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Measurement uncertainty
MotivationIntroduction

1000 200 400 800(m)

N • Dense network

• Spatial heterogeneity 
of Measurement errors
ü Along river
ü Wide street
ü Narrow street
ü With arcade
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Literature review
Literature review

[e.g., Danalet et al., 2014; Chen et al., 2015]Bayesian approach

[Bierlaire and Frejinger, 2008]Joint estimation

: Measurement equation

: Route choice model (prior information)

: Path candidate set defined by 

DCA workshop 2017
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Problem definition & notations
Framework

1. Network
: Network graph

: Node (coordinates:                                  ) 

: Link (up/down nodes:               , attributes:       ) 

2. Route choice behavior

Sequential link choices (a Markovian route choice model)

3. Observation
: GPS measurement (coordinates, timestamp)

: Probability distribution of GPS measurement error

: Variance assumed to be link-specific and estimated

DCA workshop 2017

Methodology
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Identification of link-specific variance 
Sequential link measurement model

Previous:

This study:

DCA workshop 2017
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Sequential link measurement
Sequential link measurement model

time1̂ ˆ2 ˆ3 ˆ4 ˆ5 ˆ6 ˆ7 ˆ8 ˆ9 1̂00 s 2s 3s

t=1 t=2 t=3 t=4
m̂1 = (m̂1, m̂2, m̂3, m̂4 ) m̂2 = (m̂5, m̂6 ) m̂3 = (m̂7, m̂8, m̂9 ) m̂4 = (m̂10 ,

Estimation
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Sequential link measurement
Sequential link measurement model

time1̂ ˆ2 ˆ3 ˆ4 ˆ5 ˆ6 ˆ7 ˆ8 ˆ9 1̂00 s 2s 3s
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Sequential link measurement
Sequential link measurement model

time1̂ ˆ2 ˆ3 ˆ4 ˆ5 ˆ6 ˆ7 ˆ8 ˆ9 1̂00 s 2s 3s

t=1 t=2 t=3 t=4
m̂1 = (m̂1, m̂2, m̂3, m̂4 ) m̂2 = (m̂5, m̂6 ) m̂3 = (m̂7, m̂8, m̂9 ) m̂4 = (m̂10 ,

Estimation

Estimation

Iteration until t = T
Estimation
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Estimation of the variance
Sequential link measurement model

: m̂t = (m̂1
t, m̂2

t , m̂3
t )
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Maximizing measurement likelihood

: Measurement equation

: Markovian route choice model

: Inferred link

: Set of subsequent links of a

where

DCA workshop 2017
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Measurement equation

Giving probability that         is observed if         is the true link

12

Measurement equation
Sequential link measurement model

Rayleigh distribution

Timestamp has no error

Probabilities are independent

[van Diggelen, 2007]

DCA workshop 2017
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Maximizing posterior probability
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Identifying links
Sequential link measurement model

By repeating until t=T, we obtain a path:

Measurement probability: Prior probability: Posterior probability:

Ex.)
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0.16
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Maximum likelihood estimation
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Estimation of route choice model
Structural estimation

where

m̂ !r

θ

!θ
Sequential

Measurement
Route choice 
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Structural estimation
Structural estimation

No

Yes

h := h+1

GPS data

Measurement model Behavior model
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Numerical experiment
Simulation data

DCaCCa
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Examples:

1. Sampling paths

Model:

True parameter:

2. Sampling trajectories

Time discretization:

Sampling interval:

Distribution:

DCA workshop 2017
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Result | link measurement accuracy
Simulation data

• Estimating variance refines the measurement accuracy

• The effect of incorporating route choice models is largely dependent on 
the initial parameter

: no prior route choice information

DCA workshop 2017

Numerical experiment
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Result | structural estimation
Simulation data

• Structural estimation reduces biases in estimated parameters and gives 
estimates close to the true values (total diff.: 3.643 vs. 1.244)

• Convergence values are equivalent regardless of the initial values, which 
are examined by the following settings:

DCA workshop 2017
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Result | convergence process
Simulation data
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• Less vibration, and small number of iteration in any cases
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Case study
Case studyNumerical experiment

: Sidewalk width [m]

: Arcade dummy variable: Travel time [min.]

: U-turn dummy variable

GPS data

• Matsuyama city, Japan
• Pedestrian trip in the city center
• Randomly sampled 30 walking trips

Specification

DCA workshop 2017Oyama, Y. (Tokyo Institute of Technology)
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Estimation result of measurement model
Case studyNumerical experiment

A

B

C

A

Street with arcade

C

Prefecture hall
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Estimation result of route choice model
Case studyNumerical experiment

• Travel time (    ) seems to be significant from the result of one-way model, however,
• Structural estimation result shows that links with arcade (    ) are the most likely to be 

passed by pedestrians; travel time (    ) is not significant
• Other t-values and rho-square (     ) indicate that the structural estimation improves 

parameter estimation results

Travel time (min.)
Sidewalk width (m)

With arcade
U-turn

DCA workshop 2017Oyama, Y. (Tokyo Institute of Technology)
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Conclusion
ConclusionConclusion

Contributions

• Sequential link measurement model
– Estimating link-specific variance of GPS measurement error

• Structural estimation
– Reducing biases caused from the initial parameter settings

• Validation
– Structural estimation achieves to refine the results and quickly 

converge.

• Application
– The methods are effective in a real pedestrian network and bring 

hidden preferences to light.

DCA workshop 2017Oyama, Y. (Tokyo Institute of Technology)
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Future work
Future workConclusion

3

2

1

O

Joint estimation

• Algorithm for preserving path-based 
measurement probabilities
– Generating path candidates by re-sampling 

at each time using probabilities

• Estimation method for reducing 
computational burden
– EM algorithm, variational Bayes method

DCA workshop 2017Oyama, Y. (Tokyo Institute of Technology)
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Link switching
Difficulties regarding link connectivity because of myopic optimization
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Link switching

[at,1,...,at,r,...,at,|A(at 1 )| ]

STEP1: Calculating probabilities

STEP3: Calculating measurement equation at (t+1)

where,

STEP2: Sorting candidates by probabilities  

r = 1

r := r+1

r := 1

No

No

Yes
Yes

at = at,r

at+1 = argmax
a

p(a | m̂t+1,at,r )

LLmr

J
< r =| A(at 1) |

p(at,1) p(at,r ) p(at,|A(at 1 )| )

pi (at | m̂i

t,at 1) =
p(m̂i

t | at; at
)p(at | at 1; )

p(m̂i

t | at; at
)p(at | at 1; )

at A(at 1 )

LLmr = log p(m̂t+1 | at+1; at+1
)( )
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Result | structural estimation
Simulation data

DCA workshop 2017

Numerical experiment
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Table:
Average and standard deviation of estimated parameters, the number of  iterations 
and computational time of 100 structural estimations

*True parameter:


