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Going Bayesian? Why?
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Actually, no maximization is involved (most of the time)

Interesting for non-convex likelihood functions and weakly identified models

Works particularly well for latent variables (hybrid choice models, missing data,
utility)

3 of 54 B3l . .
ng Cornell University
@ daziano.cee.cornell.edu 2



Basics i / \ i logit: MH & Gibbs

9000000000

Going Bayesian? Why?

Bayes estimators are gradient free
Hessian free
Actually, no maximization is involved (most of the time)

Interesting for non-convex likelihood functions and weakly identified models

Works particularly well for latent variables (hybrid choice models, missing data,
utility)
Asymptotic properties coincide with MLE

3 of 54 B3l . .
ng Cornell University
@ daziano.cee.cornell.edu 2



Basics i i / ogit: MH & Gibbs

9000000000

Going Bayesian? Why?

@ Bayes estimators are gradient free
@ Hessian free

@ Actually, no maximization is involved (most of the time)

o Interesting for non-convex likelihood functions and weakly identified models

@ Works particularly well for latent variables (hybrid choice models, missing data,
utility)

Asymptotic properties coincide with MLE

Simulation-aided inference (repeated sampling), avoiding MSLE bias
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Going Bayesian? Why?

@ Bayes estimators are gradient free
@ Hessian free

@ Actually, no maximization is involved (most of the time)

o Interesting for non-convex likelihood functions and weakly identified models

@ Works particularly well for latent variables (hybrid choice models, missing data,
utility)

Asymptotic properties coincide with MLE

Simulation-aided inference (repeated sampling), avoiding MSLE bias

Bayes works for small samples, and data that are not samples
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Going Bayesian? Why?

Bayes estimators are gradient free
Hessian free
Actually, no maximization is involved (most of the time)

Interesting for non-convex likelihood functions and weakly identified models

Works particularly well for latent variables (hybrid choice models, missing data,
utility)

Asymptotic properties coincide with MLE

Simulation-aided inference (repeated sampling), avoiding MSLE bias

Bayes works for small samples, and data that are not samples

Neat intuition: scientific method + interval estimation problem + decision making
theory
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Uncertainty

Uncertainty, broadly defined, accounts for a world that is probabilistic in nature

The study of uncertainty has become a paramount topic for several fields in
economics, statistics, and psychology

Decision-making process of consumers: we need to take into account
behavioral uncertainty (random utility)

The introduction of Bayesian tools adds another dimension to handling
uncertainty
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The Bayesian approach

o We recognize that we are uncertain about the true state of the world
(which is expressed by the true parameters of the econometric model)

e Frequentist (classic) approach: true parameters are fixed but unknown
constants

e Bayesian: true parameters are random variables

e This notion is fundamental for Bayesian inference and is derived from the
concept of subjective probabilities
o Beliefs about the occurrence of a particular event (probability laws under uncertainty)
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The Bayesian approach cont'd

Bayesian approach: updating our vision of the world in the light of new evidence
(learning)
(YET ANOTHER) HISTORY OF LIFE AS WE KNOW IT...
k(=) [X,&l
Q) < il
O o oo [@D’q
R
HOMO HOMO HOKO HOHM HOHO
APRIORIUS PRAGHATICUS FREQUENTISTUOS SAPIENS BAYESIANIS
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Bayesian inference

o Parameters of a model (), P = Py) are assumed to have a prior statistical
distribution p(0)

e p(0) describes the probability distribution of @ before the observation of y

o The combination of the prior distribution p(@) with the information coming
in via the sample data y € ) determines the posterior distribution of the
parameters p(6ly)

Inference about the parameters in Bayesian econometrics: we can introduce prior
knowledge or beliefs and apply the rules of probability directly
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Bayes' theorem

The posterior and prior distributions are related following Bayes’ theorem
according to

p(y|0)p(0)

p(Bly) = o(y)

Note that p(y|@) = {(y; ) by definition.

