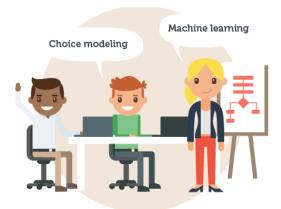
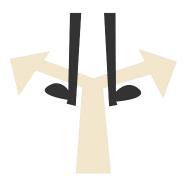
Are You The Beatles Or The Rolling Stones?

Virginie Lurkin and Brian Sifringer


N. Ortelli, G. Lederrey, A. Alahi, M. Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil, and Environmental Engineering ENAC École Polytechnique Fédérale de Lausanne

13th Workshop on Discrete Choice Models


June 21-23, 2018

"The new and good ideas come from having a very broad and multidisciplinary range of interests."

Robin Chase

Understand and predict individual choice behavior using mathematical models

Understand and predict individual choice behavior using mathematical models

$$U_{in} = V_{in} + \varepsilon_{in}$$

$$U_{in} = V_{in} + \varepsilon_{in}$$

$$P_{in} = rac{e^{V_{in}}}{\sum_{i \in \mathbb{C}_n} e^{V_{jn}}}$$

$$U_{in} = V_{in} + \varepsilon_{in}$$

$$P_{in} = rac{e^{V_{in}}}{\sum_{j \in \mathbb{C}_n} e^{V_{jn}}}$$

$$V_{in} = \dots + \beta_c Cost_{in} + \beta_t Time_{in} + \dots$$

$$U_{in} = V_{in} + \varepsilon_{in}$$

$$P_{in} = \frac{e^{V_{in}}}{\sum_{j \in \mathbb{C}_n} e^{V_{jn}}}$$

$$V_{in} = \underbrace{\dots + \beta_c Cost_{in} + \beta_t Time_{in} + \dots}_{\text{linear in parameters}}$$

$$U_{in} = V_{in} + \varepsilon_{in}$$

$$P_{in} = \frac{e^{V_{in}}}{\sum_{j \in \mathbb{C}_n} e^{V_{jn}}}$$

$$V_{in} = \underbrace{\dots + \beta_c Cost_{in} + \beta_t Time_{in} + \dots}_{\text{linear in parameters}}$$

••••••

Prediction accuracy + Interpretability

Neural networks

Neural networks

Very good prediction accuracy

Neural networks

Very good prediction accuracy

Enhancing Discrete Choice Models with Neural Networks

General idea

Bringing the **predictive strength** of Neural Networks, a powerful machine learning-based technique, to the field of Discrete Choice Models without compromising the **interpretability** of these models

Are You The Beatles Or The Rolling Stones?

Multinomial Logit as Convolution NN

MNL

Choice set $C_n = \{1, \dots, J_n\}$

Parameters $\beta_1, ..., \beta_p$

Variables x_{ikn}

CNN

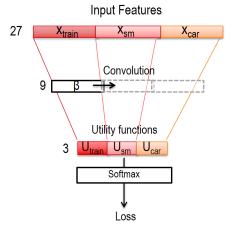
Labels $(1 \times J_n)$ vector

Kernel weights (p x 1)

Features: X (p x J_n) tensor

Multinomial Logit as Convolution NN

Activation Function: Softmax


$$(\boldsymbol{\sigma}(\mathbf{V}_n))_i = rac{\exp^{V_{in}}}{\sum\limits_{j=1}^p \exp^{V_{jn}}}$$

Loss: Categorical Cross-Entropy

$$H_n(oldsymbol{\sigma}, \mathbf{y}_n) = -\sum_{i=1}^P y_{in} \log \left[\sigma(\mathbf{V}_n)
ight)_i]$$

Multinomial Logit as Convolution NN

A single convolution gives us the utility functions

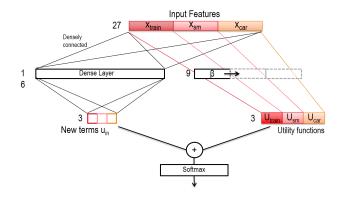
Model and Validation on Swissmetro

- Stated Preference Survey
- Simple utilities for validation purposes:

$$\begin{split} V_{car} &= ASC_{car} + \beta_{cost} \cdot Cost_{car} + \beta_{time} \cdot Time_{car} \\ V_{train} &= ASC_{train} + \beta_{cost} \cdot Cost_{train} + \beta_{time} \cdot Time_{train} \\ V_{SM} &= ASC_{SM} + \beta_{cost} \cdot Cost_{SM} + \beta_{time} \cdot Time_{SM} \end{split}$$

