Investigating suppressed demand effects for increasing car travel costs: A latent variable random effects (LVREP) Poisson approach

Basil Schmid

IVT ETH Zurich

DCM Seminar Lausanne, June 2017

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Post-Car World: A multi-stage travel survey

- Motivation: Understanding travel behavior in a hypothetical world where privately owned cars are substituted by various forms of shared mobility
- Investigation of pricing mechanisms as a driving force to achieve behavioral reactions
- $\rightarrow\,$ Main focus: Transition towards (and not actual state of) such a (Pre-)Post-Car World
 - One week travel diary and mobility tool data (stage I) as empirical basis for behavioral experiments (stage II & III)
 - Data collection: Canton of Zurich, 2015 2016
 - Average response rate: 55%, $\mathsf{N}=220$ households

- How would respondents change their daily travel in the **short-run**, given the increase in travel costs?
- Personalized stated adaptation interviews with preferred household member: max[MIV usage, distance, # trips]
- Interviewers introduced the respondents to their daily plans
- Experimental framing:
 - Road tolls, fuel and congestion taxes
 - Future policy developments to reduce MIV usage
 - Promotion of shared mobility (PT, CS, CP) regarding supply, accessibility and cost

- Input data: OD-matrix with routed mode-specific travel times and distances for selected day of respondent n
- Mode-specific total RP travel cost R_{tc,n} in the base scenario based on distance, car type and season ticket ownership
- Experimental setting: Four adaptation scenarios with gradual increase in out-of-pocket travel costs (plus trip tax)

Mode	Sc. 1 [in CHF]	Sc. 2 [in CHF]	Sc. 3 [in CHF]	Sc. 4 [in CHF]
Car	$R_{tc,n} \cdot 1.5 + 0.4$	$R_{tc,n} \cdot 2 + 0.8$	$R_{tc,n} \cdot 4 + 1.4$	$R_{tc,n} \cdot 8 + 2$
Moto	$R_{tc,n} \cdot 1.5 + 0.2$	$R_{tc,n} \cdot 12 + 0.4$	$R_{tc,n} \cdot 4 + 0.7$	$R_{tc,n} * 8 + 1$
PT	$R_{tc,n} \cdot 1.1$	$R_{tc,n} \cdot 1.2$	$R_{tc,n} \cdot 1.3$	$R_{tc,n} \cdot 1.5$
CS	$R_{tc,n} \cdot 1.1$	$R_{tc,n} \cdot 1.2$	$R_{tc,n} \cdot 1.3$	$R_{tc,n} \cdot 1.5$
CP	$R_{tc,n} \cdot 1.5$	$R_{tc,n} \cdot 2$	$R_{tc,n} \cdot 4$	$R_{tc,n} \cdot 8$

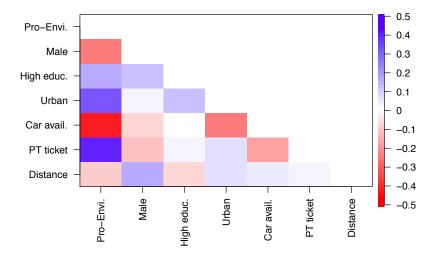
Durchschnittlicher OEV-Takt: 3 min.

Zeit zum naechsten Carsharing Fahrzeug: 3min

Zeit zum naechsten Carpooling Fahrzeug: 3min

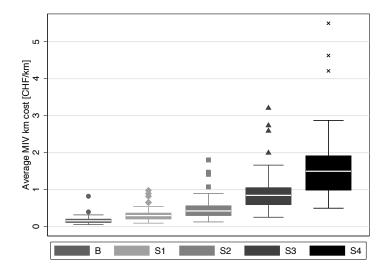
Aktivitaet:	Zu Hause	Einkauf Ifr. Bedar	Arbeit/Ausbildun	Dienstlich	Zu Hause
Ort der Aktivitaet:	Zu Hause 💌	Tomac3 👻	Arbeit/Ausbildun	Dienstlich5 👻	Zu Hause 🛛 👻
Strasse:	Nordstrasse 21	Sihlfeldstrasse 53	Seebahnstrasse 8	Plantaweg 21	Nordstrasse 21
Stadt:	Zuerich	Zuerich	Zuerich	Chur	Zuerich
Ankunftszeit:	00:00	08:17	08:24	11:31	14:34
Laenge der Aktivitaet:	08:05	00:05	01:55	01:40	00:44
Abfahrtszeit:	08:05	08:22	10:19	13:11	15:18
Zu Fuss					
Auto(Fahrer)			۲	۲	
Auto(Mitfahrer)					
Velo	۲	۲	\bigcirc	\bigcirc	
OEV					
Carpooling(Mitfahrer)			\bigcirc		\bigcirc
Carsharing					
Motorrad					
Zurueckgelegte Distanz:	2.78	0.88	134.19	134.10	2.43
Reisezeit:	00:12	00:02	01:12	01:23	00:13
Reisekosten	0.00	0.00	36.23	36.21	2.20
	Entfernen	Entfernen	Entfernen	Entfernen	Entfernen

