters of the Aurora car and perfectly efficient battery,
under noon solar conditions, 10 s can be gained on 50 km, where the second half of the track is
under clouds. Under realistic battery assumptions, this is opposed to the fact presented above,
that speed should increase with solar power. If we accelerate under clouds, the energy flow from
the battery −I increases, and with it the energy losses.

This effect is not only to consider at the scale of some kilometers, but also at large scale. In
fact, it has often been told that the big difference between the winning car and the second car of
the 2005 edition was (partially) due to the ‘better weather’ they had at the end of the race. This
refers to an effect of spatially varying irradiance. In fact, given a time, the weather was better on
the last kilometers of the race than at other locations, and other teams should have accelerated
before. To take into account such effects, the spatial variation of irradiance must be modeled.

Strategic Principles

The following strategy principles result from the above analysis:

1. Constant speed: Select an average speed that can be maintained during the race;

2. Battery pampering: Increase the speed (slightly) with solar power;

3. Hill riding: Accelerate before hills;

4. Sun chasing: Accelerate under clouds (or accelerate, break to avoid future clouds).

Pudney (2000) remarks that the importance of varying the speed not too much during the race,
and to select this speed such that the batteries are empty at the end of the race, is primordial with
respect to the other principles.

2.3 Appropriate Model Simplifications

In the following section, we point out appropriate simplifications of the model. In the first sub-
section, we present the option to eliminate the speed from the state space. This means that the
dimension of the state space is reduced, but some accuracy of the model is lost.

In Subsection 2.3.2, we divide the problem into two subproblems, a short term optimization
problems and a long term optimization problem. We motivate our decision to only study here the
long term problem.

In order to study the basic algorithmic aspects of the problem on a simple model in this first
approach, we specify some further work hypothesis in the Subsections 2.3.3 and 2.3.4.
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2.3.1 Neglecting Acceleration

Assume that an optimal strategy contains a priori ‘few’ speed variation. The problem could thus
be approximated by neglecting the ‘energy cost’ caused by acceleration of the vehicle, and take
into account the energy needed to maintain a given speed during a time interval. As described by
Meyer (2005), this hypothesis allows to reduce the dimension of the state space as follows.

Setting acceleration to 0, the explicit relation for pout respectively pin as function of v,

pin =
v

η
{mgcrr1 + Ncrr2v +

1
2
ρcxAx(v − wx)2 + mg sin(θ(x))} (2.18)

can be derived from the relations 2.10, 2.4, 2.8 and 2.7.
Such an explicit relation exists even if the drive system losses (equation 2.5) are expressed as

a polynomial in v and
pout

v , as suggested by Pudney (2000). This gives the following simplified
optimization problem:

• The state of the system is x = (s, q).

• The control of the system is v.

• The state evolution is given by ds
dt = v, and dq

dt is given by Equation 2.6. pin(v) is given by
the above relation 2.18.

• The objective function is unchanged with respect to the formulation of Section 2.1.

Applying this simplification influences some imprecision into our model. However, this impre-
cision can be reduced by dividing the optimization problem into two subproblems, a short term
optimization problem and a long term energy management problem, as we describe it below, if we
apply the present simplification only to the long term energy management problem.

2.3.2 Long Term and Short Term Energy Management

Meyer (2005) mentions the idea to divide the optimization problem into subproblems that are
distinguished by their time horizon. However, he gives no concrete formulation to this approach.
In turn, this idea plays a key role in our approach. Let us motivate and describe this approach
informally.

Consider the present problem, but not with a continuous time, as it is presented above, but
considering only a discrete set of time stages {0, . . . N}. Let the time interval between two neighbor
time stages be relatively long, say 30 minutes. Suppose that we are in a race situation at a certain
time t0 and at a fixed state. For the subsequent time interval, we have a set of possible controls.
Using a given control, we can compute at what state we arrive after 30 minutes. Suppose now that
given this state after 30 minutes, we know how much time we need to complete the race. If we
compute this ‘time-to-go’ for all possible controls for the next 30 minutes, the control that arrives
at the state that minimizes this time-to-go is optimal.

This is the way we divide our problem. Let us define a key notion for dividing the problem.
Consider a fixed time stage k, a state (sk, qk) and some control vt between the time stages k and
k + 1. To this control, we can associate the energy gain per time stage ∆q = qk+1 − qk.

Let us consider the two subproblems:

• Let us consider a fixed charge gain per stage at stage 0, ∆q0. The short term energy man-
agement problem is to compute the control that maximizes the distance ∆s traveled during
the 30 minutes time period, among all controls that have an associated charge gain per stage
∆q0.
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• Once the short term energy management problem is solved for all feasible ∆q, we have
some optimal relation ∆s0(∆q) for the next 30 minutes time period. The long term energy
management problem is to choose, for the next 30 minutes, a charge gain ∆q that optimizes
the time-to-go.

Compared to the long term energy management problem, the short term problem is easy to
solve. Solving the long term energy management problem includes to solve the short term energy
management problem many times. In fact, an accurate energy management planning for the whole
race must suppose that the future short term control is optimized in any situation the system meets.

However, in our initial situation when we ignore which control is optimal, we do not know which
situations will be met, and thus for which situation the short term problem must be solved. If no
approximation is made, the short term problem must be solved for very many situations. Precisely,
its solution can depend on time, location, battery charge, brightness factor, wind speed and wind
angle.

The question is how much resources we will be able to invest in solving the short term problem.
Thus, we will study the long term problem first, using a very rough approximation for the relation
∆sk(∆q), the optimal solution of the short term problem.

Once an accurate algorithmic method for the long term problem is available, we will be able to
estimate how accurately the short term problem can be solved.

Solving the long term energy management problem only contains the following approximations:

• We discretise time, into larger intervals that is suitable for a final solution of the problem.

• We suppose that the relation ∆sk(∆q), is known for any stage k, and for any state (sk, qk).

• For the tests for long term energy management methods, we need thus a relation that replaces
∆sk(∆q), as the latter is unknown at this stage of work. For one time interval, we allow
only controls with a constant speed. By the above relation, the charge consumption that
corresponds to such a control can be computed. This gives a relation ∆q(∆s) resp. ∆q(∆s)
that is used as if it would be the optimal solution for the short term energy management
problem.

• The same that we constrain the control not to vary during an interval, we force the environ-
mental conditions to be constant. This is, the brightness, the wind speed and the wind angle
do not vary during a discretization interval.

For the rest of this work, we only treat the long term energy management problem. The energy
gain per stage, ∆q, is considered as the control of the system. In the two subsections below, we
set some additional stronger work hypotheses that are used in the rest of this analysis of the long
term energy management problem.

2.3.3 Elimination of Spatial Dependency of the Environment Variables

In this section, we introduce a work hypothesis. The goal is to eliminate the spatial dependency of
the relation ∆s(∆q). This relation depends on s through the relevant environment variables B and
(w,αw), which are functions of t and s. They have a certain ‘continuity’ with respect to t and s.

st and t are closely related, in the sense that by heuristically estimating an average speed of
the vehicle, we can predict an approximate location ŝt in function of t. These considerations lead
to the idea to neglect the spatial variation of the weather variables B, w and αw, the solar beam
incidence angle αsol and the drive direction αroad in a first approximation, in order to simplify
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computations by optimization methods. Instead of a correct forecast, we will at time t a forecast
at an estimated location (t, ŝt) for all locations. This simplification does not come without risks,
and we can argue for and against it:

• We have analyzed that spatial variation of solar irradiance can change considerably the op-
timal solution of the deterministic problem. This effect can not be captured if the present
simplification is applied.

• However, the approximated resolution of the deterministic problem we present is designed to
be used as auxiliary function to approximate the solution of the stochastic problem. For this
solution, the effect of spatial variation diminishes. In fact, the precision of long term weather
forecast is quite low. Already with a horizon of one day, the weather forecast for two locations
in the Australian desert that are close enough to each other can hardly be distinguished.

• On the other hand, the previous argument does not hold fully for the relative wind speed
wx, because the driving direction αroad is deterministically known in function of s. Given a
forecast for the average wind direction for a region, we can precisely locate where wx changes.

The second argument supports the present simplification as a possible option. However, if we
use it, we must be conscious of the precision we loose.

To make this simplification more powerful, we can be tempted to use a model where gradient
forces are also modeled as function of time. That is, the road inclines at ŝt instead of s. This leads
to a model where neither dynamics nor input power depends on the location.

Using this simplification, hills will be modeled at the wrong location. Still, for testing methods,
this hypothesis simplifies implementation and validation, and the character of the problem might
not change much. However, it would be imprudent to apply this simplification when results to be
used in practice are computed. We thus insist to reintegrate it later into the model.

We apply the above simplification to approximate ∆sk(∆q) for the tests presented in Chapter
3 and 4. Let us precise how they are applied:

• The solar incidence angle αsol at stage k is computed as a function of (k, ŝk).

• We give directly the wind speed component wx(k) in the direction of the vehicle’s motion,
without considering the drive direction and the wind direction.

• We consider no hills: The road gradient θ = 0.

• The brightness factor B is given as a function of k.

This is valid throughout the Chapters 3 and 4.

2.3.4 Elimination of Constraints from the Problem

The rules of the race preview some constraints in the race. Stops are forced stops at several
locations during the race. Moreover, traffic lights and speed limitations have to be respected.
These constraints are removed for method development. They must be reintegrated later to obtain
solutions that are feasible in practice.
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Chapter 3

The Deterministic Problem:
Long Term Energy Management

In this chapter, the goal is to point out dynamic programming methods to solve the simplified
long term energy management problem formulated in Chapter 2. Let us recall the simplifications
discussed in Chapter 2 are applied:

• The weather is known in advance as deterministic function of t and s.

• We do not consider short term optimization of the system. During one time discretization
interval, we suppose that the relation ∆s(∆q) is given. For tests, we estimate it as described
in Chapter 2.

• For long term optimization, it is natural to eliminate the speed from the state space. The
control of the system is ∆q, or equivalently ∆s. They are linked as described in Subsection
2.3.1.

• All environment variables are treated as a function of time only.

These restrictions are too strong that the algorithms developed here can be applied directly
for solving the original problem. The present algorithms are motivated to be used for auxiliary
purposes. Firstly, we want to start by applying a dynamic programming method to a simple
example, to get some experience in dealing with the method. Secondly, the stochastic problem
is to be approximated deterministically in Chapter 4. These approximations require to solve the
deterministic problem repeatedly. This indicates that efficient methods for this purpose should be
developed.

Meyer (2005) has solved the deterministic problem using weaker simplifications than ours. His
methods can be applied for solving our problem. We present methods adapted to the simpler
problem formulated here, with increased efficiency and precision, to be able to study the stochastic
problem efficiently in the following.

In the deterministic model, the control can be optimized at the beginning of the race and does
not have to be updated. The deterministic problem has thus to be solved only once, using as initial
state the state at the beginning of the race, and as initial time the time at the beginning of the race.
In this chapter, we present the algorithms for solving the deterministic problem that use always
this initial state. However, this is just a convention. In Chapter 4, we will use the same algorithms
up from other initial states.
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In Section 3.1, we give the necessary theoretical introduction to the deterministic shortest
path problem and its resolution by dynamic programming. In Section 3.2, the present problem is
abstractly formulated in that framework. Two ways to concretize that are given in Section 3.3, and
the corresponding results are discussed in Section 3.4.

3.1 Theoretical Background for the Deterministic Shortest Path
Problem

Figure 3.1: The deterministic shortest path problem can be represented by a graph. At each stage
k, the state space is represented by a set of vertices. The possible transitions are represented by
an arc. Each arc has an associated cost. The objective is to find the shortest path from s to t in
terms of cost.

In this section, we will explain the notion of deterministic shortest path problem. This includes
to introduce some notions from deterministic Dynamic Programming (DP) and to point out DP
algorithms to find the optimal solution of the problem.

The introduction is held very briefly here. If you are new in DP, you might want to consult
Bertsekas (1995a), a very readable introduction. The theory that follows in this section is a review
of that book.

First we treat the finite time horizon deterministic shortest path problem. Consider a finite
state space X that evolves over the discrete time stages 0, . . . N. The transition to move from a
state xk ∈ X at stage k to a state at stage k + 1 depends on a control uk ∈ Uk(xk). The state
xk+1 ∈ X where we arrive at time k + 1 is described by a transition function fk(xk, uk). At each
stage k, an additional cost gk(xk, uk) incurs. At the terminal stage N, a cost gN (xN ) may incur.