Since p(y) is constant, for inference purposes Bayes' theorem is rewritten as

p(Bly) o< p(y|0)p(0)

—~
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The prior distribution p(8)

e A prior reflects knowledge and beliefs (notion of subjective probability)
@ Priors are usually chosen inside a family of parametric probability distributions

o The posterior distribution may become the prior for a subsequent problem

o Recall that p(0]y) x p(y|0)p(0)

o Conjugate family of distributions: the chosen prior is such that the posterior falls
within the same family

@ The use of Bayesian inference is particularly interesting for small samples
where the role of the prior distribution is potentially relevant
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The prior distribution p(@) cont'd

@ In general, even for small samples the relative importance of the prior
distribution is proportional to its precision

@ The effect of the prior gradually disappears as the prior variance increases
e The importance of the prior distribution disappears as the sample size increases

O A diffuse or noninformative prior is a distribution that is widely dispersed
@ A flat prior distribution with an infinite integral is called an improper prior
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Conjugacy

@ We know the exact distribution of the posterior: inference based on generation

of random numbers!

o (Equivalent of closed-form solution)

Posterior Likelihood Prior
Beta Binomial Beta
Beta Negative Binomial Beta

Gamma Poisson Gamma

Gamma Exponential Gamma
Beta Geometric Beta

Normal Normal (unknown mean) Normal

Inverse Gamma
Normal/Gamma
Dirichlet

Normal (unknown variance)
Normal (unknown mean & variance)
Multinomial

Inverse Gamma
Normal/Gamma
Dirichlet
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Let’s start simple: binary probit

@ (And let's make sure we adopt the same notation)

@ Random utility of 2 alternatives for consumer i:
Up = xuB+en
Up = xpB+ei

@ In a probit model, we can work with a one-dimensional normally distributed latent
variable:

ui ~ N((xi1 — xi2)'8,1)
@ Stacking individuals and considering a design matrix in differences:

u~ N(X3,1)
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Choice indicator and probabilities

e We don't observe u;j but y; ~ Bernoulli(P;q)
@ Choice probability (alternative 1):

Pi1 = Pr(Un > Up) = @ ((xi1 — xi2)'8)

o Likelihood:
0B yIX) = H[¢ (xi1 — xi2) B)[1 — ® ((xi1 — xi2)' B)]' ™

o Frequentist: we find Burp = arg max £(3; y|X)
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Gibbs

Toward Bayesian inference of the binary probit

e Start with the likelihood, different notation: ¢(3;y|X) = p(y|3, X)

v

p
e Add prior p(3), for example a normal prior: p(3) ~ (5’ 3)
p(8) = (27) HValF e (38— ) V56 - )

@ Posterior inference: p(Bly, X) < p(8)p(y|3, X)

e Sometimes p(8)p(y|B, X) is known (conjugacy)

@ Sometimes we don’t find a known posterior

15 of 54
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If we knew u then we find conjugacy

@ In this hypothetical case, the posterior of interest is p(3|u, X)
@ Bayesian inference: p(8|u) o< p(3)p(u|3, X)

o Normal prior (same as before): p(3) ~ N(B, V3)

@ If u were observed, we find a normal likelihood:

N

plul.X) = [T(2n) 2erp (50— X0 (s xi9))

i=1
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Binary probit: Deriving the posterior (aka algebra)

@ Prior times likelihood:

* p(B)p(ulB. X)
x exr><—(ﬁ BYV; M8 - [3)Hexp<—;(u;—><§ﬂ)’(u,-—x;ﬂ)>

e exp(

x exp< l[ﬁv +X'XB = BV B+ X'u) - (--)BD

N \

V(6 )+ (a-x9)(u - x9)

@ (We can drop additive terms that do not depend on (3)

17 of 54 = ' |
Qﬁus"] Cornell University
@ daziano.cee.cornell.edu &



Probit: Gibbs sampling CLV g it: M i git: MH & Gibbs

00000@0000000000000000

Binary probit: Deriving the posterior

Consider:
o Vg=(V5'+X'X)!
° 3=V, (vﬁ—lﬁ + x'u)
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We found conjugacy!