Biogeme betas

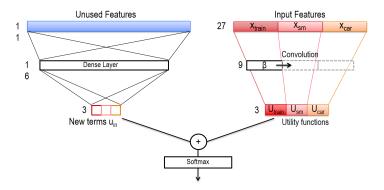
Name	Value	Std err	t-test	p-value
ASC_CAR	-0.993	0.0385	-25.78	0.00
ASC_TRAIN	-1.49	0.0515	-28.86	0.00
B_COST	-0.663	0.0473	-14.03	0.00
B_TIME	-0.153	0.0373	-4.11	0.00


Convolution Kernel weights

Convolution Kernel weights

- ASC_Car: -0.99298888
- ASC_Train: -1.48712599
- B_COST: -0.66329724
- B_TIME: -0.15334089

Neural Network enhanced DCM


Case 1: same inputs

The new term from the NN overruns the MNL linear parameters

Neural Network enhanced DCM

Case 2: different inputs

New term in the utility specification coming from a NN using all unused features

Neural Network enhanced DCM

Case 2: different inputs

$$U_{in} = ASC_i + \beta_{cost} \cdot Cost_{in} + \beta_{time} \cdot Time_{in} + \beta_{NN} \cdot NN_{in} + \varepsilon_{in}$$

- **\hat{\bullet}** Interpretation: NN_{in} = uncaptured information of MNL model
 - ✓ MNL estimates keep their significance
 - ✓ Increase in log-likelihood

Swissmetro case

Utility Functions

Variable		Alternative			
		Car	Train	Swissmetro	
ASC	Constant	Car-Const		SM-Const	
TT	Travel Time	B-Time	B -Time	B-Time	
Cost	Travel Cost	B-Cost	B-Cost	B-Cost	
Freq	Frequency		B -Freq	B-Freq	
GA	Annual Pass		B-GA	B-GA	
Age	Age in classes		B-Age		
Luggage	Pieces of luggage	B-Luggage			
Seats	Airline seating			B-Seats	

Swissmetro case

Unused Features

-

-

- Travel purpose: Discrete value between 1 to 9 (Business, leisure, travel,...)
- First class: 0 for no or 1 for yes if passenger is a first class traveler in public transport
- Ticket: Discrete value between 0 to 10 for the ticket type (One-way, half-day, ...)
 - Who: Discrete value between 0 to 3 for who pays the travel (self, employer, ...)
- Male: Traveler's gender, 0 for female and 1 for male
- Income: Discrete value between 0 to 4 concerning the traveler's income per year
- Origin: Discrete value defining the canton in which the travel begins
 - Dest: Discrete value defining the canton in which the travel ends

Benchmark - standard MNL

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ASC_{Car}	1.20	0.183	6.58	0.00
2	ASC_{SM}	1.19	0.182	6.53	0.00
3	β_{age}	0.175	0.0512	3.41	0.00
4	β_{cost}	-0.00690	0.000577	-11.97	0.00
5	β_{freq}	-0.00704	0.00116	-6.09	0.00
6	β_{GA}	1.54	0.168	9.17	0.00
7	$\beta_{luggage}$	-0.113	0.0479	-2.36	0.02
8	β_{seats}	0.432	0.115	3.76	0.00
9	β_{time}	-0.0129	0.000842	-15.34	0.00
		of observat	tions = 7234		
	^				

 ${\cal L}(\hat{eta}) = -5766.705$

Benchmark - standard MNL

			Robust			
Parameter		Coeff.	Asympt.			
number	Description	estimate	std. error	t-stat	p-value	
1	ASC_{Car}	1.20	0.183	6.58	0.00	
2	ASC_{SM}	1.19	0.182	6.53	0.00	
3	β_{age}	0.175	0.0512	3.41	0.00	
4	β_{cost}	-0.00690	0.000577	-11.97	0.00	
5	β_{freq}	-0.00704	0.00116	-6.09	0.00	
6	β_{GA}	1.54	0.168	9.17	0.00	
7	$\beta_{luggage}$	-0.113	0.0479	-2.36	0.02	
8	β_{seats}	0.432	0.115	3.76	0.00	
9	β_{time}	-0.0129	0.000842	-15.34	0.00	
Number of observations $= 7234$						
	^.					