Let us now add a terminal state t to X. After the stage N, the system transits to t from any
state, with a transition cost gN (xN ). Considering an initial state x0 at stage 0, the system can be
represented by the graph in Figure 3.1. The finite time deterministic shortest path problem is to
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move from state s at stage 0 to state t, with a minimal accumulated cost

N−1∑

k=0

gk(xk, uk) + gN (xN ).

This problem can be solved by a dynamic programming algorithm. It proceeds by a recursion
backward in time. In fact, let

JN (xN ) = gN (xN ), (3.1)
Jk(xk) = min

uk∈Uk(xk)
gk(xk, uk) + Jk+1(fk(xk, uk)) and (3.2)

u∗k = arg min
uk∈Uk(xk)

gk(xk, uk) + Jk+1(fk(xk, uk)). (3.3)

Jk(xk) is called the optimal cost-to-go at the state xk. The optimal solution of the finite time
deterministic shortest path problem is given by J0(s). The optimal control is given by u∗k, for all
k ∈ {1, . . . N}.

The equation 3.2 is called Bellman-Equation. It is valid because all paths that are contained in
a shortest path are shortest paths between their respective extremities. At each stage k, we must
solve it for each state xk, as far as a path from xk to t exists.

A particularity which is of principal interest to us is that the finite time deterministic shortest
path problem can be equivalently solved by a forward recursion. In fact, consider the system where
each arc of the graph represented in Figure 3.1 is inverted. The cost of an arc is unchanged.
Consider the finite time deterministic shortest path problem to find the shortest path from t to s.
The same recursion as before solves this problem optimally. For the initial problem, the equations
to be solved become

J0(x0) = 0, (3.4)
Jk+1(xk+1) = min

uk∈Ũk(xk+1)
gk(f̃k(xk+1, uk), uk) + Jk(f̃k(xk+1, uk)) and (3.5)

u∗k = arg min
uk∈Ũk(xk+1)

gk(f̃k(xk+1, uk), uk) + Jk(f̃k(xk+1, uk)), (3.6)

where f̃k is the ‘inverse’ transition function that associates to xk+1 its unique predecessor by
uk, xk, such that fk(xk, uk) = xk+1, and Ũk(xk+1) is the corresponding set of feasible controls.

We find the optimal solution JN+1(t) that is equivalently an optimal solution for the initial
problem. The same is valid for the optimal control.

3.2 Problem Formulation as Deterministic Shortest Path Problem

In this section, we formulate the long term energy management problem in as a deterministic short-
est path problem. In the following subsection, we consider a formulation that follows immediately
from the problem model we consider. A more sophisticated formulation that allows to reduce the
dimension of the state space without loosing accuracy is presented in Subsection 3.2.2.

3.2.1 Basic Model

Consider now the time stages {0, . . . N} for the long term problem. Let the stage 0 correspond to
the beginning of the race. Let the time interval between k and k+1 be the length of one interval of
our time discretization. N is chosen large enough that we can be sure to arrive at the finish of the
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race before N. A possibility to choose N is the time we need to complete the race without using
the battery.

Consider the state space consisting in some discretization points (s, q). The values of s discretize
the interval [0, sf ] from the beginning to the end of the race. The values of q discretize the interval
[0, qfull] from an empty to a full battery.

Consider the relation ∆sk(∆q). In a general deterministic problem formulation, this relation
depends additionally on s, but this dependence is excluded here by the hypothesis that the envi-
ronmental variables can be described as function of time only.

This relation describes the transition function. In fact, let us for first neglect the difficulties
that arise with the disretization of the state space. Let us give a state (s, q) such that we will not
arrive at the final location sf at the next transition. Then, the transition function is given by

fk((s, q), ∆q) = (s + ∆sk(∆q), q + ∆q). (3.7)

The set of feasible controls Uk((s, q)) is restricted by the battery constraints and by the speed
constraint given by the maximal speed of the vehicle. The other constraints are neglected under the
present hypotheses. The cost per transition, gk((s, q),∆q), is uniformly given by the time between
two stages.

Let us now add one terminal state T to the state space. Consider a state-control pair ((s, q), ∆q)
where s + ∆sk(∆q) ≥ sf . In this case, we define

fk((s, q), ∆q) = T. (3.8)

The cost gk that corresponds to this transition is the proportion of the time interval that is need
to arrive at sf , using the control ∆q.

Once the system is in the state T, it stays there until time N, and any further transition is cost
free.

This determines a deterministic shortest path problem, which can be solved either by a forward
or by a backward recursion. However, we will use this recursion. In the next subsection, we point
out an equivalent, but simpler formulation.

3.2.2 Reduction of the State Space Dimension

The present hypotheses enable us to change formulation of the optimization problem, such that we
have a one dimensional state space. In this subsection, we describe how this can be done.

Let us consider a fixed time stage k, and the set of controls Uqk
of the form (∆q0, . . . , ∆qk−1),

such that the vehicle arrives with a charge qk at stage k. To each µ ∈ Uqk
, there is a corresponding

location sk that we reach applying µ. Meyer (2005) states that if µ is initial segment of an optimal
control for the whole race, it must maximize the distance among all controls of Uqk

. Inversely, all
controls in Uqk

that maximize sk are interchangeable, because they arrive at the same state (sk, qk),
at the same time.

We can thus, at any stage k, for any charge qk, maximize the distance traveled so far and choose
one control that maximizes the associated sk. Considering only one such control for all qk, we can
be sure to consider an initial segment of an optimal control.

We reformulate now our deterministic shortest path problem such that we benefit from the
above property:

• Consider the same time stages {0, . . . N} as before.
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• Let us contract the above state space. q0 of the new state space X̃ represents the class of all
states (s, q0) from the above state space.

• The transition from (s, q) to (s′, q′) in the above state space is replaced by a transition from
q to q′.

• The cost that incurs at a transition is −∆sk(∆q). Instead of using a negative cost, we can
also change the problem from a minimization to a maximization problem.

3.2.3 The Corresponding Forward Algorithm

Let us formulate the DP-forward algorithm that solves the above deterministic shortest path prob-
lem. At a stage k, such an algorithm associates an optimal sk to each qk. That way, we can iterate
on k until the terminal state T is reached. At this stage, the value of k gives the minimal time
needed for the whole race, the optimal solution of the problem. We are thus not constrained to fix
in advance the time stage N. The recursion is iterated until T is reached.

We store, at each stage and for each qk, the optimal ∆q for the previous step. A backward
recursion on these stored values allows to reconstruct the optimal control that leads to the optimal
solution.

In this formulation, we have a one dimensional state space that is formed by values of the charge
of the battery only. Abstractly, we have formulated an algorithmic method that gives the optimal
solution. To get from here to a concrete algorithm, we have the following points at are open to be
discussed:

• For each stage k and each state qk+1, we have to solve an optimization problem. It is given
by

max
∆q

{∆sk(∆q) + s∗k(qk+1 −∆q)}, (3.9)

where s∗k(q) denotes the maximal location we can reach at stage k with charge q.

The naive way to solve this problem is to check the value for each ∆q of a discrete set that
replaces the continuous set of all feasible ∆q, and to select the maximizer. However, we can
use the properties of the transition function to increase the performance of the algorithm.

• We have to choose a way to discretize the state space. According to this discretization, we
have to choose a way to discretize the control space.

In the rest of this Chapter, we will discuss two methods of particularizing these points, and the
results that we obtain when we test them.

3.3 Two Forward DP Algorithms

We discuss two variants of the above algorithm.

3.3.1 Solving the Discrete-Space Problem

In this Subsection, we particularize the DP forward method in Algorithm 1. Basically, we dis-
cretize the state space and the control space, and we solve the discrete problem, without using any
particular properties of Jk, or of ∆sk(∆q). This is opposed to the approach in Subsection 3.3.2.
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Algorithm 1 Naive DP forward method
Input: An instance of the long term energy management problem
Output: s∗k and µ∗k, for all k.
qmin = qf

s∗0(qf ) = 0
for k ∈ {1, . . . , N} do

min = arg mini{qi ≥ qmin + min Ũk}
for j ∈ {min, . . . , f} do

s∗k+1(qj) = max∆q∈Ũk
{s∗k(qj −∆q) + ∆sk(∆q)}

µ∗k(qj) = arg max∆q∈Ũk
{s∗k(qj −∆q) + ∆sk(∆q)}

end for
if s∗k(0) > sf then

BREAK
end if

end for

Let the state space be a discrete set of values for the charge of the battery, {0 = q0, . . . qf =
qfull}. Notice that opposed to the above notation, the index of q does not refer to a time stage
here.

The set Ũk(qi) is the set of all feasible controls to arrive at state qi after transition k. This set
has to satisfy the following constraints:

• ∆q must be such that qi − ∆q equals to an element of the discretized state space. This
restriction includes already the full battery constraint and the empty battery constraint.

• In Section 2.3, we give the explicit relation of the energy flow from/to the battery in function
of the speed. Here, we need the inverse relation to get our approximation of ∆s(∆q). Let
us suppose that the vehicle drives with a minimal speed of 50 km/h, and a maximal speed
of 130 km/h. These are reasonable assumptions that are confirmed not to be binding in the
following. Let us choose a discretization of this speed interval. Now, for each time stage k, we
can compte the value ∆q for driving a constant speed v during the interval from k to k + 1.
The inverse relation gives the desired ∆sk(∆q). In Figure 3.3, we have fitted a polynomial of
degree 4 with the MATLAB function ‘polyfit’ to some data from this inverse relation. The
residuals are small, thus we use this approximation for the relation ∆sk(∆q). By the bound
on the speed interval, we define the relation ∆sk(∆q) on a limited interval. The value of
feasible controls Uk(qk) are thus limited additionally to be in the range where ∆sk(∆q) is
defined.

Now, all elements are defined to establish the forward DP recursion solving the deterministic
shortest path problem, given by Algorithm 1. Its output µ∗k is the optimal ∆q we associate to a
state q at time stage k + 1. A backward recursion, starting at the terminal state T, at the stage it
is first reached, allows to establish the optimal control ∆q for ny stage.

3.3.2 Using the Slope of the Cost-to-go

An obvious default of the above algorithm is that good properties of the cost-to-go function as
well as the continuity of the state space are not used. As stated at the beginning of this Chapter,
we want to solve the deterministic problem efficiently to be able to solve this problem many times
repeatedly.

22



Below, we develop an necessary optimality condition for the maximization problem that has to
be solved for all states, at any stage of the forward recursion in the algorithm. This leads to a DP
forward algorithm that is potentially more efficient and more precise than Algorithm 1.

Bertsekas & Tsitsiklis (1996) give the analog of the Bellman equation for continuous state spaces
with differentiable cost-to-go functions, called Hamilton-Jacobi equation. Using the notations from
Section 3.1, it is given by

0 = min
uk

(gk(xk, uk) +∇xk
J∗k+1(xk)T fk(xk, uk)). (3.10)

Optimal control at stage k for is approximated by

u∗k(xk) = arg min
uk

(gk(xk, uk) +∇xk
J∗k+1(xk)T fk(xk, uk)). (3.11)

Notice first that these equations are given for the case of a backward recursion in a minimization
problem, and we would like to apply them to a forward recursion in a maximization problem. We
have to proceed as follows to apply the equation:

• We are treating a maximization problem. In our problem formulation, the optimal cost-to-go
function J∗k+1(xk) is thus given by −s∗k(qk+1).

• We want to solve the equation for a forward recursion. We have seen in Section 3.1 how to
transform the backward recursion for a deterministic shortest path problem into a forward
recursion, and vice-versa. The directions of the arcs in the graph from Figure 3.1 have to be
inverted. This is, the transition function fk(xk, uk) from Equation 3.11 must not be replaced
by the transition from xk to xk+1 in our case, but by the inverse transition f̃k from xk+1 to
xk. To adapt the Hamilton-Jacobi equation correctly to the case of a forward recursion, we
must thus use qk = f̃k(qk+1,∆q) = qk+1 −∆q to express the transition at stage k.

• gk(xk, uk) is the cost that incurs at the transition, thus the negative distance traveled,
−∆sk(∆q).