@ normal prior x normal likelihood = normal posterior

@ In this case:
p(Bly, X) ~ N (B, Vg)

@ Posterior draws can be generated from this known normal

@ Posterior mean (= Bayes point estimate):
B = (V51 +xX)? (Vglé + x’u)

@ Do you recognize the posterior mean? (think of your econometrics course)
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It's a (Bayesian) regression model!

e With a diffuse prior (large prior variance), the posterior mean becomes:
B = (X'X)"X'u

@ In fact, for an ordinary regression y = X3 + € with a diffuse prior, the posterior
mean is 3 = (X'X) !Xy

@ This result is not a surprise, we are assuming that we know u

@ This is where Bayesian concepts strike again: we will use a trick called data
augmentation

—~
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Going back to the model + a useful fact

o We know that u ~ N (X3, 1)
o But observed choices constrain the values of u

(1) |fy,'=1, then uy; = U;; — Uy >0
Q If y; =0, then y; <0

e The distribution of p(uly, X, 3) is a truncated normal
Q ui ~NXB,D(u>0)ify, =1
e uj NN(X:,@, 1)H(U,‘ S 0) if yi = 0

o How can we use this?

21 of 54
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Data augmentation

o A latent variable can be treated as an additional parameter
@ u is now a parameter, meaning that now our posterior is p(3, uly, X)

@ There is no conjugacy for this new posterior

Full conditional distributions
O p(Blu,y, X)
Q p(u|B,y, X)

e If each of the full conditional distributions have known priors (conjugacy) we can
use Gibbs sampling

22 of 54 58]\ . .
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Gibbs sampler for binary probit

@ Start with arbitrary u
e At iteration (g):

@ Update BV by drawing from p(B|u'®),y, X) (normal)
@ Update u®™) by drawing from p(u|B&*Y) y, X) (truncated normal)

@ Repeat G times, after a preset burn-in period (discarting initial draws)
@ The sequence {,B(g)} are draws from its posterior

@ Bayes point estimate:

1 G
IBBayes = E g;l ﬁ(g)
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A Swiss example

Axhausen et al. (2008) collected data on transportation choices in Switzerland using two
discrete choice experiments. SP 1 was a mode choice experiment (car/rail), wheareas SP 2
was an unlabelled rail route choice experiment:

Mode choice car - rail (main study version)

Travel costs: 18 Fr. Travel costs: 23 Fr.
Total travel time: 40 minutes Travel time: 30 minutes
... congested: 10 minutes Headway: 30 minutes
... uncongested: 30 minutes No. of changes: 0 times

o & Your choice — o

Route choice rail (main study version)

Travel costs: 20 Fr. Travel costs: 23 Fr.

Travel time: 40 minutes Travel time: 30 minutes

Headway: 15 minutes Headway: 30 minutes

No. of changes: 1 times No. of changes: 0 times
24 of 54 o « Your choice — o
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Binary probit rail route choice: burn-in draws travel cost

-006 -005 -0.04

-0.07

-0.08
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Binary probit rail route choice: converged draws travel cost
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Binary probit rail route choice: posterior density travel cost
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Binary probit rail route choice: frequentist vs Bayesian

Table: Binary probit estimates, Swiss value of time data

Bayesian estimates Classical estimates

post. mean post. st. dev | point estimate s.e.
ASC -0.014 0.025 -0.014 0.025
TC -0.069 0.007 -0.069 0.007
TT -0.033 0.002 -0.033 0.002
HW -0.022 0.001 -0.022 0.001
CH -0.667 0.023 -0.666 0.024

@ Diffuse prior ensures results are similar between Bayes and classical

28 of 54 58]\ . .
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Binary probit, prior influence on the posterior of Src

A Full sample (N=3501), prior mean = 0 B N=500, prior mean = 0

150

100

density
density

000001 [l o001 [T o1
diagonatar [ o1 Boor (11
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Effect of the prior on WTP (probit estimates)

TT  Full sample (N=3501), prior mean = 0

TC  Full sample (N=3501), prior mean = 0
! 300

150

0.15 -0.10 -0.05 0.00
betatc

VOTFull sample (N=3501), prior mean = 0

) 000001 [ 0001 [F o
diagonal.var
o000t [ oot [111
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More about WTP posteriors and Cls