 $\mathcal{L}(\hat{eta}) = -5766.705$

Hybrid model

_	Coeff.	Robust Asympt.		
Description	estimate	std. error	t-stat	<i>p</i> -value
ASC_{Car}	0.0652	0.179	0.37	0.71
ASC_{SM} .	0.327	0.171	1.92	0.06
β_{age}	0.376	0.0464	8.12	0.00
β_{cost}	-0.0141	0.000595	-23.63	0.00
β_{freq}	-0.00807	0.00123	-6.55	0.00
β_{GA}	0.130	0.181	0.72	0.47
$\beta_{luggage}$	0.0153	0.0505	0.30	0.76
β_{seats}	0.207	0.106	1.95	0.05
β_{time}	-0.0157	0.000952	-16.53	0.00
β_{NN}	1.24	0.0524	23.74	0.00
Number	of observat	ions = 7234		
	$\begin{array}{l} ASC_{SM}.\\ \beta_{age}\\ \beta_{cost}\\ \beta_{freq}\\ \beta_{GA}\\ \beta_{luggage}\\ \beta_{seats}\\ \beta_{time}\\ \beta_{NN} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{llllllllllllllllllllllllllllllllllll$

 ${\cal L}(\hat{eta}) = -5008.996$

Hybrid model

Parameter		Coeff.	Robust Asympt.			
number	Description	estimate	std. error	t-stat	p-value	
1	ASC_{Car}	0.0652	0.179	0.37	0.71	
2	ASC_{SM} .	0.327	0.171	1.92	0.06	
3	β_{age}	0.376	0.0464	8.12	0.00	
4	β_{cost}	-0.0141	0.000595	-23.63	0.00	
5	β_{freq}	-0.00807	0.00123	-6.55	0.00	
6	β_{GA}	0.130	0.181	0.72	0.47	
7	$\beta_{luggage}$	0.0153	0.0505	0.30	0.76	
8	β_{seats}	0.207	0.106	1.95	0.05	
9	β_{time}	-0.0157	0.000952	-16.53	0.00	
10	β_{NN}	1.24	0.0524	23.74	0.00	
Number of observations $= 7234$						
$\mathcal{L}(\hat{eta}) = -5008.996$						

++ Increased likelihood

Hybrid model

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ASC_{Car}	0.0652	0.179	0.37	0.71
2	ASC_{SM} .	0.327	0.171	1.92	0.06
3	β_{age}	0.376	0.0464	8.12	0.00
4	β_{cost}	-0.0141	0.000595	-23.63	0.00
5	β_{freq}	-0.00807	0.00123	-6.55	0.00
6	β_{GA}	0.130	0.181	0.72	0.47
7	$\beta_{luggage}$	0.0153	0.0505	0.30	0.76
8	β_{seats}	0.207	0.106	1.95	0.05
9	β_{time}	-0.0157	0.000952	-16.53	0.00
10	β_{NN}	1.24	0.0524	23.74	0.00
	Number	of observat	ions = 7234		

 $\mathcal{L}(\hat{\beta}) = -5008.996$

++ Keeps important parameters significant

Hybrid model

			Robust			
Parameter		Coeff.	Asympt.			
number	Description	estimate	std. error	t-stat	p-value	
1	ASC_{Car}	0.0652	0.179	0.37	0.71	
2	ASC_{SM} .	0.327	0.171	1.92	0.06	
3	β_{age}	0.376	0.0464	8.12	0.00	
4	β_{cost}	-0.0141	0.000595	-23.63	0.00	
5	β_{freq}	-0.00807	0.00123	-6.55	0.00	
6	β_{GA}	0.130	0.181	0.72	0.47	
7	$\beta_{luggage}$	0.0153	0.0505	0.30	0.76	
8	β_{seats}	0.207	0.106	1.95	0.05	
9	β_{time}	-0.0157	0.000952	-16.53	0.00	
10	β_{NN}	1.24	0.0524	23.74	0.00	
Number of observations $= 7234$						
$\mathcal{L}(\hat{eta}) \hspace{.1in} = \hspace{.1in} -5008.996$						

D 1

- Some parameters loose significance

Simple hybrid model - only key parameters

			Robust		
Parameter		Coeff.	Asympt.		
number	Description	estimate	std. error	t-stat	p-value
1	ASC_{Car}	0.966	0.0977	9.89	0.00
2	ASC_{SM}	1.13	0.0941	11.97	0.00
3	β_{cost}	-0.0165	0.000666	-24.71	0.00
4	β_{freq}	-0.00820	0.00129	-6.38	0.00
5	β_{time}	-0.0171	0.000853	-20.05	0.00
6	β_{NN}	1.25	0.0854	14.65	0.00