We have thus

u∗k(qk+1) = arg min
∆q
{−∆sk(∆q) +∇qk+1

(−s∗k(qk+1))(qk+1 −∆q)} (3.12)

= −∆sk(∆q)− s∗
′

k (qk+1)(qk+1 −∆q), (3.13)

where s∗′k denotes the derivative of s∗k with respect to q.
Let us fix the value of q, as we do in the forward recursion algorithm, and discuss the ∆q that

minimizes the expression. We suppose that ∆sk(∆q) is continuously differentiable. The first order
optimality condition is obtained by setting the derivative of the expression with respect to ∆q to
0. Denoting by ∆s′k the derivative of ∆sk with respect to ∆q, this condition is

∆s′k(∆q)− s∗
′

k (q) = 0. (3.14)

3.3.3 An Algorithm using Hamilton-Jacobi Equation

In this subsection, we use the above property to deduct Algorithm 2 that works efficiently if we
assume that both s∗k and ∆sk are concavely decreasing functions, and that a feasible solution for
Equation 3.14 exists for all q where s∗k is defined.

Intuitively, the assumptions about concavity and decrement should not be far from being true:
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• The hypothesis that ∆sk is concavely decreasing expresses that if we decrease the energy flow
to the battery, the distance traveled during a time interval increases. The more we decrease
the energy flow, the slower the distance increases.

This is, if we consume more energy, the vehicle goes faster, but the more we increase con-
sumption, the less speed increases.

• The assumption that s∗k is concavely decreasing states the same for the distance accumulated
under optimal control, given a fixed t: First, the more the battery is empty at a given time,
the further the vehicle can be. Second, the more it is empty, the less the optimal solution
increases.

We remark that by concavity of ∆sk, we have additionally that the solution of Equation 3.14
is unique. Furthermore, by concavity as well, the first order optimality condition is also sufficient,
and that for each fixed qk, the solution of Equation 3.14 maximizes the Hamilton-Jacobi equation
of the problem.

Below, we give the missing ingredients to have the DP-forward Algorithm 2 that uses the
Hamilton-Jacobi equation:

• An algorithm that solves Equation 3.14 efficiently for all q : To solve the equation once, we
can use Newton’s method, as ∆sk is concave. By the given hypotheses, the solution has a
certain continuity with respect to q. If we solve the equation step by step for a decreasing
q, and we use the former optimum as initial value for the next iteration, Newton’s method
should converge using very few iterations.

• A method to estimate s∗′k : We use the scaled difference between the function values at two
neighbor discretization points as estimation.

• We have assumed that a feasible solution of Equation 3.14 exists. This is not the case if the
battery constraints are met. If the lower battery constraint is met, that is, if the Equation
3.14 has a solution such that qk+1 + ∆q < 0, we let ∆q = −qk+1 instead. In the case where
the upper battery constraint is met, let ∆q = qfull − qk+1. Other cases where no feasible
solution exists are discussed in Section 3.4.

3.4 Test Results

3.4.1 Summary of the Results

We have tested both above methods. The naive Algorithm 1 gives valid results for all instances
it has been tested. In the present form, it has the default that only a discrete set of charge
consumptions is feasible, and that the optimal solution is thus not found precisely. Moreover, it is
slower than Algorithm 2.

In turn, Algorithm 2 does not always give valid results. For some instances, it yields no valid
solution if applied as described above. We propose a slight modification within this Section. The
modified version is of better robustness, it performs faster than Algorithm 1 and slightly better
solutions are found.

We keep thus back the following from the present Section for the whole optimization problem:

• If we need to solve the present problem very rapidly and precisely, we will invest in improving
a method based on Algorithm 2, such that it performs robustly.
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Algorithm 2 DP-Forward Algorithm using Hamilton-Jacobi
Input: An instance of the long term energy management problem
Output: s∗k and µ∗k, for all k.
Use algorithm 1 to initialize, and for the transition at k=1
for k ∈ {2, . . . , N} do

min = arg mini{qi ≥ qmin + min Ũk}
∆qinit = 0
for j ∈ {f, . . . ,min} do

Determine µ∗k(qj) by solving s∗′k (qj) = ∆s′k(∆q.) Use Newton’s method with initial value
∆qinit.
Force µ∗k(qj) to satisfy the battery constraints.
∆qinit = µ∗k(qj).

end for
s∗k(q) = s∗k−1(q − µ∗k(q)) + ∆s(µk(q)). Interpolate s∗k−1 linearly for evaluation.
if s∗k(q0) > sf then

BREAK
end if

end for

• If we only need robustness, but the computing time and precision is not important, we will
use Algorithm 1.

• If need robustness and precision, but computing time is not important, we can either refine
the discretization of Algorithm 1 or develop a method to interpolate results.

In the following, we describe in detail how these results are found.

3.4.2 Parameter Specifications for Our Tests

We have implemented both algorithms in MATLAB. We have set the parameters of the implemen-
tation to the following values:

• The time interval between two discretization points is chosen to be 100 s. This is very short
for testing a long term optimization method. This causes that we have to optimize over many
stages, which makes that the disadvantages of the methods appear more clearly.

• The discretization interval between two points for the charge of the battery is chosen to be
20000 J. This is also small. The batteries having a capacity of 5 kWh, this step corresponds
to a grid of 901 points.

• In these first test, brightness and wind are varied discontinuously, and only at the end of time
intervals.

• For testing the methods, we do not necessarily have to optimize over the whole distance of
the race. We have chosen to maximize the distance that can be traveled during 6 hours.

3.4.3 Adaption Needed for Algorithm 2

Firstly, let us analyze Figure 3.3. The plots represent the graph of the set of functions s∗k, one plot
computed by Algorithm 1 and the other by 2, for a particular instance of the problem. The goal is
to see that Algorithm 2 does not give a valid solution for this instance.
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Figure 3.2: The plot on the left shows a polynomial least square fit to values computed for the
function ∆st(∆q), with parameters t = 3600, s = 0, B = 0.8 and wx = v + 10. The blue graph
maps data points, the red one the corresponding values of the polynomial of degree 4. This seems
to approximate data nicely in the investigated cases, as in the one mapped here. On the right, the
corresponding residuals are plotted. For the most relevant values of ∆q close to the center of the
intervals, they are close to 0. In fact, they are in the scale of 0.1 % of the distance traveled during
the time interval.

From the visual impression, the function s∗k, describing the maximal location reached at stage
k in function of the battery charge, is effectively decreasing and concave if it is computed by
Algorithm 1. However, if we compute the same by Algorithm 2, for values of k larger than some
value, s∗k oscillates. The more k increases the more these oscillations are important. Notice as well
that once for a certain k, in a certain region of q an oscillation is visible, it is reproduced in the
graph of s∗k+1.

Explication of the Lack of Robustness

Let us justify that it is inherent to the present method that once there is a perturbation it is
reproduced. Consider that we have a small error in the value of s∗k(q). In this situation, we estimate
the derivative s∗′k (q′) for some neighbor q′ of q by a difference between s∗k(q) and some other neighbor
s∗k(q

′′). However, s∗k(q
′′) and s∗k(q) are close to each other by continuity of s∗k and the difference is

small, and divided by the small |q′′−q|. The error on the estimate of s∗′k (q) is much more important
than the one on s∗k(q) that caused it. However, we determine the optimal control using the estimate
of s∗′k (q) in order to solve Equation 3.14. A perturbed s∗′k (q) causes a perturbed control, which causes
that we loose control over the error on s∗k+1.

Moreover, initial small perturbation can be influenced by various factors. Namely, we cite that
Newton’s method is approximative, and that the derivative s∗′k (q) is estimated from a discrete set
of points.

These arguments underline that the present phenomenon is not surprising.

Improvements

We consider only a quick and simple improvement of the method. The reason for not working out
such improvements in detail is that we want to focus our ulterior work on more general issues of
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Figure 3.3: This plot on the left shows the values of s∗k(q) computed by Algorithm 1 for each k, for
an instance of the problem. The data points for one fixed time point k are connected by a line. For
q and k where the function does not exist, the values are set to 0. The fact that s∗k(q) < sk+1(q)
yields that the plotted lines are ordered ‘bottom up’ with increasing k. Notice that the function s∗k
seems to be effectively concavely decreasing, as we suppose it for Algorithm 2. On the right, s∗k(q)
is computed by Algorithm 2, for the same instance. Once the solution has small perturbations, it
begins to oscillate. This algorithm needs to be changed such that its solution is valid more likely.

the optimization problem, and improve this method only in the case it is needed. However, the
present improvement of Algorithm 2 shows that the robustness of this method can be improved
already with small adaption, and that the approach can be powerful.

Instead of using at each stage Algorithm 2 to find the optimal control, we use Algorithm 1
at some stages. For the variant where Algorithm 1 is used at the initial stages 1,2,3,4,5, and at
the stages 10, 20, 30, . . . , and Algorithm 2 at all the other stages, we have found no instance
of the problem where the above phenomenon has become visible. However, this has not been
systematically tested.

The s∗k computed by the new method, for the same instance where we have the above oscillations
with the above method, are plotted in Figure 3.4.

3.4.4 Analysis of the Computed Solution

In this subsection, we compare the controls of the system that we obtain using both Algorithm 1
and the improved version of Algorithm 2 on a particular instance of the problem. In Figure 3.5,
the computed charge gain per stage and the distance traveled per stage are plotted for each one of
the algorithms. The details of this instance are summarized in Table 3.1.

Let us analyze the result in two stages. First, we consider the particularities that distinguish
the outcome of the two methods. Second, we consider the nature of the solution itself that has
been computed.

Differences of the Solutions

The principal difference between the two computed solutions lies in the fact that Algorithm 1
allows only a discrete set of controls. In fact, the control space is discretized. Two grid points
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Figure 3.4: These plots show the values of s∗k(q), for a given instance of the problem, for each k. The
solution on the left is computed by Algorithm 2, the solution on the right by its modified version.
The solution of the improved version is visibly less perturbed than the solution of Algorithm 2. As
the solution computed with Algorithm 1, s∗k(q) appears to be decreasing and concave, for each k.

Stages Front Wind Speed Brightness Factor
0-49 +5 0.8
49-96 +10 0.8
97-148 -10 0.8
149-178 +10 0.8
178-216 0 0.8

Table 3.1: Details of the problem instance thats results are plotted in Figure 3.5.

have a distance of 20000 J. At each stage k, the solution for the charge gain per stage ∆q can only
take values such that qk + ∆qk is a grid point again. Algorithm 2 has the same restriction, but
only each tenth stage, when Algorithm 1 is used to compute the optimal control. We see in both
plots that the solution of Algorithm 1 approximates the solution of Algorithm 2. The fact that
the independent methods to compute the optimal solution have trajectories that follow each other
closely is an indication that the computed solution is close to the optimal one.

Analysis of the Computed Solutions

The computed solutions plotted in Figure 3.5 are as expected. The computed control trajectories
have the following properties:

• At all stages where the front wind increases discontinuously, the computed speed diminishes
discontinuously.

• During the day, the apparent solar irradiance increases until noon, then diminishes again. If
other environmental factors are constant and a constant speed is maintained, the charge gain
increases until noon, then decreases. We now that under these circumstances, the optimal
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Figure 3.5: On the left, the charge gain trajectories computed by the Algorithms 1 and 2 for some
instance of the problem are given in function of the stage. Approximately, both algorithms give the
same trajectory. However the control space for Algorithm 1 is discrete, in the present version. This
gives the graph mapped in red. For algorithm 2, the control space is continuous. At any stage when
the Algorithm 1 is used, the algorithm optimizes only among a discrete set of controls. At these
stages, the computed control is the same as for Algorithm 2. The right figure shows the computed
speed trajectories that correspond to the left charge trajectory. Again, the red trajectory is the
result Algorithm 1. Even if a constant speed should be maintained, the algorithm can not adapt
charge consumption continuously.

strategy is close to maintaining a constant speed, and rather the charge gain than the speed is
adapted. This can be observed in intervals where the apparent front wind speed is unchanged.

• With respect to the above point, we can observe that our model simplifications lead to the
situation that during these intervals, it is optimal to maintain a constant speed. We conclude
this from the fact that the charge gain values computed by Algorithm 2 are adapted at each
stage, such that a constant speed is maintained. The fact that the speed values play no direct
role in the computations by Algorithm 2, and that the trajectory of charge gain is adapted
such that the speed values stay exactly constant, is an indication that Algorithm 2 performs
very precisely, once is robust.

• The two approaches give average speeds that are very close one to each other. The solution
of Algorithm 1 has an average speed of 26.68 m

s , the one of Algorithm 2 is at 26.70 m
s , for

this instance. The fact that these independent computations with two different methods lead
to results that are so close is an indication that this solution is close to the optimum.