Summe Reisekosten (in CHF):

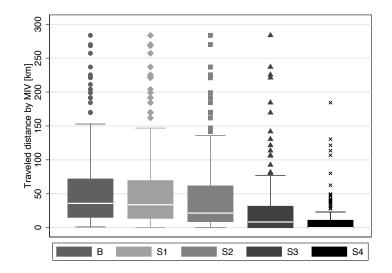

79.04

Focus of today:

- Suppressed demand effects for MIV (car driver, car passenger, motorbike) usage: What is the effect on mileage driven, given the increase in travel costs?
- Microeconomic viewpoint ("aggregate" demand function using disaggregate data)
- Assumption: Cost minimizing behavior, given underlying (unobserved) preferences for daily plan
- Advanced econometric methods for modeling (unobserved) heterogeneity
- \implies Latent variable random effects Poisson (LVREP) model


- envil: Higher fuel prices should subsidize public transport
- envi2: Daily life without car is impossible
- envi3: Car driving is bad for the environment
- envi4: I could imagine to give up car usage completely
- envi5: Zurich without cars is inconceivable
- envi6: Environmental problems get too much attention
- **envi7:** The never-ending discussions about the greenhouse effect is exaggerated
- **envi8:** Fuel prices should increase to reduce pollution of the environment

... and socio-economic characteristics



- N = 162 respondents, 810 choice scenarios
- Highly right-skewed data with many zeros (respondents might choose not to use MIV anymore) \rightarrow OLS inconsistent!
- ightarrow Exponential family modeling approach (Hausman et al., 1984)
 - Poisson regression:
 - Simple and robust (c.p.t. negative-binomial)
 - Main interest: Estimation of a constant elasticity mean function
 - One parameter $\lambda_{s,n,t}$ that defines the mean and the variance (equidisperision); RE approach further relaxes this assumption
 - Automatically accounts for heteroscedasticity

Change in MIV travel cost

Adaptation patterns in distance traveled

- Dependent variable: Distance traveled by MIV $y_{n,t} \equiv km_{n,t}$ after adaptation in **current** scenario
- Main explanatory variable: Average MIV travel cost per km $x_{n,t} \equiv log(CHF_{n,t-1})$ after adaptation in **previous** scenario
- Large variety in respondents' characteristics and their daily plans \to use panel structure to account for unobserved heterogeneity
- Starting point: Poisson regression for a continuous dependent variable (Gourieroux, Monfort & Trognon, 1984) with random intercept (Hausman test: H₀ plausible)

Modeling framework: Log-linear index

$$\begin{split} \lambda_{1,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \beta_{COST} \cdot x_{n,t} \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{2,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \alpha_{INC} \cdot inc_n + \alpha_{ENVI} \cdot envi_n + \left(\beta_{COST} + \beta_{INC} \cdot inc_n + \beta_{ENVI} \cdot envi_n\right) \cdot x_{n,t} \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{3,n,t} &= \epsilon_n \cdot \exp\left(\alpha - \exp(\beta_{COST} + \psi_n) \cdot x_{n,t} \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \\ \lambda_{4,n,t} &= \epsilon_n \cdot \exp\left(\alpha + \alpha_{INC} \cdot inc_n + \alpha_{ENVI} \cdot envi_n - \exp(\beta_{COST} + \beta_{INC} \cdot inc_n + \beta_{ENVI} \cdot envi_n + \psi_n) \cdot x_{n,t} \cdot \left(\frac{dist_{n,0}}{dist}\right)^{\omega_{DIST}}\right) \end{split}$$

Modeling framework: Estimation

• Analytical solution (random intercept): Assuming that $\epsilon_n \sim \Gamma(1, \theta)$, $y_{n,t}$ is distributed Poisson with mean $\widetilde{\lambda_{s,n,t}} \equiv \lambda_{s,n,t}/\epsilon_n$ and $u_n \equiv (1/\theta)/(1/\theta + \sum_{t=1}^{T_n} \widetilde{\lambda_{s,n,t}})$, the likelihood of observing the sequence $Y_{n,t}$ given $X_{n,t}$ and z_n of respondent *n* is given by