Energy Economics 44 (2014) 166-177

Contents lists available at ScienceDirect

Energy Economics

journal homepage: www.elsevier.com/locate/eneco

Accounting for uncertainty in willingness to pay for environmental benefits @mmm

Ricardo A. Daziano **, Martin Achtnicht ®

* School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, United States
® Centre for European Economic Research (ZEW), L7,1, D-68161 Mannheim, Germany

ARTICLE INFO ABSTRACT
Article history: Previous literature on the distribution of willingness to pay has focused on its heterogeneity distribution without
Received 17 December 2012 addressing exact interval estimation. In this paper we derive and analyze Bayesian confidence sets for quantifying

Received in revised form 18 December 2013
Accepted 24 March 2014
Available online 15 April 2014

uncertainty in the determination of willingness to pay for carbon dioxide abatement. We use two empirical
case studies: household decisions of energy-efficient heating versus insulation, and purchase decisions of
ultra-low-emission vehicles. We first show that deriving credible sets using the posterior distribution of
the willingness to pay is straightforward in the case of deterministic consumer heterogeneity. However,

JEL classification: 3
when using individual estimates, which is the case for the random parameters of the mixed logit model,

p12 it is complex to define the distribution of interest for the interval estimation problem. This latter problem
Qs is actually more involved than determining the moments of the heterogeneity distribution of the willingness
to pay using frequentist econometrics. A solution that we propose is to derive and then summarize the
Keywords: distribution of point estimates of the individual willingness to pay under different loss functions .
31 of 54 Discrete choice models © 2014 Elsevier B.V. Al rights reserved. B3]\ ~ . .
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From binary to multinomial probit

o U; ~ N(X3,X), very hard to estimate in frequentist setting (GHK)
@ Ordinary regression with unknown variance has a normal-gamma conjugate posterior

@ Normal prior-posterior for 3

@ The gamma distribution works for o1

@ The Wishart distribution is the multidimensional version of the gamma and works
for &1

@ Sketch of Gibbs sampler for multinomial probit
@ Draw B¢t from normal
@ Draw 2D from inverse Wishart
© Draw U©*Y from truncated normal
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Combining Gibbs sampling and GHK

TRANSPORTATION SCIENCE imm

Vol. 48, No. 4, November 2014, pp. 671-683
ISSN 0041-1655 (print) | ISSN 1526-5447 (online) http://dx.doi.org/10.1287/trsc.2013.0464
©2014 INFORMS

Forecasting Adoption of Ultra-Low-Emission

Vehicles Using Bayes Estimates of a Multinomial
Probit Model and the GHK Simulator

Ricardo A. Daziano

School of Civil and Environmental Engineering, Cornell University, Ithaca, New York 14853, daziano@cornell.edu

Martin Achtnicht
Centre for European Economic Research, D-68161 im, Germany, achtni de

n this paper we use Bayes estimates of a multinomial probit model with fully flexible substitution patterns to
forecast consumer response to ultra-low-emission vehicles. In this empirical application of the probit Gibbs
sampler, we use stated-preference data on vehicle choice from a Germany-wide survey of potential light-duty-
vehicle buyers using computer-assisted personal interviewing. We show that Bayesian estimation of a multino-
mial probit model with a full covariance matrix is feasible for this medium-scale problem and provides results
that are very similar to i imulated likelihood esti Using the posterior distribution of the param-
eters of the vehicle choice model as well as the GHK simulator, we derive the choice probabilities of the different
alternatives. We first show that the Bayes point estimates of the market shares reproduce the observed values.
Then we define a base scenario of vehicle attributes that aims to represent an average of the current vehicle
choice situation in Germany. Consumer response to qualitative changes in the base scenario is subsequently
33 of 54 studied. In particular, we analyze the effect of increasing the network of service stations for charging electric
vehicles as well as for refueling hydrogen. The result is the posterior distribution of the choice probabilities that
@ daziano.cee.cornell.edu represent adoption of the energy-efficient technologies.
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Integrated choice and latent variable (ICLV) model