These considerations lead to the conclusion that Algorithm 2 gives very precise results for
instances where it performs robustly. In turn, Algorithm 1 is robust and gives correct results, but
the precision is limited by the discretization of the state space.

3.4.5 Computing Time

We have evaluated the computing time consumed by each one of the methods for some instance
of the problem. The MATLAB program has been run on a machine with a Pentium 4 2.2 GHz
processor, and with 512 MB RAM. The results are graphically represented in Figure 3.6.
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Figure 3.6: In these figure, we compare the computing time per stage for both Algorithm 1 and 2.
The figure on the left maps the values for Algorithm 1, the the figure on the right is the analogue
for Algorithm 2.

Analyzing the graphs leads to the following results:

• Computing time per stage for Algorithm 1 increases until a certain stage is reached. Then
it is approximately constant. This is because for the first stages, s∗k is not defined for all q.
In fact, it is defined for states inside the interval [qmin, qfull], and qmin > 0. Therefore, the
maximization of s∗k at these stages does not have to be done for all states. Once qmin reaches
zero, the number of stages where s∗k has to be computed does not change anymore.

• The peaks on the plot for Algorithm 2 are at the stages where Algorithm 1 is used. At these
stages, it reaches approximately the same values as Algorithm 1.

• Let us neglect these values for this analysis. The increment of the computing time in function
of k is also visible here in the same range of values, but less drastically than for Algorithm
1. This indicates that the number of states where the solution has to be computed does less
affect its performance than the one of Algorithm 1. In fact, once an optimal ∆q for some
states has been computed, the algorithm can determine the solution of neighbor states very
quickly.

• For stages where both algorithms reach a stable computing per stage, Algorithm 2 is approx-
imately 6 times faster than Algorithm 1, if we use the methods with the current parameters.
This difference could increase if the resolution of the state space is increased. In fact, com-
puting time for the Algorithm 2 depends less on the number of states where the optimal ∆q
has to be found, for the reason discussed in the point above.

Validation of the Solution

In this last point, we give another indication that the present results are valid solutions with respect
to the current model, and that they are close to optimality.

First, we have simulated the 6 hours journey by controlling the vehicle according to the optimal
speed at each stage, as generated by both Algorithm 1 and Algorithm 2. The optimal charge profile
that corresponds to this speed profile in the approximation used by the Algorithms is such that the
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Figure 3.7: This Figure serves to analyze the battery charge values that we obtain by simulating
the race by using the optimal speed computed for each stage. The figure on the left is a plot for
values from some instances of Algorithm 1, the Figure on the right is the same for Algorithm 2.
For both figures, the blue trajectory is the charge trajectory that in the approximations made by
the algorithms corresponds to the gives speed trajectories. The red trajectory is the outcome of
the simulation by the present model. This model uses an estimated location to determine solar
irradiance. The green trajectory is the outcome from the simulation that uses a model where solar
irradiance is computed at the true location of the vehicle.

battery is empty after the journey. If the charge profile computed by the algorithm corresponds
to the charge profile that is issued by our simulation, this is an indication that the assumptions
made by the algorithm are close to the model. This in turn indicates that the control is close to
the optimal control among all controls that that are possible solutions an algorithm can furnish.
Especially, for Algorithm 1, if all approximations would correspond to the model, the outcome
would be exactly the optimal solution of the problem.

Let us look at Figure 3.7. We compare the approximative trajectory that is used by the
algorithms, plotted in blue, to the trajectory generated from the simulation on the corresponding
model, plotted in blue.

The trajectories correspond approximately. At the end of the race, the approximate difference
between the values is 100000 J for Algorithm 2, and 10000 J for Algorithm 1. This is, in the first
case, less than 1 % of the whole battery charge, in the latter case less than 0.1 %. This is in the
scale of the approximations made by approximating ∆s as a polynomial in Deltaq. This supports
the validity of the results.
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Chapter 4

The Stochastic Problem:
Long Term Energy Management

In this Chapter, we introduce uncertainty into the model. Our approach is complementary to the
one followed by Meyer (2005). He introduces a realistic model for gradient driving forces, the legal
speed constraints that are to be respected during the race. However, he neglects the fact that we
are in general not able to precisely predict the relevant weather variables for the duration of the
race. He shows that under the assumption that a prefect deterministic weather forecast is available,
the long term energy management problem he formulates can be solved quite efficiently.

For a first study of the effects caused by uncertainty in our knowledge about future weather, we
keep the model of the car, the dynamics and the environment as simple as formulated it in Chapter
3. Our purpose is to study the following questions that arise with respect to the long term energy
management problem:

• What should we do if the weather forecast changes?

• How can we know immediately the optimal speed if the weather changes suddenly?

• How to deal with the fact that information about wind predictions and weather predictions
might be correlated.

• How to take into account the fact that we know that information gains in reliability when
approaching a future time point? More precisely, this question expresses the following: Con-
sider the time points t0 < t1 < t2. How to take into account at time t0 that the decisions at
time t1 will be based on a weather forecast for t2 that is systematically more precise than the
one we have at t0?

• As last, we have to consider that weather forecast for different time and location points may
be interdependent? This is, if we assume at (t0, s0) that the weather at (t1, s1) is bad, the
weather forecast for (t2, s2) is different than if we assume that the weather at time (t1, s1) is
good.

We organize this discussion as follows. In Section 4.1 we explain briefly our notion of weather
forecast. However, studying weather forecast in depth is beyond the scope of this work. We describe
in Section 4.2 the parametric model of weather information that we assume to be valid for the rest
of this Chapter. We hope that by using this model, the properties of the optimization problem are
similar to the ones arising when using a more accurate model. In Section 4.3, we formulate the
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optimization problem with respect to this model. In Section 4.4, we introduce stochastic DP, and
in Section 4.5, we give an algorithm that solves the optimization problem for a fixed information at
a fixed initial state and time. This algorithm is most likely inaccessible for computation, especially
because without further considerations, it has to be executed many times during the race, in order
to update the optimal solution. We introduce thus approximation schemes at different levels of
accuracy and complexity in Section 4.6. Each of them uses deterministic approximation to solve
some subproblem, where the algorithms from Chapter 3 can be used. In Section 4.7, some initial
considerations for updating the solution with respect to changing information are done. This leads
to Section 4.8, where the outcome of a deterministic approximation is compared to the one of an
algorithm where stochastic optimization is done.

4.1 Weather Forecast

In this Section, we explain firstly what we know about weather forecast. This knowledge is based
on Linder (Private Communication). However, in this domain, a considerable amount of research
is to be done until we will be ready to participate at WSC 2007.

Secondly, we explain how we use in this work the knowledge we currently have in order to test
optimization methods.

As far as we know, there are two kind of information available that can be used to predict the
weather variables B,w and αw :

• The first are weather forecasts from local or global atmospheric models. These are models
that take into account measurements of various atmospheric variables at various locations and
that allow to compute a forecast of those variables for a period of some days, with decreasing
precision with evolving time. To quantify uncertainty, the initial conditions of the models are
slightly varied, and the predicted trajectories change.

• The second are results from data analysis from historical data. From the cumulative data
set for one factor such as B for example, a cumulative distribution for such a factor can be
derived. The characteristic frequencies of the process can as well be described by time series
analysis.

Pudney (2000) proposes to use this information in two phases. For the long term energy
management problem, he suggests to use the model forecast data for the first one or two days, as
if it would represent a deterministic knowledge of the weather. For the resting days, he suggests to
use the data predicted by a stochastic process estimated by time series analysis of climate variables.

Within the present Chapter, we will only use a stochastic model to predict the brightness
factor B. Wind speed and wind direction are set constantly to 0, for simplicity. We assume that
this introduces uncertainty in an appropriate way into the model, in order to test optimization
methods.

Our model for the brightness factor is only based on time series analysis, for the following
reasons:

• We have climate data analysis results from Australia from Boland (1995), but we have not
studied models for the accuracy of an Australian weather forecast so far. Studying those
would be beyond the scope of this work. Therefore, we are not able to formulate a stochastic
model based on weather forecast information at this stage of work.
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• The weather uncertainty is biggest for a long term forecast. Therefore we assume that consid-
ering an accurate model for long term forecasts is most important to point out the differences
between a stochastic and a deterministic information model. However, for long term forecasts,
Pudney (2000) suggests to choose climate data distributions in any case. To choose model
forecasts would therefore be hardly much more accurate. We hope thus that, for three and
four day forecasts, such a model has a similar ‘degree’ of uncertainty as we will meet during
the race, and that we obtain reasonable results when developing methods with this model.

4.2 A Parametric Brightness Factor Information Model

In this section, we present a stochastic model that describes the information we have about future
evolution of the brightness factor B. It is based on climate data analysis from Boland (1995).
We use it here for testing optimization methods, assuming that it represents uncertainty of our
knowledge about the future in an way that tests for the performance of the methods are accurate.

4.2.1 Prediction of the Daily Average Brightness Factor at a Fixed Location

As a first step, we consider a fixed location s. We take a look at the time series of the daily
integrated solar radiation on a horizontal surface, H. This quantity is proportional to the daily
average brightness factor, a quantity of importance to our model. We denote it by D, throughout
this report. In fact, D is defined by Duffie & Beckman (1980) as the ratio between H and the daily
integrated clear sky irradiation.

Boland (1995) identifies an annually steady periodic part for H that he subtracts from the time
series to analyze the series of residuals. He shows that, once a given non-linear transformation
is applied on the series of the residuals, it follows a first order autoregressive process. He derives
the following method to generate data that is ‘statistically indistinguishable from the original time
series.’ We will use this method, given right below, for predicting a distribution for future H,
respectively for the proportional future D.

• Let
aj ∼ N (0, 1− β2),

z0 = a0,

zj = βzj−1 + aj ,

where N stands for the Gaussian probability law. This random process for zj is the first
order autoregressive process described in Boland (1995). β is a location specific coefficient.
Boland (1995) gives the method to estimate it.

• For all j, compute

F (zj) =
1
2


1±

√
1− e

−2z2
j

π


 . (4.1)

The plus sign is for values zj > 0, and the minus sign is for values zj < 0.

• Consider the cumulative empirical distribution G of the residuals of daily solar radiation, after
subtracting the annually steady periodic part. Let xj be the values that solve G(xj) = F (zj).

• Adding the steady periodic part to xj , we obtain the requested series for H.
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In this work, we need to generate such data series that are similar to the real ones we will meet
in Australia to test our algorithms. However, not all data we need is yet available to us. Therefore,
we have solved these problems provisorily as follows:
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Figure 4.1: These are plots of values from the universal distribution function for D, as given by
Duffie & Beckman (1980). The parameter µ is the long term average of D, estimated from of
the location- and season-specific data. The values are computed using an approximate explicit
formula. We use this distribution function instead of a location specific empirical distribution of
D. The same, we use it as error distribution for the half hourly brightness factor, as described in
Subsection 4.2.2.

• For the autoregressive coefficient, Boland (1995) gives values for some locations close to the
race track. We use them for the needed locations without further considerations about their
validity.

• Instead of using the empirical distribution of H, we can use the parametric universal distri-
bution function for D that is given by Duffie & Beckman (1980). Its only parameter µ is
the long term average of the season-specific average D. This data is given in WORLD SO-
LAR CHALLENGE, AUSTRALIA, SEPTEMBER - OCTOBER 2005, Climate Information
Package (2005) for relevant locations. For some values of this parameter, we have plotted
this function in Figure 4.1.

According to Duffie & Beckman (1980), some authors claim this universal distribution to be
valid for all locations on the world, while others question it. To assume that it is approximately
valid is sufficient for our purposes.

Consider now the initial value x0 for H. We get z0 by applying the inverse of transformation
4.1. We generate zj starting from z0 by the autoregressive process, and get xj from it.
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If we generate D with the above method, we can use its distribution conditional to the value of
the current day as a stochastic weather forecast. In fact, we can generate an independent sample
of D up from the given initial value that is distributed according to that distribution.

This means that we have a first element that we can use to simulate the information situation
as it is in the race. At day 1, we have a stochastic weather forecast for a given location, for the
subsequent days. We use this forecast to control the vehicle at day 1. Then, we generate the
weather at day 2 according to the above method. This can be iterated until the race ends.

4.2.2 Prediction of the Half Hourly Average Brightness Factor at a Fixed Lo-
cation

A first improvement of the above model concerns its temporal resolution. The distribution of
brightness over the day matters for our optimization problem. The best temporal resolution of
brightness data measurements that is commonly available are half hourly integrated values of solar
radiation. We denote them by I.