Number of observations = 7234

$$\mathcal{L}(\hat{eta}) = -4894.539$$

Simple hybrid model - only key parameters

			Robust			
Parameter		Coeff.	Asympt.			
number	Description	estimate	std. error	t-stat	p-value	
1	ASC_{Car}	0.966	0.0977	9.89	0.00	
2	ASC_{SM}	1.13	0.0941	11.97	0.00	
3	β_{cost}	-0.0165	0.000666	-24.71	0.00	
4	β_{freq}	-0.00820	0.00129	-6.38	0.00	
5	β_{time}	-0.0171	0.000853	-20.05	0.00	
6	β_{NN}	1.25	0.0854	14.65	0.00	
Number of observations $= 7234$						
	$\mathcal{L}(\hat{eta}) = -4894.539$					

Increased likelihood + significant parameters

Comparison

Parameter	MNL	Hybrid	Simple Hybrid
β_{cost}	100.0%	204.3%	239.1%
eta_{freq}	100.0%	114.6%	116.5%
eta_{time}	100.0%	121.7%	132.5%
Value of Time	0.54	0.89	0.96
Value of Frequency	0.98	1.75	2.01
Final Log-Likelihood	-5766.71	-5009.00	-4894.54
Number or parameters	9	10	6

Conclusions

Enhancing DCM greatly increases likelihood

Same input or correlated input

- Breaks original parameter significance

Independent Input

- Best performances for likelihood
- All parameters have good sign and significance

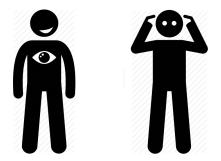
Future work

Interpretability: what is really happening?

Parameter	MNL	Hybrid	Simple Hybrid
β_{cost}	100.0%	204.3%	239.1%
eta_{freq}	100.0%	114.6%	116.5%
β_{time}	100.0%	121.7%	132.5%
Value of Time	0.54	0.89	0.96
Value of Frequency	0.98	1.75	2.01
Final Log-Likelihood	-5766.71	-5009.00	-4894.54
Number or parameters	9	10	6

What do you think?

Automatic Utility Specification Using Machine Learning Techniques



Nicola Ortelli

Determining the appropriate utility specification for a particular application is a difficult task

Determining the appropriate utility specification for a particular application is a difficult task

Expertise + Intuition

Determining the appropriate utility specification for a particular application is a difficult task

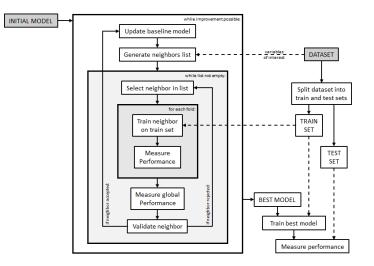
Inspiration + Experience

Determining the appropriate utility specification for a particular application is a difficult task

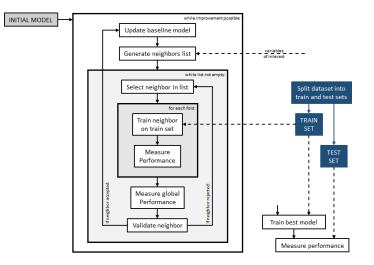
Trial-and-error

Determining the appropriate utility specification for a particular application is a difficult task

Time consuming



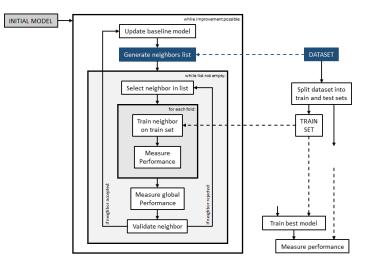
Build a procedure that automatically finds a *good* utility specification based on the data



Define neighborhood relations between specifications and use classical local search algorithms

Automatic utility specification framework

Data partition



Data partition

- Data set separated into train set and test set
- ♦ Train set separated into K folds

WHOLE DATASET						
TRAIN SET TEST SET					TEST SET	
FOLD	FOLD FOLD FOLD FOLD FOLD					TEST SET

Specifications and neighborhood structure

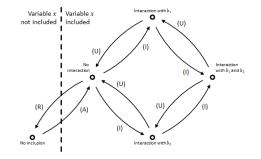
Specifications and neighborhood structure

