Estimating a latent class model

Jasper Knockaert

DCA Workshop 23 June 2017

- Introduction
- 2 Latent class model
- Stimation
- 4 Implementation
- 6 Reflection

Classical multinomial logit choice model:

$$U_{in} = \beta \cdot X_{in} + \epsilon_{in}$$

• Mixed logit model: β distributed

$$U_{in} = \beta_n \cdot X_{in} + \epsilon_{in}$$

- Latent class model: special case of distribution
 - A vector β_c for each class c
 - Class membership is *latent*
 - Class membership model defined by probability mass function $P_5(c|X_n;\gamma,\Sigma_{\mu})$
 - Choice probability for alternative y:

$$\sum_{c} \left[P_5(c|X_n^*; \gamma, \Sigma_{\mu}) \cdot P_4(y_n|U_{1n}, \dots, U_{jn}; \beta_c, \Sigma_{\epsilon}) \right]$$

 Main advantage of latent class: closed-form expression for choice likelihood Main issue with latent class model is abundance of local optima:

main issue with laterit class model is abandance of local optima.					
var	description	1-class	2-class	3-class	4-class
	# estimations	11	132	1048	3038
S	# converged estimations	11	132	1034	2858
p	# unique optima	1	16	91	614
Η	stopping criterion	0.00049	0.00033	0.000012	0.0096

for each latent class 10 utility function coefficients and 1 class constant (with the constant for one class arbitrarily fixed to 0)

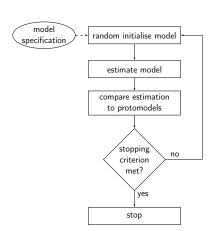
22174 revealed preference observations by 544 respondents (work with Stefanie Peer)

Estimation with local optima:

- Heuristic optimisation:
 - Calculate LL in more or less randomly sampled starting points ("informed" grid search)
 - Identify most promising starting point
 - Run classical optimisation (i.e. biogeme)
 - Hole and Yoo (2017) The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models, Appl. Statist.
 - population-based heuristic optimization algorithms: DE and PSO algorithms

Estimation with local optima:

- Heuristic optimisation:
 - Calculate LL in more or less randomly sampled starting points ("informed" grid search)
 - Identify most promising starting point
 - Run classical optimisation (i.e. biogeme)
 - Hole and Yoo (2017) The use of heuristic optimization algorithms to facilitate maximum simulated likelihood estimation of random parameter logit models, Appl. Statist.
 - population-based heuristic optimization algorithms: DE and PSO algorithms
- My approach: use random initialisation and run optimisation from each starting point.



- Generic methodology for random initialisation
- Challenge is in clustering the estimation results around optima
- Heuristic as stopping criterium

• To cluster we define a similarity indicator:

$$S(eta,\gamma) = \prod_{k=1...K} \left[1 - \mathsf{erf} rac{|eta_k - \gamma_k|}{\sqrt{2\left(t_{eta_k}^2 + t_{\gamma_k}^2
ight)}}
ight]$$

• Stopping criterium:

$$H = \left[\frac{p}{p+1}\right]^s$$

Illustration of optima found 2-class version of the RP model in previous slide (132 properly converged estimations)

optimum	LL	#estimations
1	-52599.378	13
2	-52601.516	25
3	-52628.548	21
4	-52677.798	1
5	-52909.474	19
6	-52910.33	12
7	-52915.372	14
8	-52932.691	1
9	-52934.631	3
10	-52935.529	1
11	-52936.441	12
12	-52936.482	1
13	-52938.413	2
14	-52973.077	1
15	-53038.479	4
16	-53042.439	2 □ → ∢ ₫

 Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible

- Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible
- Estimation: pythonbiogeme

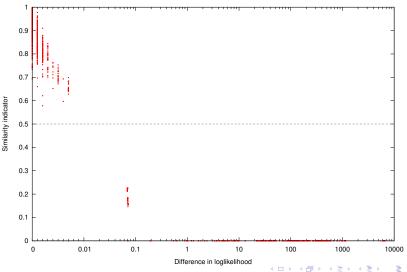
- Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible
- Estimation: pythonbiogeme
- Comparison: a python script patches the estimation html output, and compares it to "protomodels" in sqlite database; after comparison the sqlite database is updated; support for behaviourally identical permutations of models (e.g. unordered latent classes)

- Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible
- Estimation: pythonbiogeme
- Comparison: a python script patches the estimation html output, and compares it to "protomodels" in sqlite database; after comparison the sqlite database is updated; support for behaviourally identical permutations of models (e.g. unordered latent classes)
- Evaluation of stopping criterium: python script reads parameters from sqlite database

- Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible
- Estimation: pythonbiogeme
- Comparison: a python script patches the estimation html output, and compares it to "protomodels" in sqlite database; after comparison the sqlite database is updated; support for behaviourally identical permutations of models (e.g. unordered latent classes)
- Evaluation of stopping criterium: python script reads parameters from sqlite database
- Parallelisation is possible using a network share for the files (sqlite database supports concurrency); I implemented PBS support for managing parallel estimations on a cluster

- Random initialisation: bash script substitutes random numbers in model template; results are saved as genuine pythonbiogeme model file so reproducible
- Estimation: pythonbiogeme
- Comparison: a python script patches the estimation html output, and compares it to "protomodels" in sqlite database; after comparison the sqlite database is updated; support for behaviourally identical permutations of models (e.g. unordered latent classes)
- Evaluation of stopping criterium: python script reads parameters from sqlite database
- Parallelisation is possible using a network share for the files (sqlite database supports concurrency); I implemented PBS support for managing parallel estimations on a cluster
- Supporting tools, e.g. to rebuild sqlite database but also to visualise clustering (with gnuplot)

LConly_2_join_wide (std_check: True)



Does it actually matter?

Does it actually matter?

optimum	LL	#estimations	value of traveltime	
			high	low
1	-52599.378	13	47.2	10.5
2	-52601.516	25	42.9	10.8
3	-52628.548	21	40.3	11.1
4	-52677.798	1	40.6	16.3
5	-52909.474	19	30.6	10.5

Does it actually matter?

optimum	LL	#estimations	value of traveltime	
			high	low
1	-52599.378	13	47.2	10.5
2	-52601.516	25	42.9	10.8
3	-52628.548	21	40.3	11.1
4	-52677.798	1	40.6	16.3
5	-52909.474	19	30.6	10.5

optimum	LL	#estimations	value of morning SDE	
			high	low
1	-52599.378	13	43.4	3.0
2	-52601.516	25	37.8	3.2
3	-52628.548	21	32.7	3.4
4	-52677.798	1	46.7	2.8
5	-52909.474	19	11.9	5.0

Some observations (and caveats)

 The presence of local optima is wildly variable; some latent class models only have one optimum even with three of four classes

- The presence of local optima is wildly variable; some latent class models only have one optimum even with three of four classes
- Sampling matters (interval, distribution)

- The presence of local optima is wildly variable; some latent class models only have one optimum even with three of four classes
- Sampling matters (interval, distribution)
- The cutoff points (for the algorithm heuristics) is also variable; (e.g. H=0.01 seems a fine value but with very non-linear "Utility" functions a much lower value is needed)

- The presence of local optima is wildly variable; some latent class models only have one optimum even with three of four classes
- Sampling matters (interval, distribution)
- The cutoff points (for the algorithm heuristics) is also variable; (e.g. H=0.01 seems a fine value but with very non-linear "Utility" functions a much lower value is needed)
- Why suboptima?
 - Analytical feature of LC? Conditions?
 - Numerical feature? (I use high-precision version of pythonbiogeme)
 - Misspecification?

- The presence of local optima is wildly variable; some latent class models only have one optimum even with three of four classes
- Sampling matters (interval, distribution)
- The cutoff points (for the algorithm heuristics) is also variable; (e.g. H=0.01 seems a fine value but with very non-linear "Utility" functions a much lower value is needed)
- Why suboptima?
 - Analytical feature of LC? Conditions?
 - Numerical feature? (I use high-precision version of pythonbiogeme)
 - Misspecification?
- Report estimation statistics!