Let us define the half hourly average brightness factor in analogy to the daily average brightness
factor, as the ratio between the half hourly clear sky radiation and the apparent solar radiation I.
We denote it by E.

Boland (1995) points out that the conditionally expected value of I, knowing D for the corre-
sponding day, can be found by integrating DIhoriz over the concerned half hour. In this terminology,
we have that the conditionally expected E, knowing D, is equal to D. To this conditionally expected
value, an independent error is added to obtain E. However, Boland (1995) gives no distribution of
the error.

In turn, Duffie & Beckman (1980) affirms that the cumulative distribution of E can be assumed
to be distributed as well according to the function plotted in Figure 4.1. The parameter µ is now
estimated as location- and season-specific average E.

We assume here that we can equally use this function as conditional distribution of E, knowing
D = d, with µ = d. This assumption is not claimed to be accurate, but again, we hope that it
produces data series that are ‘similar’ to the real ones.

4.2.3 Varying Location

So far, we have considered weather evolution for one given location. However, the vehicle moves in
space, an we have to consider effects of varying location. We will use the following simple model:

• To each day i, we associate one location si. This location is chosen in a region where we
estimate to travel during day i.

• For any time stage on day i, the brightness is predicted and also generated by the transformed
autoregressive process for the location si.

• The processes for the different locations are independent.

This choice can be justified as follows:

• We have chosen a model simplification where all environmental variables only depend on t,
and where the dependence on s is expressed through the dependence of s on t.

• The distance traveled in one day is around 800 km. Weather seems to have a certain continuity
not only in time, but as well in space. Without having studied this in detail, we will use one
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forecast that gives the average daily brightness factor at all locations visited during a day.
For this, the forecast from an ‘average’ location over all locations visited that day is used.
This expresses the continuity in space and time during a day.

• The night is a natural discontinuity of the process. This is used by the model. For each day,
we choose thus an average location for which an independent random process as described
above takes place, which gives an average brightness factor for the day at a location that
varies with the motion of the vehicle.

• The half hourly values are generated as if the location would be constant.

• This independence assumption does not restrict us in considering the prediction at the future
location. It is thus a conditional independence assumption.

While the independence assumption for time-location couple met in the evening of day k and
in the morning of day k + 1 limits the validity of the model, this is likely not the case for further
distant couples, because the location gap increases rapidly, and also the time gap becomes bigger.
For the cumulated average brightness factor that we expect to meet during a day, this independence
assumption might be quite likely close to accuracy.

4.2.4 Model for the Growth of Information

An accurate model of weather forecast information is not static. Let us consider the weather
forecast that we obtain at time t0, for a fixed location s. We predict the weather at time t2 with
the above model. This forecast contains random parameters for the integrated daily radiation for
the days between t0 and t2. The formulation of our optimization problem depends on when we
think these parameters become known. If we assume that the daily average radiation D for day i
becomes known at the evening of day i, the model is different than if we assume that a sufficiently
good prediction for it will be available in the morning of the day i, such that we can suppose it to
be known for optimizing control in the morning.

We make the following assumptions about the time when D and E become known:

• D the becomes known before the corresponding race day begins.

• E becomes known before the corresponding half hour begins.

In analogy to the assumption we have made for long term optimization for the deterministic
case, we assume that the brightness factor is constant at the value of E during the corresponding
30 minutes.

We consider thus the following brightness information model for a fixed location:

• Consider a system with time stages k ∈ {0, 1 . . . N}. The time stage 0 corresponds to the
current instant, t0. The time difference between two neighbor stages is 30 minutes. This
system expands over the days i ∈ {0, . . . Nd}. The day that contains the time stage k is
denoted by ik. To each day i, there is an associated location si.

• We have Nd independent transformed autoregressive processes to consider, the processes that
correspond to the locations si, i = 1, . . . Nd. For each one of these processes, the current day
value of D is assumed to be known, and is denoted by Di

0. The random variable for the daily
average brightness factor for the process i, j days after the current day, is denoted by Di

j .
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Figure 4.2: Each node of this graph represents a random variable that is relevant to describe the
evolution of the brightness factor at a fixed location i. The set of all variables relevant to our
problem formulation is a set of Nd copies of this graph. The nodes represented in the above row
represent daily average brightness factors. In the row below, half hourly average brightness factors
are represented. The position over the time axis where a node is placed gives the time point
when the corresponding random variable becomes known. For example, the nodes in the grey font
rectangle are the ones that are known at time stage k. If the arcs of the graph are regarded as non
oriented edge, the resulting non oriented graph gives the dependencies between two variables. They
are dependent if and only if they are connected. Conditionally to knowing some of the variables,
the graph of dependence becomes the subgraph generated by suppressing the known variables. The
direction of the arc gives the paths that we use to explain the variables.

Its distribution is defined by the initial value Di
0 and the autoregressive process specific to

location i. Notice that by our model assumptions, the brightness factor is treated as if the
vehicle would stay at location si during the whole day i. The prediction for the daily average
brightness factor that the vehicle will meet on day i is thus given by the random variable Di

i.

• The half hourly average brightness factors for the time interval after stage k, at location i is
denoted by Ei

k. Its distribution depends on Di
dk

, where dk is the day that contains the stage k.

Knowing the value of Di
j , the variables Ei

l for stages l on day j are conditionally independent.
This information situation is visualized in Figure 4.2.

• For the current time stage k = 0, the values

W0 = (D1
0, E

1
0 , D2

0, E
2
0 , . . . DNd

0 , ENd
0 )

are known, for all locations {s0, . . . sNd
}.

For each future time stage k > 0, we have the random variables

Wk = (D1
k, E

1
k , D2

k, E
2
k , . . . DNd

k , ENd
k )
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Figure 4.3: The nodes of this graph printed in red represent the variables relevant for a two day
journey. At day 0, the brightness factor information for location s0 is met by the vehicle. At day
1, this is the information for location s1. The arcs and nodes that are crossed out in red are not
relevant for the problem model. Notice especially that on day 0, the only information we can use
to predict the weather on day 1 is the daily average brightness factor D1

0.

for all relevant locations.

• For a time stage k, the function ∆sk(∆q) depends on k and on Edk
k , the random variable

describing the half hourly brightness factor for stage k at the corresponding location. In
some cases, we add the index Edk

k to denote the additional dependence of this relation, and
we consider thus the notation ∆s

k,E
dk
k

(∆q).

Once Edk
k is known, ∆s

k,E
dk
k

(∆q)) becomes deterministic for the long term energy manage-

ment problem.

The goal for the subsequent Sections is to give a stochastic DP formulation for the long term
energy management that allows to find the optimal control at each time, taking in account all
information that is available. In the next Section, we formulate this optimization problem. In
Section 4.4, we introduce stochastic DP, and in Section 4.5 we give a DP algorithm that solves the
problem.

4.3 Problem Formulation

In this section, let us consider one fixed situation during the race. We will suppose that we are at
a given time t0. At this time, the vehicle is at the location s0, and the batteries are charged at q0.
Moreover, we have a given information W0, the weather at the current time stage.

For the long term energy management problem, time is discretized. The length of one time
interval is 30 minutes, and we consider the time stages {0, . . . N}. The stage 0 corresponds to the
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time t0. N is chosen ‘large enough’ that we arrive certainly at the finish before N. We denote by
Nd the day at time stage N.

We formulate the long term stochastic optimization problem that uses the weather information
model from Section 4.2. For that purpose, we will use the state space as we had it for the determin-
istic problem. However, we have to add a weather state variable. At stage k, this variable should
contain all information we have about the future weather at this time. This is, all information
that we have about the weather at stage k, and all information available at time k that contributes
predicting the ulterior weather.

To do so would mean, for the most general model without any conditional independence as-
sumptions, to add W0, . . . Wk to the state space, following the description from Bertsekas (1995a)
for modeling the state space when forecasts are available. Thanks to our independence assumptions,
we can break the complexity of the state space:

Breaking the Complexity of the State Space

Wk has been defined as a 8 dimensional random variable before. In this paragraph, we justify
that it is sufficient to add a state variable the value W ′

k = (Ddk
dk

, Edk
k ) to the state space at stage

k. Besides the justification in words that is given below, the Figures 4.2 and 4.3 are helpful to
understand that all relevant information about the weather that the vehicle will meet in the future
with respect to a stage k is contained in Wk.

• Let us fix a day d such that the stages k and l belong to day d. Given a Di
d, Ei

k and Ei
l are

conditionally independent from all other information. For explication, have a look at Figure
4.2.

• Suppose now that we know Edk
k . Then ∆sk(∆q) is a deterministic function, given by the

model from Chapter 2.

• At stage k, also Di
k for i 6= dk becomes known. This knowledge adds some information to

the forecast of Di
i, with respect to the knowledge of Di

0 we already have. However, ∆sk(∆q)
depends only on Edk

k , which does not depend on Di
k. The information about Di

k can thus
be marginalized out without that ∆sk(∆q) would be affected. Mathematical rigor would
demand this justification to be formalized. However, for pragmatical reasons, we leave it like
this. If the fact that eliminating Di

k from the state space does not lead to information losses
is doubted, we declare it as an additional assumption.

For the above reasons, let us redefine the state variable Wk as Wk = (Ddk
dk

, Edk
k ).

4.3.1 Formulation of the Stochastic Long Term Energy Management Problem

Now, we can formulate the stochastic long term energy management problem that we intend to
solve.

The State Space

The state space consists in triplets (s, q, W ). At stage k, W describes the predicted average bright-
ness factor Ddk

dk
for the current day, and the predicted half hourly average brightness factor for the

current stage. It evolves over a discrete set of time stages {0, 1, . . . N}.
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The Transition

The transition of (s, q) is described by the deterministic ∆s
k,E

dk
k

(∆q). W decomposes into two state

variables D and E.
For the transition of D, we distinguish two cases:

• If k + 1 and k are on the same day, the corresponding daily average brightness factor D does
not change at transition between the stages k and k + 1.

• If k + 1 is on day d + 1, while k is on day d, Wk+1 is conditionally independent to wk. It is
given by Dk+1

k+1, knowing W0.

For the transition of E, we distinguish the same two cases.

• If k + 1 and k are on the same day, E is a random variable that depends on the known Ddk
dk

,
which is a state variable at stage k.

• If k + 1 is on day d + 1, while k is on day d, E = Ed+1
k+1 depends on Dd+1

d+1, which is unknown
at stage k, but becomes known at the transition to stage k + 1. In this case, we can describe
the transition of E conditionally to knowing the value of D at stage k + 1.

Control

The control of the system is ∆q.

Objective Function

The objective of optimization is to minimize the expected time.

As next, we introduce Stochastic Dynamic Programming, in order to give the algorithm solving
the problem.

4.4 Stochastic Dynamic Programming

Complementary to the introduction to deterministic DP in Chapter, we introduce here to Stochastic
Dynamic Programming, according to the theory from (Bertsekas & Tsitsiklis 1996). It is not
presented in its whole generality.

General DP formulations of discrete-time, finite horizon dynamic optimization problems have
a state x ∈ X that evolves over the discrete time stages 0, . . . N, according to given transition
probabilities. The transition probability to move from a state i at stage k to a state j at stage k+1
depend on a control u ∈ Uk(i), and are denoted by pk

ij(u). The transition from state i under control
u at the time stage k can be expressed equivalently by a transition function fk(i, u, w), where w is
a random variable. The transition from i to j under control u entrains a cost gk(i, u, j). The cost
is accumulated additively over N stages. At the stage N, a terminal cost gN (x) incurs.

The rule by which a control at time k, at state i is selected is denoted by µk(i). A policy is a set
π of such control rules for all stages, in the finite case, π = {µ0, . . . µN}. The expected cost-to-go
of the state i, under the policy π, at stage k is given by the recursion

Jπ
k (i) = E w[gk(i, µk(i), fk(i, µk(i), w)) + Jπ

k+1(fk(i, µk(i), w))]. (4.2)
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In the notation using transition probabilities, this is equivalent to

Jπ
k (i) =

∑

j∈X

pij(µk(i))gk(i, µk(i), j) + Jπ
k+1(j). (4.3)

The objective of Dynamic Programming is to find a policy π∗ that minimizes the expected
cost-to-go. This optima satisfy some form of Bellman’s equation, for the cost-to-go function

J∗k (i) = min
u∈Uk(i)

E w[gk(i, u, fk(i, u, w)) + J∗k+1(fk(i, u, w))], and for the control (4.4)

µ∗k(i) = arg min
u∈Uk(i)

E w[gk(i, u, fk(i, u, w)) + J∗k+1(fk(i, u, w))]. (4.5)

These notations can be simplified by dropping some indices if there is no ambiguity.
Finite horizon DP problems can be algorithmically solved by using the above backward recursion

on the cost-to-go.
A lot of methods for approximate DP are available, if exact resolution is not possible in practice.