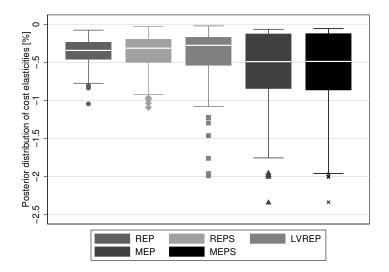
$$\mathcal{LL}_n(Y_{n,t}|X_{n,t}, z_n, \Lambda) = \log \Gamma\left(1/\theta + \sum_{t=1}^{T_n} y_{n,t}\right) - \sum_{t=1}^{T_n} \log \Gamma\left(1 + y_{n,t}\right) - \log \Gamma(1/\theta) + 1/\theta \cdot \log(u_n) + \log(1 - u_n) \sum_{t=1}^{T_n} y_{n,t} + \sum_{t=1}^{T_n} y_{n,t} \cdot \log\left(\widetilde{\lambda_{s,n,t}}\right) - \left(\sum_{t=1}^{T_n} y_{n,t}\right) \log \left(\sum_{t=1}^{T_n} \widetilde{\lambda_{s,n,t}}\right)$$

Modeling framework: Estimation

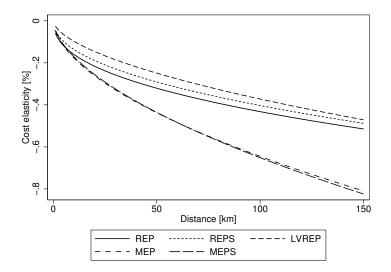
Simulation (random coefficient or LV): The expected likelihood *L*^{*}_n(.) over all possible values of ψ_n and/or *LV_n* is given by the integral of the exponent of the log-likelihood function over the distribution of ψ_n or *LV_n*

$$\mathcal{L}_{n}^{*}(Y_{n,t}, I_{w,n}|X_{n,t}, z_{n}, \Omega) = \int_{\psi_{n}, LV_{n}} \exp\left(\mathcal{L}\mathcal{L}_{n}(Y_{n,t}|X_{n,t}, z_{n}, \Lambda, \psi_{n})\right) u(I_{w,n}|LV_{n}, \tau_{I_{w}}, \sigma_{I_{w}}|X_{n}, \psi_{n}| X_{n,t}, z_{n}, \Omega) = \int_{k}^{\infty} \exp\left(\mathcal{L}\mathcal{L}_{n}(Y_{n,t}|X_{n,t}, z_{n}, \Lambda, \psi_{n})\right) u(I_{w,n}|LV_{n}, \tau_{I_{w}}, \sigma_{I_{w}}|X_{n}, \psi_{n}|X_{n,t}, z_{n}, \Omega) = \frac{1}{R} \sum_{r=1}^{R} \exp\left(\mathcal{L}\mathcal{L}_{n}(Y_{n,t}|X_{n,t}, z_{n}, \Lambda, \psi_{n})\right) u(I_{w,n}|LV_{n}, \tau_{I_{w}}, \sigma_{I_{w}}|X_{n}, \psi_{n}|X_{n}, \psi_{n}|X_{n}|X_{n}, \psi_{n}|X_{n}|X_{n}, \psi_{n}|X_{n}$$

 $\rightarrow\,$ Posterior analysis of cost elasticity


Estimation results

	REP Coef./(SE)	REPS Coef./(SE)	LVREP Coef./(SE)	MEP Coef./(SE)	MEPS Coef./(SE)
α	3.20***	3.15***	3.06***	3.08***	3.05***
α_{INC}	_	0.17	0.16	_	0.16
α_{ENVI}	_	-0.13^{***}	-0.62***	_	-0.11^{**}
θ	0.65***	0.59***	0.51***	1.32***	1.27***
βcosτ	-0.43***	-0.44***	-0.87***	-0.72***	-0.70***
ω_{DIST}	0.43***	0.47***	0.58***	0.56***	0.58***
β_{INC}	_	0.03	-0.08	_	-0.28**
β_{ENVI}	-	-0.05***	0.65***	—	0.08
σ_{COST}	_	_	_	1.09***	1.06***
# param.	4	8	30	5	9
# respond.	162	162	162	162	162
# obs.	735	735	735	735	735
# draws	_	_	2000	2000	2000
$\mathcal{LL}^*_{\mathit{final}}$	-7029.08	-6911.64	-6621.37	-6047.25	-6039.25
AICc	14066.41	13840.23	13154.70	12104.89	12097.69


Robust standard errors: *** : p < 0.01, ** : p < 0.05, * : p < 0.1

Note: LV-model coefficients not reported in the table.

Results: Distribution of cost elasticities

Results: Distance dependency

Conclusions

- Median elasticity: If MIV travel costs increase by 1%, distance decreases by ≈ 0.3 0.4% (re-weighted with MZMV distance)
- Random coefficient approach substantially increases cost elasticity estimates
- Strong, non-linear distance dependency
- Only weak effect of income
- Relatively high elasticities compared to related literature; usually between -0.1 (SR) and -0.4 (LR)
 - Sampling bias / low sample size / survey design
 - Very high variation in travel cost
- Respondents with pro-environmental attitudes travel less and show a stronger adaptation behavior