@ Choice model with latent variables z as independent variables

@ Just as utility (a latent variable), we need structural and measurement equations

o Structural parameters b (4 nuisance parameters W)
o Measurement parameters A (loading factors)

@ Painful to estimate in a frequentist setting

o Relatively simple in a Bayesian setting with a probit kernel
@ Posterior of interest p(3,X,b, ¥, Aly, I, X, w)
@ Don't forget about data augmentation! Augmented posterior:

p(U,z,8,%,b, T, Aly, 1, X, w)

34 of 54

[E3] - . .
ﬁ@ Cornell University
@ daziano.cee.cornell.edu 2



logit: MH & Gibbs

ICLV Gibbs sampler

We know the trick already: conditional on z, structural parameters b are estimated
using a Bayesian regression (normal sampling), we know how to deal with the
multinomial probit kernel

Sketch of ICLV Gibbs sampler

Draw B&+Y) from normal (regression)
Draw X(&*D from inverse Wishart
Draw U®*Y from truncated normal

Draw z(&11)

from appropriate normal
Draw b&*Y) from normal (regression)
Draw A€*1) from normal (regression)

Draw (611 from inverse Wishart
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ICLV sampler: all the details
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Inference on mode preferences, vehicle purchases, @msmk
and the energy paradox using a Bayesian structural

choice model

Ricardo A. Daziano

School of Civil and Environmental Engineering, Comnell University, 305 Holister Hal, Ithaca, NY 14853, United States

ARTICLE INFO

ABSTRACT

Artice history:
Received 31 January 2014

Received in revised form 24 February 2015
Accepted 26 February 2015

Available online 19 March 2015

Keywords:
Bayesian microeconometrics
Discrete choice model
Stuctual euation modeling
Energy paradox

Discrete choice modeling is experiencing a reemergence of research interest in the inclu-
sion of latent variables as explanatory variables of consumer behavior. There are several
reasons that motivate the integration of latent attributes, including better-informed mod-
eling of random consumer heterogeneity and treatment of endogeneity. However, current
work still is at an early stage and multiple simplifying assumptions are usually imposed.
For instance, most previous applications assume all of the following: independence of taste
shocks and of latent attributes, exclusion restrictions, linearity of the effect of the latent
attributes on the utility function, continuous manifest variables, and an a priori bound
for the number of latent constructs. We derive and apply a structural choice model with
amultinomial probit kernel and discrete effect indicators to analyze continuous latent seg-
ments of travel behavior, including inference on the energy paradox. Our estimator allows
for interaction and simultaneity among the latent attributes, residual correlation, nonlinear
effects on the utility function, flexible substitution patterns, and temporal correlation
within responses of the same individual. Statistical properties of the Bayes estimator that
we propose are exact and are not affected by the number of latent attributes.

© 2015 Elsevier Ltd. All rights reserved.
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Bayesian logit models

@ We keep normal prior for 3

@ Conditional logit posterior:

o 5[ exp(x;B)
p(Bly, X) o< exp ((ﬁ —B)Vs ) ,1;[1 ( >, exp(X] Uﬂ))

@ In general, there is no conjugacy when having an EV kernel (Bayesians prefer probit due to
conjugacy)

@ We cannot use Gibbs sampling either, we need to explore the parameter space using a
different tool

@ For completely unknown posteriors, Metropolis-Hastings (MH) is used
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Sketch of MH for conditional logit — at iteration (g):

© Generate a candidate draw 3™ from transition probability g(3"|3<%") (if
normal centered at 3<": random walk)

@ Evaluate prior at 8" and g

© Evaluate likelihood at 3" and B

@ Calculate acceptance ratio «

© Take a draw from the uniform density

@ Accept candidate (8" = 3") if uniform draw < a

f 54 58]\ . .
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Gibbs

Bayes estimators of logit-type models
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Conditional-logit Bayes estimators for consumer @Cm,m
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ABSTRACT