Current assumptions:

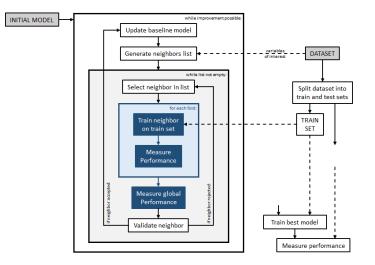
- A Only continuous and binary variables
- Each continuous variable is included either on its own or in interaction with one binary variable
- All parameters are alternative specific
- Example:

$$V = \dots + \beta_{x} \cdot x + \dots$$

$$V = \dots + \beta_{x,b_{1}=0} \cdot x \cdot (1 - b_{1}) + \beta_{x,b_{1}=1} \cdot x \cdot b_{1} + \dots$$


$$V = \dots + \beta_{x,b_{2}=0} \cdot x \cdot (1 - b_{2}) + \beta_{x,b_{2}=1} \cdot x \cdot b_{2} + \dots$$

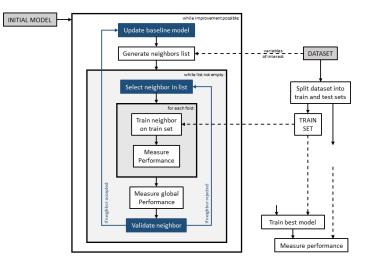
$$V = \dots + \beta_{x,b_{1}=0,b_{2}=0} \cdot x \cdot (1 - b_{1}) \cdot (1 - b_{2}) + \beta_{x,b_{1}=1,b_{2}=0} \cdot x \cdot b_{1} \cdot (1 - b_{2})$$


$$+ \beta_{x,b_{1}=0,b_{2}=1} \cdot x \cdot (1 - b_{1}) \cdot b_{2} + \beta_{x,b_{1}=1,b_{2}=1} \cdot x \cdot b_{1} \cdot b_{2} + \dots$$

Specifications and neighborhood structure

- Neighbors of a particular specification = all specifications that are a single change away from it
- Sour possible changes: add, remove, interact, un-interact

Measure of performance


Measure of performance

Current assumptions:

- Performance of a specification is measured as the log-likelihood it yields on new data
- Cross-validation is used to avoid overfitting or favorizing models with a large number of parameters
- The global performance P_m of model m is defined as the sum of the log-likelihoods obtained on each fold after estimation on the K-1 others:

$$P_m = \sum_{k=1}^{K} \mathbb{L}_{mk}$$

Neighbor validation

Neighbor validation

Conditions of acceptance of a model *m* :

A neighbor that performs better than the baseline is always accepted

$$P(\text{accept } m) = 1 \text{ if } P_m \ge P_{m_b}$$

• One that performs worse might still get accepted, depending on the difference of performance $P_m - P_{m_b}$ and the current iteration number

$$P(ext{accept } m) = rac{\exp(P_m - P_{m_b})}{T_t} ext{ if } P_m < P_{m_b}$$

Solution The algorithm ends when all neighbors of a model are rejected

Case study 1: Optima

Case study: Optima

Revealed preference survey conducted in Switzerland for CarPostal:

- Solution Three alternatives: public transports, car and soft modes
- ♦ 1'814 observations left after discarding incomplete ones
- Solution Two binary and six continuous variables are considered
- ♦ 250'000 different specifications can be obtained

Variable	Description
Gender	Traveler's gender. 0 if female, 1 if male.
UrbRur	Area where the traveler lives. 1 rural, 0 if urban.
TimePT	Duration of a loop performed in public transport [minutes].
MarginalCostPT	Public transport cost, taking into account travel cards ownership [CHF].
TimeCar	Duration of a loop performed using the car [minutes].
CostCar	Total gas cost of a loop performed with the car [CHF].
distance_km	Total distance performed for a loop [km].
NbTrajects	Number of trips in a loop.