They will be introduced step by step, when they are applied to a problem.

4.4.1 Solving the Long Term Problem

Below, we use the stochastic DP method to solve the long term energy management problem.
This is, we suppose that for the initial time stage, an optimal solution of the short term energy
management problem is available, in the form of a relation ∆s0(∆q). The purpose of long term
energy management is only to decide which value of ∆q is long-term optimal to be chosen at
this first step, and not to plan an optimal control for the rest of the race. This decision can be
made once the optimal expected time-to-go at time stage 1 is known for all states of the form
(s0 + ∆s(∆q), q0 + ∆q,W1). It is the ∆q that minimizes the optimal expected time-to-go at stage
1,

E W1 [J
∗
1 (s0 + ∆s(∆q), q0 + ∆q, W1)].

Until the end of this Chapter, we will thus discuss DP methods that estimate this time-to-go
for (relevant) states at time stage 1, but that do not concern in specifying the optimal control for
ulterior stages.

4.5 A DP Algorithm for Fixed Information, Initial State and Time

In this Section, we give a stochastic DP algorithm that solves the problem formulated in Section
4.3.

The State Space

To the states of the form (s, q,W ), an artificial terminal state T is added.

The Transition

Consider first the transition function fk of the system.
First, in the case where s + ∆s < sf , where sf is the finish location. In this case, the transition

function is

fk((s, q, Wk), ∆q) = (s + ∆sk,Wk
(∆q), q + ∆q,Wk+1 | Wk), (4.6)

42



where Wk+1 | Wk is the random variable that gives the weather state variable at time stage
k + 1, conditional to the knowledge that it’s value at stage k is Wk.

In the case where s + ∆s ≥ sf , the system transits to the terminal state T that is added to the
system analogously to the DP-formulation in Chapter 3. Once the state T is reached, it does not
change anymore until time N.

The Incurring Cost

Now, let us define the cost function gk. The approach is slightly different than in the deterministic
problem in Chapter 3, but the outcome is the same.

Recall that gk(i, u, j) = 0 is defined as the cost of a transition from state i to state j under the
control u. We distinguish 3 cases:

• If i = T, then gk(i, u, j) = 0.

• If j 6= T, we let gk(i, u, j) = 0, too.

• The only case where a cost incurs is if i 6= T and j = T. This is the transition when the system
enters from a state (s, q, W ) into the terminal state. At that transition, the cost corresponds
to the total time spent for the race. If the transition is at stage k, this cost is thus k∆t,
where ∆t is the length of a time interval, plus the fraction of the last time interval needed
until arrival at sf .

4.5.1 Backward Recursion for a Fixed Day

Let us first remark that the time horizon of this stochastic optimization problem is not a priori
specified. However, we are sure to finish the race within finite time, even in the worst weather
scenario. Let thus N be the time stage that corresponds to the time when we finish the race in
case of the worst weather scenario, by using with some arbitrary control.

We can now compute at each stage the expected cost-to-go for any state by a backward recursion.
For first, let us fix some day i, and some corresponding daily average brightness factor D = d. Let
us study the backward recursion formula at stages k + 1 and k that are both on the day i.

Under the assumption of a fixed brightness factor, Ei
k are independent random variables for all

k, and we do not need to consider the state variable D. Let us thus denote Ei
k simply by wk for

this discussion.
Let us denote by Ni the time stage at the end of day i, and by 0i the one at the beginning.

Assume that the optimal expected cost-to-go function J∗Ni
at the end of day i is known.

We have

J∗k (s, q, wk) = min
∆q

E wk+1
[gk + J∗k+1(s + ∆s, q + ∆q, wk+1)]. (4.7)

In the case where s + ∆s ≥ sf , we enter into state T and the cost-to-go is clearly 0. In that
case, the cost function gk has a nonzero value, as described above. In this case J∗k = gk.

Consider now the case where s + ∆s < sf . Then, gk = 0, thus we have

J∗k (s, q, wk) = min
∆q

E wk+1
[J∗k+1(s + ∆s, q + ∆q, wk+1)].

Now, let us set
J
∗
k(s, q) = E w[J∗k (s, q, w)]. (4.8)
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We can express the backward recursion 4.7 equivalently in terms of J
∗
k, instead of expressing it

in terms of J∗k .
In fact,

J
∗
k(s, q) = E wk

[J∗k (s, q, wk)] (4.9)
= E wk

[min
∆q
{E wk+1

[J∗k+1(s + ∆s, q + ∆q, wk+1)]}] (4.10)

= E wk
{min

∆q
{J∗k+1(s + ∆s, q + ∆q)}. (4.11)

Notice that given a fixed D = d, this allows to reduce the dimension of the state space to 2
again. However, the optimal control at stage k depends on wk, and we can not express the optimal
control in function of the state (s, q). Fortunately, this is no restriction of the performance of our
approach. According to the discussion in Subsection 4.4.1, the interest of the long term energy
management problem is not to compute an optimal control for each stage k, but only to determine
of the optimal expected cost-to-go at stage 1.

Given the cost-to-go at the end of the day i, J
∗
Ni

, the cost-to-go J
∗
0i

at the beginning of the day
i can be computed, under the assumption that D = d is fixed, once we can evaluate the expression
for the backward recursion (4.11).

Evaluation of the Optimal Expected Cost-to-go

Our next concern is thus to evaluate the expression 4.11. We use Monte Carlo integration. Let
y1, . . . yp be an independent sample of wk. This can be generated by the universal distribution
function from Section 4.2, knowing the parameter µ = d.

Then we approximate

J
∗
k(s, q) ≈

1
p

[ p∑

i=1

(
min
∆q
{J∗k+1(s + ∆sk,yi(∆q), q + ∆q)}

)]
. (4.12)

In the case where for some pairs yi and ∆q, the finish can be reached within the time interval
between k and k + 1, the cost-to-go J

∗
k+1 is simply replaced by the incurring cost gk in the right

member of equation 4.12.

4.5.2 Complete Backward Recursion

Now, we establish the backward recursion over all the stages 0, . . . N. The above daily recursion
allows to compute the optimal expected cost-to-go J

d
0i

, conditional to D = d, for any state (s, q).
This is the cost-to-go at stage 0i, conditionally to the state of the variable d at stage 0i.

Given the density fD(d), the expected cost-to-go at stage 0i is thus

J
∗
0i

=
∫

fD(d)Jd
0i

(s, q)db, (4.13)

for any fixed state (s, q).
Let us consider an independent sample y′1, . . . y′p′ , distributed according to fD. Using Monte-

Carlo Integration once again, 4.13 can be approximated by

J̃∗0i
(s, q) =

1
p

p′∑

i=1

J̃
y′i
0i

(s, q). (4.14)
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Algorithm 3 Stochastic DP-Algorithm
Input: Initial brightness values W0, for the locations that correspond to each day.
Output: The approximated cost-to-go at stage 0, J̃∗0 (s, q), for all states (s, q).
for i ∈ {Nd, . . . , 0} do

Generate a sample y1, . . . yp of daily integrated radiation Di
i, for day i and the corresponding

location si.
for j = {1, . . . p} do

for k ∈ {Ni, . . . , 0i} do
Generate a sample y′1, . . . y′p′ of half hourly integrated Ei

k, conditional to the known daily
integrated radiation yi.
for all states (s, q) such that there is a ∆q where J

yi

k+1(s + ∆sy′
j′
, q + ∆q) is defined for

all j′ do
Compute J

yi

k (s, q), using Monte Carlo Integration as in relation 4.12.
end for

end for
end for
for all states (s, q) where J

yj

0i
(s, q) is defined for all j do

Use Monte Carlo Integration as in relation 4.14 to find J̃∗i (s, q) = J∗0i
(s, q).

end for
end for

In this notation, J̃∗0i
is the cost-to-go approximation at the begin of day i we use for our

algorithm. The cost-to-go function at the end of day i− 1, J∗Ni−1
, is the same as J∗0i

. We can thus
pose

J̃∗Ni−1
(s, q) = J̃∗0i

(s, q).

This establishes the backward recursion over i, for J̃∗Ni
. Alternatively, we can denote J̃∗Ni

as J̃∗i , the
cost-to-go at the end of day i.

Algorithm 3 is based on this backward recursion. It serves to determine the cost-to-go at stage
1, which in turn can be used to determine the optimal control at stage 0. Notice that to simplify
the notations, Algorithm 3 is formulated to give the cost-to-go at stage 0 instead of stage 1.

4.6 Certainty Equivalent Approximation

Algorithm 3 becomes expensive in computational time once we consider random samples that are
sufficiently big and discretization grids for (s, q) that are sufficiently fine. However, it gives an
illustration of the complexity of optimizing the system using stochastic DP, with respect to an
accurate information model. This is the starting point for developing convenient approximation
methods. In this Section, we introduce two of them.

4.6.1 Certainty Equivalent Control

Certainty Equivalent Control (CEC) is a control heuristic for stochastic DP-problems that is de-
scribed in Bertsekas (1995a). It is to transform the stochastic problem into a deterministic one by
identifying each random variable w of the problem by its expected value w. This is, we replace the
transition function fk(x, u, w) by fk(x, u,w), for each state-control pair (x, u).
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No performance guarantee for CEC is theoretically given, but Bertsekas (1995a) points out that
CEC performs nice in many problems. For our case, comparing the performance of CEC to the
one of the stochastic DP method that is given right below, is the subject of tests in Section 4.8.

Using CEC, the problem to be solved becomes a deterministic DP problem as discussed in
Chapter 3. Up from a given time t0, a given location s0, a charge q0 and an initial weather for all
locations W0, E at time stage k is predicted at the expected value of the distribution given by the
present model, knowing W0.

4.6.2 Solving a Medium-Term Problem by CEC

This above approximation neglects all aspects of the discussion in this Chapter. We oppose it thus
to a sort of partial CEC where some aspects of the stochastic problem are kept.

Let us consider the optimization problem for one future day i, under the assumption that the
state variable Di

i = d is known for that day. In Algorithm 3, this assumption is made many times
repeatedly. For some fixed d, the cost-to-go at the beginning of day i, Jd

0i
, has to be computed up

from the given cost-to-go J∗Ni
.

We proceed analogously as we have divided the short term optimization problem and the long-
term optimization problem. To get started, let us approximate the one day horizon optimization
problem by Certainty Equivalent Control.

• The brightness factor is fixed for the whole day at d. Given initial charge and time, the
maximal traveled distance during day i, in function of the final charge, is computed using a
forward algorithm of Chapter 3. This is possible because the energy consumption does not
depend on the location s by hypothesis. We obtain a relation ∆si,q,d(∆q). We define that
computing such a relation is called solving the medium term optimization problem.

• Once this relation is given, the initial cost-to-go can be approximated by

J̃d
0i

(s, q) = J̃d
Ni

(s + ∆si,q,d(∆q), q + ∆q). (4.15)

• Integrating this with respect to d as in relation 4.14 allows to establish a backward recursion
over the days {1, . . . N}.

The corresponding algorithm is Algorithm 4. It has the same form as Algorithm 3, but the
daily backward recursion for all elements of the sample generated for D is replaced by the CEC
solution of the medium term optimization problem. We have implemented this algorithm. The
results are given in Section 4.8.

4.6.3 Remark Concerning the Energy Management from Nuon Solar Team

Meyer (2005) states that the Nuon Solar Team, the Dutch WSC Champion from 2001, 2003 and
2005, uses a three level model involving short-term, medium-term and long-term optimization to
plan energy management. Unfortunately, neither a motivation nor a discussion of this model seems
to be publicly available.