Range anxiety - consumers’ concerns about limited driving range
— is generally considered an important barier to the adoption
of electric vehicles. If consumers cannot overcome these fears
it is unlikely that they will consider purchasing an electric car.
Hence, a successful introduction of low emission vehicles in the

full
JCEIL:’“"/"”““"’ ing range. By analyzing experimental data on vehicle purchase
o decisions in California, | derive and study the statistical behav-
oz ior of Bayes estimates that summarize consumer concerns toward
Qs0 to

inter i ofvehicle
Keywards:

Bayesian discrete choice
Battery elecmc vehicles
Range an

Hzt:mgznﬂly distributions

choice. One of the empirical et s the posterior distribution of
the willingness to pay for electric vehicles with improved batteries
uﬁenng beter driving range, Credibl ntervas or this wllingness

topay,as
distributions, are also analyzed.
©2013 Elsevier BV. All rights reserved.

@ Cornell University



° daziano.cee.cornell.edu

000@000000

Another example (logit-type hazard models
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This study explores the use of Bayesian methods to estimate hazard models of airline pas-
sengers' cancellation behavior. We show how the discrete time proportional odds (DTPO)
cancell el can be rewritten as an equivalent fixed parameter discrete choice
model that can be easily estimated using Bayesian methods and extended to random
parameters that account for unobserved heterogeneity. The use of Bayesian methods
allows us to address several limitations of existing airline cancellation models. First,
because of the random parameter reformulation, it is possible to calculate individual-
specific cancellation probabilities. Second, unlike existing DTPO models that forecast aver-
age cancellation probabilities only, our model can be used to forecast both means and a
asure of variance (credible intervals) associated with an individual’s cancellation prob-
ability. We apply the Bayesian estimation method to a dataset of tickets purchased over a
two-year period by employees of a university in Atanta, Georgia. During this time period,
the major carrier in Atlanta terminated an agreement in which it allowed employees to
purchase discounted fares that could be refunded or exchanged without a fee. The data
allow us to investigate how passenger cancellation behavior changed when these fares
were discontinued. Cancellations are reduced on average 3.3% when customers must pay
to exchange their tickets. For a simulated hypothetical flight the coefficient of variation

of cancellation is 43% when the state rate was offered, and 83% without state rates.
© 2016 Elsevier Ltd. All rights reserved,
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Interval estimation problem

Definition: Credible region or Bayesian confidence region. A set C C ©
such that

PO cC) = / p(6ly)du(6) =1 a.

where (1 — «) is a credibility level.

o Note that a credible region is a fixed area containing @ with a specified
coverage probability (1 — «), conditional on the observed data y
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Difference with frequentist confidence region

@ The frequentist confidence region is a completely different concept

© Under a classical perspective @ is fixed: there is no sense in constructing a region based
on its distribution

@ A non-Bayesian confidence region is constructed using the unobserved sampling
distribution of the estimator

A classical confidence region is asymptotic: the region depends on the
distribution of unobserved realizations of the data that cannot be obtained for
small samples; this distribution can be described using large sample theory
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Frequentist confidence interval
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Constructing credible intervals

o Quantile intervals: take the (@/2)™ and (1 — /2'") quantile values of the sorted
MCMC draws to find Cl thresholds

@ Accurate when the posterior distribution is symmetric

o Highest Posterior Density (HPD) intervals: shortest possible interval with a
fixed probability 1 — «

—~
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Credible interval (posterior mass)

Z

| | | | ] |
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Logit credible intervals

Table: Interval estimates for the binary logit model

Bayesian estimates | Classical estimates
95% HPD int. 95% conf. int.
ASC [-0.105,0.062] [-0.103,0.065]
TC [-0.160,-0.107] [-0.159,-0.105]
TT [-0.069,-0.052] [-0.068,-0.052]
HW [-0.041,-0.034] [-0.042,-0.034]
CH [-1.237,-1.070] [-1.237,-1.069]
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Mixed Logit: MH within Gibbs

o Consider B; ~ N(p, X)
o Individual-level parameter o; is a latent variable

o Bayes: data augmentation

If we know 3; then p(yit|Xit, 3;) is simply a conditional logit
Mixing density f(3i|p,X) acts as prior