Best specification

Parameter	Final value	t-stat
ASC _{PT}	1.16	3.84
BMarginalCostPT	-0.0651	-7.75
B _{TimePT}	-0.0106	-5.69
B _{PT-distance_km}	0.231	10.1
B _{PT-NbTrajects}	-0.759	-4.69
ASC _{CAR}	1.76	6.21
B _{TimeCar}	-0.0424	-6.19
B _{Car-distance_km}	0.233	9.74
B _{Car-NbTrajects}	-0.66	-4.47
ASC _{SM}	0	Fixed
B _{SM-distance_km}	0	Fixed
B _{SM-NbTrajects}	0	Fixed

Comparison with an existing model

Data	Statistic	Best encountered	Benchmark model
Train set	Log-likelihood	-952.51	-843.29
	Accuracy	61.2%	66.2%
	Correct guesses	71.8%	76.5%
Test set	Log-likelihood	-216.54	-208.47
	Accuracy	60.3%	65.1%
	Correct guesses	69.0%	74.7%
Number of	estimated parameters	9	18
Number of considered variables		5	13

Case study 2: SwissMetro

Case study: SwissMetro

Stated choice survey to analyze the impact of the Swissmetro:

- A Three alternatives: train, Swissmetro and car
- Nine different situations for each of the 1'192 respondents
- Solution Two binary and eight continuous variables are considered
- ♦ 6'250'000 different specifications can be obtained

Variable	Description
GENDER	Traveler's gender. 0 if female, 1 if male.
GA	GA travel card ownership. 1 if the traveler owns one, 0 otherwise.
TRAIN _{TT}	Train travel time [minutes]. Door-to-door, based on the car distance.
TRAIN _{co}	Train cost [CHF]. If the traveler owns a GA, equal to its annual price.
TRAIN _{HE}	Train headway [minutes].
SMTT	Swissmetro travel time [minutes]. A speed of 500 km/h is considered.
SMco	Swissmetro cost [CHF]. Equal to the rail fare multiplied by a fixed factor.
SM _{HE}	Swissmetro headway [minutes].
CARTT	Cartravel time [minutes].
CARco	Car cost [CHF]. A fixed average cost per kilometer is considered.

Best specification

Parameter	Final value	t-stat
ASC _{TRAIN,GA=0}	0.472	3.23
ASC _{TRAIN,GA=1}	4.31	9.29
B _{TRAIN-TT,GA=0,GENDER=0}	-0.00815	-8.36
B _{TRAIN-TT,GA=0,GENDER=1}	-0.0213	-21.9
B _{TRAIN-TT,GA=1,GENDER=0}	0.000281	0.122
B _{TRAIN-TT,GA=1,GENDER=1}	-0.0000779	-0.0516
B _{TRAIN-CO,GA=0}	-0.00746	-8.76
B _{TRAIN-CO,GA=1}	-0.00102	-8.72
B _{TRAIN-HE}	-0.00719	-7.23
ASC _{SM,GA=0} , GENDER=0	1.4	8.83
ASC _{SM,GA=D, GENDER=1}	0.286	2.81
ASC _{SM,GA=1, GENDER=0}	5.45	9.3
ASC _{SM,GA=1, GENDER=1}	4.7	9.9
B _{SM-TT}	-0.0137	- 19.4
B _{SM-CO,GA=0,GENDER=0}	-0.0058	-7.75
B _{SM-CO,GA=0,GENDER=1}	-0.0078	-16.1
B _{SM-CO,GA=1,GENDER=0}	-0.00103	-7.6
B _{SM-CO,GA=1,GENDER=1}	-0.000589	-6.74
B _{SM-HE}	-0.0071	-2.46
ASC _{CAR}	0	Fixed
B _{CAR-TT,GENDER=0}	-0.00383	-4.07
B _{CAR-TT,GENDER=1}	-0.0125	-17.8
B _{CAR-CO}	-0.00672	-7.58

Comparison with an existing model

Data	Statistic	Bestencountered	Bierlaire et al. (2001)
Train set	Log-likelihood	-6'431.72	-6'759.69
	Accuracy	54.1%	51.8%
	Correct guesses	67.2%	62.8%
Test set	Log-likelihood	-1'551.94	-1'695.30
	Accuracy	54.9%	51.5%
	Correct guesses	68.3%	62.1%
Number of	estimated parameters	22	10
Number of	considered variables	10	12

Conclusions

Conclusions

Despite a certain number of restrictions, results show that this topic is worth further investigation

The procedure reaches very good specifications in a matter of minutes

In some cases, the obtained model outperforms the benchmark with less variables under consideration

Future work

VNS \rightarrow neighborhood structures + relax assumptions

What is a good utility specification ?

Predictability

Parameters significance

Behavioral interpretation

. . . .

Thank you!

virginie.lurkin@epfl.ch

The fact is I've always loved both bands :-)