We fall back to this approach at this stage of work. The approach follows naturally from our
assumptions about weather information availability. Instead of an independent approach, as we
have conceived it, the above discussion can thus be viewed as an interpretation and a formulation
of this approach in terms of stochastic dynamic programming.
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Algorithm 4 Approximate Stochastic DP-Algorithm
Input: Initial brightness values W0, for the locations that correspond to each day.
Output: The approximated cost-to-go at stage 0, J̃∗0 (s, q), for all states (s, q).
for i ∈ {N, . . . , 0} do

Generate a sample y1, . . . yp of daily integrated radiation Di
i, for day i and the corresponding

location si.
for j = {1, . . . p} do

for all pairs j, q do
Solve the medium-term optimization problem to get ∆si,q,yj (∆q).
for all s such that J̃i+1(s + ∆s, q + ∆q) is defined do

J
yj

0i
(s, q) = J̃i+1(s + ∆s, q + ∆q).

end for
end for
for all states (s, q) where J

yj

0i
(s, q) is defined for all j do

Use Monte Carlo Integration as in relation 4.14 to find J̃i(s, q).
end for

end for
end for

4.7 Regular Policy Update

So far, we have always considered the optimization problem to decide for one given initial race
situation which speed is optimal. However, during the race, this problem is changing continuously.
One has to decide how often the solution has to be recomputed. To enable a frequent update of
the optimal control, the algorithmic challenge is to recycle as much as possible of the computations
used for solving a problem to solve ulterior ones. This question is important, but has not been
treated in detail so far.

However, we would like to compare the above optimization methods over the whole race. To
compare results that make sense, some policy update methods must be used.

To make this more accessible for computations using the present methods, we simplify our
model again, with the following additional hypothesis. Instead of considering a model where the
brightness changes half hourly, we force the brightness factor to stay constant during one whole
day. For this model, Algorithm 4 becomes an exact stochastic method.

At the beginning of each day i, the weather for this day is deterministically known. One iteration
of this policy update algorithm is thus as follows:

• Start at a state at the beginning of day i.

• Apply either the CEC or the stochastic method to determine the optimal ∆q for day i.

• Generate the state at the beginning of day i + 1, using the the optimal control. This is, the
transition of s and q are deterministic, and the weather Wi is randomly generated.

This is iterated until the finish location sf is reached.
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4.8 Method Comparison: Exact Method versus CEC Approxima-
tion

Using MATLAB, we have implemented two methods for controlling the stochastic system. As it
is described above, the optimal control is updated at each stage. The control is optimized at each
stage using both methods, the CEC approximation from Section 4.6, and Algorithm 4. In this
Section, we give an analysis of the results that are available at this stage of work.

In Subsection 4.8.1, we precise the open parameters for applying Algorithm 4. In Subsection
4.8.2, we do the same for the CEC reference method. This is followed by the discussion of the
results in Subsection 4.9.

4.8.1 Precision of the Usage of Algorithm 4

Let us first specify the open parameters for Algorithm 4.

Limiting the number of days

Figure 4.4: On this figure, the blue vertices rep-
resent states (s, q) where the cost-to-go J̃ is typ-
ically defined. The Figure in the first row on the
left shows a typical situation at stage N − 1. J̃
is only defined at states where there is a ∆q such
that the finish is reached for all yi. The green arcs
represent some feasible transitions for an elevated
yi, the red ones do the same for a lower yi. In
the first row on the right, the situation is repre-
sented for an intermediate stage. J̃ is defined for
all states where there is a ∆q such that either a
state in the ‘domain’ where J̃k+1 is defined, or the
location sf can be reached. At stage 1, J̃1 should
be defined for each state that can be reached with
a feasible control (red arcs), such that the controls
can be compared.

For stochastic DP, we are constrained to fix in advance a maximal time stage Nd where we start
the backward recursion on the cost-to-go. In Algorithm 4, stage 0 corresponds to the morning of
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the first race day, and stage k corresponds to the evening of the kth race day. In order to estimate
the expected cost-to-go correctly, Nd must be big enough that for all possible weather scenarios,
the optimal control leads to a solution where the finish is reached before the end of day Nd. We
have not studied it, but an Nd that satisfies this condition is likely to be 5 or more. However, we
would like to limit this number to 4 for the present tests, to save computation time. Nd = 4 is
chosen because in almost all situations, the race can be completed within four days. To enable this
choice, Algorithm 4 must be adapted.

In the formulation of Algorithm 4, we a the requirement for the expected time-to-go J̃k(s, q) to
be defined, which is that J̃yi

k (s, q) is defined for the whole sample (yi)i=1,...p of randomly generated
Bd. This requirement expresses the above statement that the cost-to-go can only be estimated
correctly if we arrive at the finish before the end of day Nd independently of the weather. If we
maintain this requirement when setting Nd = 4, we risk that the cost-to-go at stage 1 will not be
defined for states that are relevant to our optimization problem. See Figure 4.4 as an illustration
of this situation. Let us thus adapt the estimation method for the time-to-go, in order to have a
less strong requirement.

Consider y1 ≤ y2 . . . ≤ yp to be the ordered sample of Dk
k . There is an index l such that J̃yi

k (s, q)
is defined if and only if i ≤ l. This can be justified recursively, using the fact that for a fixed k and
∆q, ∆sk,yi

(∆q) ≥ ∆sk,yj
(∆q), for yi ≥ yj . Without justifying it formally, we refer to Figure 4.4 as

a graphical explication. We define J̃k(s, q) if and only if l ≥ p
2 , as

J̃k(s, q) =
1

2l − p

l∑

i=p−l

J̃yi
k (s, q). (4.16)

This is, J̃k(s, q) is estimated by a truncated mean. This estimator can biased in general for
states where l < p, namely if the distribution of J̃yi

k (s, q) is not symmetric. However, we hope
that the states where l < p, and especially where it is close to p

2 , are not often relevant to our
optimization problem. This is the case if the weather is good enough that the finish is reached at
least some hours before the end of day 4.

We fix the value of the sample size p = 300 each time we compute J̃ in Algorithm 4. In the
following, we will precise how to compute the involving J

Bd

k . As well, we will precise how the state
space is discretized, which means to precise the states where we compute J̃ . Furthermore, where
ever we need to evaluate J̃ between the grid points, we give an interpolation method. This will
establish completely the backward recursion.

Look-Up Table for ∆s(∆q)

In a naive implementation, one would, for each instance of the problem, for each time the policy
updated, for each state (s, q) at stage k, and for each generated brightness sample yi, optimize
the relation ∆sk,yi(∆q) by CEC in order to solve the medium-term optimization problem, using
an algorithm from Chapter 3. This involves very much computation. We propose an alternative
solution. We solve the medium-term optimization problem before we start executing Algorithm 4,
in order to represent the maximal distance ∆s in a look-up table, in function of some values of the
four factors influencing it. These values are chosen as follows

• ∆q: The range of feasible values of ∆q depends on the initial state q. It is given by the interval
[−q, qfull − q]. The maximal feasible ∆q, over all initial q is thus qfull, which is reached if
the batteries are initially empty. The minimal feasible ∆q is −qfull, reached if the batteries
are initially full. We will discretize the interval [−qfull, qfull] into 37 grid points. This is, the
difference between two neighbor grid points is 1 MJ.
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Figure 4.5: On this Figure, the blue vertices represent states (s, q) again. We consider a situation
with initial charge q. The black lines show the true battery constraints of the problem. The red
lines show the supplementary constraints that are introduced for a medium-term control ∆q. The
control labeled with ‘Not feasible’ would be feasible in an accurate formulation, in the present one,
it is excluded. This is to reduce the dimensionality of the grid where ∆s has to be computed. We
think that in most of the instances, the optimal control is not excluded.

• D : We discretize the interval [0.1, 0.9], where more than 99 % of the generated values for
D are in, into 81 grid points {0.1, 0.11, . . . 0.9}. Each generated sample point yi where we
evaluate ∆s is truncated to be one of the grid points.

• k ∈ {0, . . . Nd} : The time stages.

• ∆t : On one hand side, the medium term optimization problem is solved to give the maximal
∆s that can be traveled during the 9 hours of a day. However, in the case we have s+∆s ≥ sf ,
we need to evaluate the fraction of the day we need to arrive to the finish location sf .
Therefore, we need to store the intermediate solution of the forward recursion to solve the
medium-term optimization problem as well. Let tk−1 be the time at the beginning of the race
in the morning of day k. We store the maximal ∆s that can be traveled during the intervals
[tk, tk + ∆t], for ∆t ∈ {30 min, 60 min, . . . 9 h}.

To define the optimal solution of the medium term optimization problem in function of ∆q
only, and not additionally in function of q, contains one further simplification that we have not
mentioned so far. Let us give the initial charge q and the consumption ∆q. When computing the
optimal solution ∆s(∆q), we need to specify the upper and the lower battery constraint. We can
assume that q and q +∆q satisfy those constraints. However, we do not know if the constraints are
far from q + ∆q or not. See Figure 4.5 as an illustration. However, most of the good solutions of
the medium-term problem vary in between the values q and q +∆q. We exclude thus solutions that
limit this bounds, to ensure that we consider only feasible controls, risking that for some instances,
the optimal solution could be excluded.

Once the medium-term optimal values for this grid are specified, no medium-term optimization
has to be done anymore. Instead, the optimal solution for the medium-term problem for grid
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points can be read from the table. For points outside the grid where we need to evaluate ∆s, we
will specify appropriate interpolation methods in the following.

Discretizing the State Space and Computing J̃d
k (Case s + ∆s < sf)

The state space of the problem is discretized as follows:

• The state variable q is constrained to be in the interval {0, 1 MJ, 2 MJ, . . . qfull}. This is a
grid of 19 values. Values of ∆s for all ∆q that we need for the transition between these grid
points are directly available in the above look-up table.

• The time-to-go is computed at locations s on a grid of 32 points, {s0, 100 km, 200 km, . . .
3000 km,sf}. This is a coarse resolution. However, at each step of the backward recursion
evaluation the function J̃k+1(s + ∆s, q + ∆q) is quite precise. In fact, the optimal speed
does not vary much during the race, thus time-to-go is close to linear with respect to s,
for a fixed q and a fixed time stage. We can therefore use linear interpolation to evaluate
J̃k+1(s + ∆s, q + ∆q) quite precisely.

Computing J̃d
k (Case s + ∆s ≥ sf)

Let us consider the case where s + ∆sk,yi(∆q) ≥ sf . In this case, the corresponding cost-to-go is
the time we have needed to complete the race. We have thus to evaluate the time we need for
∆s = sf − s. ∆q, Bd and k are fixed values of the grid. As we have stated above, we have an
approximately linear relation between ∆s and ∆t. Now, we use the fact that its inverse is linear,
too. Consider the smallest ∆t of the grid such that s + ∆s ≥ sf , and the biggest one such that

s + ∆s < sf .

In between the two values of ∆t, we can interpolate linearly to get approximately the time-to-go.

Optimal Control

With these specifications, we have all elements to compute the backward regression on the time-to-
go at all states on the grid where it is defined. Suppose that we are in a race situation at stage k, at
state (s, q). We can compute the time-to-go at stage k + 1, then evaluate the estimated time-to-go
function J̃k+1 for each feasible control ∆q at stage k. We choose the control that minimizes this
time.

Updating the Control

This algorithmic procedure is repeated at the beginning of each day k, and we obtain an optimal
control ∆q. Applying this control, we arrive either to the state (s + ∆s, q + ∆q), the initial state
for the optimization at stage k + 1, or to the finish.

4.8.2 Precision of the Usage of the CEC Reference Method

As a second method, and as a reference for the above method, we implement the CEC approxi-
mation described in Section 4.6. To ensure the solutions of the two methods to be comparable,
the discretization of the state and the control space, as well as the discretization for D are chosen
equally in both methods. The values for the transition function are computed up from the same
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look-up table we use for Algorithm 4. This entrains that the set of feasible solutions for the medium
term optimization problem as it is described above for Algorithm 4

In the CEC approach, the brightness factor is fixed at its expected value. The expected value
of the brightness factor is computed by taking the mean of the same sample y that we use for the
Monte Carlo integration over J̃d

k in Algorithm 4.
For the resolution, we use a forward DP method from Chapter 3. Given the discrete domain

of the charge variable, we are constrained to use Algorithm 1, as Algorithm 2 needs a continuous
control space to be a useful method.

The optimal control is updated by repeated execution of the method at the beginning of each
day, as it is done for Algorithm 4.

4.9 Result Comparison

We generate a sample of 100 weather situations and optimize the control with both methods as
described above. We compare the time needed to complete the race with each one of the two
approaches. The resulting time differences are plotted in Figure 4.6.
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Figure 4.6: In the plot on the right hand side, tCEC − tstoch is plotted against the differences
of the total time needed to complete the race, for each sample. The tendency to positive values
stands for a better performance of the CEC algorithm. However, the difference is small. Notice
that especially for samples that have an optimal total race time close to 36 hours (the race time on
4 days), the CEC method performs better. On the left hand side, the histogram for the same time
difference is given.