Only additional priors for p and X required (hyperparameters)

P
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Mixed Logit: sketch of the sampler
Posterior:

p(B, 1, Zly, X) o< p(p)p(E Hp(yllﬁ,, F(Bilpn, X)

@ Normal prior on p; conjugate prior (normal update)
@ Inverse Wishart prior on 3 ; conjugate prior (IW update)
© Normal prior for 3; MH update
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Fresh from the oven: our working paper

Bayesian Estimation of Mixed Multinomial Logit Models: Advances and Simulation-
Based Evaluations

Prateek Bansal, Rico Krueger, Michel Bierlaire, Ricardo A. Daziano, Taha H. Rashidi
(Submitted on 7 Apr 2019 (v1), last revised 12 Apr 2019 (this version, v2))

Variational Bayes (VB) methods have emerged as a fast and computationally-efficient alternative to Markov chain Monte Carlo (MCMC) methods for
Bayesian estimation of mixed multinomial logit (MMNL) models. It has been established that VB is substantially faster than MCMC at practically no
compromises in predictive accuracy. In this paper, we address two critical gaps concerning the usage and understanding of VB for MMNL. First, extant VB
methods are limited to utility specifications involving only individual-specific taste p. s. Second, the finite-sample properties of VB estimators and
the relative performance of VB, MCMC and maximum simulated likelihood estimation (MSLE) are not known. To address the former, this study extends
several VB methods for MMNL to admit utility specifications including both fixed and random utility parameters. To address the latter, we conduct an
extensive simulation-based evaluation to benchmark the extended VB methods against MCMC and MSLE in terms of estimation times, parameter recovery
and predictive accuracy. The results suggest that all VB variants perform as well as MCMC and MSLE at prediction and recovery of all model parameters
with the exception of the covariance matrix of the multivariate normal mixing distribution. In particular, VB with nonconjugate variational message passing
and the delta-method (VB-NCVMP-Delta) is relatively accurate and up to 15 times faster than MCMC and MSLE. On the whole, VB-NCVMP-Delta is most
suitable for applications in which fast predictions are paramount, while MCMC should be preferred in applications in which accurate inferences are most
important.
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What we are doing in this working paper

Mixed logit with inter and intra-consumer heterogeneity
Goal: fast(er) predictions (thinking of recommender systems)
MCMC: Huangs half-t prior for 3 (Akinc and Vandebroek, 2018)

Variational Bayes: computationally-efficient alternative to MCMC

© VB is substantially faster than MCMC at practically no compromises in predictive
accuracy

@ Approximate Bayesian inference based on optimization rather than sampling

© Locally-optimal, (exact) analytical solution to an approximation of the posterior

VB up to 15 times faster than MCMC and MSLE
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Summarizing

@ In Bayesian econometrics: the analyst wishes to learn about uncertain parameters

@ Applying the rules of probability, the analyst can update prior knowledge in regards
to new evidence (posterior)

@ The prior reflects both knowledge and beliefs (subjective probabilities)
@ If possible, priors are chosen to ensure conjugacy

@ Bayes estimates do depend on the likelihood (and it's the same frequentist
likelihood)

@ Bayes point estimates do exist: usually posterior mean

@ Posterior standard deviations measure the precision of the Bayes point estimates

1 of 54 58]\ ~ . .
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Summarizing cont’d

@ Bayesian econometrics works particularly well for latent variables

o Complex models that face convergence issues in MLE can be estimated using
Bayesian tools (no optimization)

@ Conditional estimates at the individual level are a direct result of estimation
@ So, what is preventing us from adopting Bayes?

© Learning curve
@ Perception of lack of flexible, easy-to-use software
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Other uses of Bayes tools

Transportation Research Part C: Emerging

Technologies
Available online 3 October 2018
In Press, Corrected Proof ()

ELSEVIER

A framework to integrate mode choice in the
design of mobility-on-demand systems

Yang Liu A1, Prateek Bansal ! =, Ricardo Daziano =, Samitha Samaranayake =
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