Let us define tstoch as the time needed to complete the race when using stochastic method for
some instance, and tCEC the analogue for the CEC method. Let us suppose that the time difference
between the two approaches are normally distributed, with unknown variance. We are surprised
to see that the CEC method, that is designed as an approximative, suboptimal solution, performs
significantly better than Algorithm 4. With confidence 95%, the expected value of tstoch − tCEC
for the whole race lies within the interval [0.2min, 3.5min].

Notice that this time is practically nothing, with respect to the race duration of more than 30
hours, and notice as well that the confidence interval is very short. These facts are important to
be analyzed later on, but first, the surprising outcome needs conceptual explication.
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Possible Explications of the Suboptimal Performance of Algorithm 4

Without having made the simplifications in the present section, Algorithm 4 would be designed
such that it minimizes the expected value of the time to complete the race. The fact that the
expected time of its solution is significantly estimated to be superior than the one we obtain with
a suboptimal approximation must thus be explained by a simplification that we have made.

It can not be justified in an approximation of the model we have made to enable the look-
up table representation for ∆sk. In fact, both optimization methods we test are with respect to
this simplified model. This is, the stochastic DP algorithm furnishes solution that minimizes the
expected time with respect to this approximative model.

Therefore, there are only two possible explications left to justify the surprising outcome.

• The procedure to limit Nd = 4. For some samples where the race time is close to 36 hours,
states where the estimation of the time-to-go is biased might be relevant for determining
the optimal control. This biased estimation can lead systematically to a control that is
suboptimal.

• From Bertsekas & Tsitsiklis (1996), we know that the DP algorithm using a time-to-go func-
tion estimated by Monte-Carlo integration converges when the sample size converges towards
infinity. However, this does not automatically justify a good performance for our limited
sample size. Actually, we think that there is no reason that this could cause systematically
suboptimal controls, but we have no proof.

Discussion of the Concentration of the Difference around 0

Despite the fact that Algorithm 4 has, under the present assumptions, a suboptimal performance,
the important conclusions can be made from the present results:

• For most of the instances, the time difference between the two methods is concentrated very
close to 0. The fact that the approximations made in each one of the algorithms are of
‘different nature’ entrains that we would be surprised to have such a concentration far from
the optimal solution. Moreover, the fact that this concentration is principally encountered for
instances that have a total race time fairly smaller than 36 hours, in which case Algorithm 4
has a ‘bigger chance’ to perform well. Let us thus assume that for most instances where the
time difference is close to 0, both methods give solutions that are close to be optimal.

• The fact that the latter argument holds for most of the instances supports that the average
value of a CEC-optimal solution is close to the average value of an optimal solution in a
stochastic sense.

Stochastic DP envisages exact optimization with respect to the expected value of the solution.
However, on the present problem, the possible average gain with respect to CEC appears to be
very small.

Further analysis of stochastic DP on the present model could be done. However, we have few
hope for findings that improve the performance of the system that way. Instead, we will discuss
in the following chapter, which conclusions for the continuation of the present work are reasonably
made.
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Chapter 5

Conclusion

This master’s thesis sets the basis to develop energy management optimization methods for a solar
vehicle during the World Solar Challenge. The novel approach is that uncertainty about the future
weather information is modeled explicitly. To conclude this report, we will set our particular
findings in the context of the general problem that has been introduced in Chapter 1. This is the
subject of Section 5.1. In Section 5.2 we point out some research that we have initiated, but that
is not ready to be presented in this report. In the final Section 5.3, we discuss what research could
be done in future.

5.1 Discussion of the Results with Respect to a General Problem
Formulation

The three principal contributions of this work are:

• Our test results support the thesis that the optimal control computed by CEC-approximation
furnishes a solution for the long term optimization problem that is in average very close to
the solution obtained when applying a control minimizing the expected time-to-go.

• We have developed a model to express weather information stochastically. Moreover, if one
still wants to apply stochastic DP, we have developed the stochastic DP Algorithm 3 that
can be applied to optimize with respect to this present model, or can be adapted to a similar
parametric model.

• We have developed Algorithm 2, an algorithm that is based on the approximative resolu-
tion of the Hamilton-Jacobi equation. This enables to optimize the simplified, deterministic
long term energy management problem without discretizing the control space, and with a
diminished computing time.

In the following, we discuss the role these results play in the more general context we have
introduced in Chapter 1, and the consequences they have on the further research.

CEC-approximation versus stochastic DP

Let us justify with respect to the research project as a whole why we opt for focussing future research
on the CEC approach. The experimental results presented at the end of Chapter 4 support the
quality of optimization results obtained through a CEC approximation. However, the following
hypotheses have been made to obtain this result:
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• The CEC algorithm has been compared to the stochastic DP Algorithm 4 that only takes
into account the stochastic nature daily average weather variation. This is a coarse tempo-
ral resolution. We think that this approach would be sufficient to point out an important
difference between CEC and stochastic DP, if one would exist. However, we can not proof
this.

• The stochastic model we have used is not a model that contains all weather information we
have. The important information from atmospheric models is neglected.

• We use an environment model that is only time dependent. Especially, road gradients are
neglected.

• We neglect the discontinuities of the problem, as speed limitations and stops during the race
that are forced by the race rules.

It is difficult to estimate if this result is still valid with respect to the general long term opti-
mization problem. However, we have no indication that developing a stochastic DP method for the
general problem would bring a large benefit.

The quality of the solution is one criteria for the performance of a long term optimization
method. In Chapter 1, we have requested some supplementary properties for long term optimization
methods, namely

• it should be possible to update the solution rapidly, if long term forecasts change, and

• the solution should enable flexible reaction on unforeseen changes of short term conditions.

With respect to these requirements, we can argue as follows that the CEC-approach is favorable:

• After the presentation of the methods in Chapter 4, it needs no long justification to understand
that complexity of the long term energy management problem is drastically reduced using
the CEC simplification. Each time we wish to update our solution, this optimization method
has to be executed. We conclude that using the CEC approach, the solution of the long term
energy optimization can be updated more frequently.

• In the form the two methods are presented in Chapter 4, the ability to react on short term
condition changes represents a plus for the stochastic DP-problem. Effectively, it determines
a time-to-go at any state (s, q) at stage 1. This corresponds to a complete resolution of the
long term energy management problem. For any short term optimal relation ∆s(∆q) that we
can obtain for the time interval between the stages 0 and 1, we can immediately determine
the ∆q that minimizes the time-to-go. The present CEC forward algorithm determines the
time-to-go only at one single state at stage 1. However, we can apply the CEC algorithm
repeatedly, in order to determine the time-to-go at selected relevant states. In Section 5.2,
we point out a path to get started with this. An alternative would be to use a backward
CEC recursion on the (s, q) state space, as we use for stochastic DP. Such an algorithm would
be similar to the stochastic one, except that we would not have to integrate the time-to-go
solution at each stage over various weather scenarios. This indicates that even if the identified
disadvantage of the CEC method is completely removed, CEC still performs faster.

• Moreover, from a pragmatical point of view, developing a stochastic DP method ready to
apply would consume a lot of research resources. Firstly, it needs, more critically than a CEC

55



approach, an appropriate stochastic weather forecast model. Secondly, given its superior
complexity with respect to a CEC approach, we would be forced to invest more research in
efficient solution update methods.

From this global point of view, it is well justified to concentrate the next research steps on
the development of CEC methods. However, we should keep in mind that this approach has no
performance guarantee with respect to minimizing the expected time-to-go.

The Benefit from the Present Stochastic Weather Model

The stochastic weather information model we have developed here is full of assumptions that are
not validated at the moment. However, it gives an example of how to consider the structure of
dependence in a weather forecast.

This is less relevant to our optimization problem after having decided that we will use a CEC
approximation. However, it is still a practical tool to test any long term optimization method for
the present problem with respect to a stochastic information model.

Deterministic Forward Algorithm Solving Hamilton-Jacobi

As we will develop a CEC approximation, methods to solve the deterministic forward problem be-
come interesting. Here, we contribute a DP-forward algorithm using the resolution of the Hamilton-
Jacobi equation. The algorithm we have developed is not robust in the present form. However,
we have shown that a small adaptation increases its robustness considerably. We think that this
method has the potential that the present problem can be solved quickly and precision. Unfortu-
nately, the present method is developed for a problem formulation under restrictive hypotheses,
and we ignore what difficulties incur if we apply it to more general situations.

5.2 Initiated Research

We have initiated some further research that is not ready to be presented in this report. However,
we point out the issues in the follwoing:

• As we have decided to choose a CEC approximation to solve the long term energy management
problem, we should be able to relax some hypotheses on the forward methods, such that we
are able to take into account at least spatial dependency. Therefore, a model of road gradients
in function of the location is needed. We have GPS measurements of altitude at 100000 points
of the race track. We have done some first steps in filtering this data. However, the result is
not yet accurate. It should be fitted to map data.

• As we have remarked above, the present deterministic forward algorithms that are used to
solve the CEC problem compute the time-to-go at stage 1 for only one single state. However,
in order to preview unexpected short term condition changes, we must compute the time-
to-go for the various states that are reached at stage 1 with the different weather situations
that can incur between the stages 0 and 1. Therefore, we should determine relevant states
where the time-to-go is computed. Based on Bertsekas & Tsitsiklis (1996), we are designing
a system that iterates control optimization and forward simulation, a so called actor-critic
system, in order to identify relevant states where the cost-to-go has to be determined.
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• So far, we have applied the CEC simplification directly by identifying the weather with its
expected value. However, this simplification could also been applied at a higher level. In
fact, we can optimize the short-term and the medium-term problem for the various possible
weather situations w, to get ∆sw(∆q). Then, we can integrate this with respect to the density
of w, to get the CEC approximated ∆s(∆q). This would request to repeatedly solve the short-
term respectively the medium-term optimization problem. This is a possible precaution such
that CEC performs nicely with respect to a weather model with a better temporal resolution.

5.3 Organization of Future Research

The further challenge for long term energy management is:

• For accelerating the above repeated resolution of the deterministic problem at relevant states,
an algorithm that allows efficient computation of the CEC time-to-go approximation for
multiple states that are close to each others could be developed.

• If we see that computing time is critical, we should consider a method where the computations
made at a stage can be recycled to update the solution for the next stage. To do so, we can
use the property that the optimal control has a certain continuity with respect to the initial
state.

Besides, we should concern about short term optimization. A dynamic programming algorithm
to solve the short term energy management problem should be developed, possibly based on the
resolution of the corresponding Hamilton-Jacobi equation. The model for short term evolution of
the system can be discussed. Especially, we could consider a model that takes into account energy
losses due to characteristic fluctuations of the apparent wind speed around a short term average
value (Daidié 2005).

This serves firstly to optimize the short term control at stage 0, once the long term problem
is solved. Secondly, we should establish an empirical relation ∆s(∆q), in order to consider the
optimal solution of the short term optimization problem to define the transition function within
the long term energy management problem. This can be done using a neural network, as Bertsekas
& Tsitsiklis (1996) suggest for similar problems, or by other non parametric statistical methods.

The last important step we identify to be done nextly is to specify more concretely our infor-
mation situation and our information needs.

• Principally, this concerns the long term weather forecast. Using CEC, a detailed stochastic in-
formation model is not needed. However, it is important to analyze witch kind of information
from atmospheric models is available, how it can be got and how it can be used.

• We should develop methods such that we will be able to estimate the divers vehicle losses
empirically, once the vehicle is built.

• In collaboration with our engineers, we specify which measurements can be taken during the
race. We should discuss how they can be evaluated to influence our problem model.

The computing time and the time for method development we save by using CEC instead of
stochastic methods might be used to take into account the stochastic nature of the problem in a
more implicit way. For example, for cases we have different controls that lead to a CEC solution
that is close to optimality, we could systematize evaluation of chances and risks of the different
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arising long term energy management strategies. This analysis could be done by taking a set of
weather scenarios as possible forecasts, and analyzing the robustness of a control with respect to
these scenarios. Moreover, robustness could be understood with respect to events that are not
preview, but that quite often occur, as for example a flat tire or problems in the vehicle electronics.

A lot of research is left until October 2007. However, during this work, the direction to take
has become concrete.
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