In-Store or Online Shopping? A Hybrid Choice Approach

Basil Schmid

IVT ETH Zurich

April 21, 2016

Institut für Verkehrsplanung und Transportsysteme

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

- Main hypothesis:
 - Choice and taste heterogeneity strongly determined by attitudes towards online shopping
- How sensitive are individuals towards different attributes related to their choice btw. online vs. in-store shopping?
- How do income and attitudes affect attribute sensitivities?
- What is the distribution of attitudes, and which socio-demographic characteristics are affecting them?
- ⇒ Post-Car World: First alternative-specific Hybrid Choice model in this research field

Data (220 households; 339 participants)

Variable	Value	MZ2010 [%]	PCW15 [%]
Household income	Not reported	24.1	5.7
	< 12'000 CHF	61.0	27.6
	≥ 12'000 CHF	18.4	61.8
Household type	Single-person household	31.6	18.7
	Couple without kids	33.0	25.2
	Couple with kids	26.6	48.0
	Single-parent household	5.8	4.5
	Living community	3.1	3.7
Education	Low	21.0	14.7
	Medium	54.9	22.3
	High	24.1	63.0

- Post-Car World: A multi-stage travel survey
- Sample selection bias: "American Dream" households overrepresented

- Coherent choice situations:
 - home based round trip for in-store alternative
 - no social motives; buying goods is the one and only purpose
 - groceries and durable goods experiment: "Daily or weekly grocery shopping" and "multimedia, HiFi and electronic (household) appliances"
 - quality of the goods is assumed to be identical between the two shopping channels
 - in-store alternative without private cars (Post-Car World)

Experimental Design: Attribute levels

Attributes	Online	In-store	Levels	μ	σ	ν
Shopping cost [CHF] Shopping cost [CHF] Time for shop. [min] Time for shop. [min]		- ~ - ~	$egin{array}{c} -10\%,-5\%,0\%\ -5\%,0\%,+5\%\ -20\%,-10\%,+5\%\ -10\%,0\%,+10\% \end{array}$	235.2 248.0 38.1 41.8	190.4 200.7 16.2 17.9	0.8 0.8 1.3 1.4
Delivery cost and duty Travel cost [CHF] Delivery time groceries			0, 5, 10, 15 CHF $-20\%, +10\%, +40\%$ < 1 day, 1-2 days, > 2 days	7.6 5.2 -	5.6 3.5 –	0.0 3.1 -
Delivery time durables Travel time [min] Size/weight of the good basket		$\sqrt[]{}$	2-3 days, 4-7 days, > 1 week $-30\%, 0\%, +30\%, \ge 3$ min Low, medium, high (same for both alternatives)	24.4	17.5 _	2.4

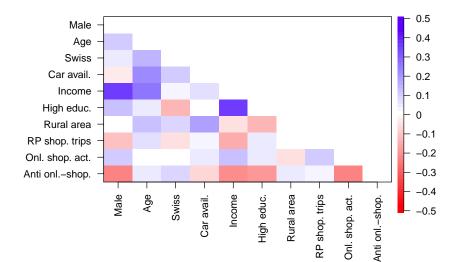
 μ = mean, σ = standard deviation, ν = skewness; for attribute values in the choice experiment

- D-Efficient design; 3 blocks with 8 choice sets
- Participants were assigned to the "groceries" (38 %) or "durable goods" (62 %) experiment based on reported shopping trips

Example choice situations

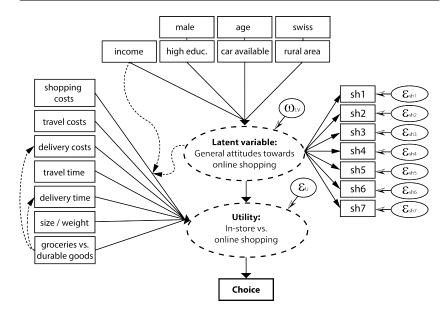
Situation 1 Purpose: Groceries	Order	Travel to store	
Delivery cost / travel cost	10.00 CHF	5.20 CHF	
Travel time to store		18 min.	
Delivery time (incl. possible delays)	less than 1 day		
Size / weight of good basket			
Ordering time / shopping time	48 min.	54 min.	
Shopping costs	54.00 CHF	60.00 CHF	
	□ ← Your o		

Situation 1 Purpose: Durable goods	Order	Travel to store
Delivery cost / travel cost	15.00 CHF	9.10 CHF
Travel time to store		21 min.
Delivery time (incl. possible delays)	2-3 days	
Size / weight of good basket	T	7
Ordering time / shopping time	54 min.	66 min.
Shopping costs	300.00 CHF	320.00 CHF


Attitudes towards online shopping

Questionnaire item	Factor loading	
sh1: I often order products in the internet	-0.69	
sh2: Online shopping is associated with risks	+0.48	
sh3: Credit card fraud is one the reasons why I don't like online shopping	+0.69	
sh4: The internet has more cons than pros	+0.54	
sh5: A disadvantage of online shopping is that I cannot physically examine the products	+0.29	
sh6: Online shopping facilitates the comparison of prices	-0.54	
sh7: The risk of receiving a wrong product is one the main reasons why I don't like online shopping	+0.65	
Estimation method: Maximum likelihood Rotation method: Orthogonal varimax Variance explained: 31.5 %. Cronbach's Alpha: 0.75 Kaiser-Meyer-Olkin measure of sampling adequacy: 0.80 Likelihood-ratio test: 1 factor vs. saturated: $p < 0.00$ Number of subjects: 339. Subject-to-Item ratio: 48.4		

Attitudes and socio-economic characteristics


Attitudes and socio-economic characteristics

Attitudes and socio-economic characteristics

Modeling Framework: Hybrid choice

Modeling Framework: Structural model

Utility equation for shopping channel *i* with choice attributes X_{i_n} and the latent online shopping variable LV_n :

$$U_{O_n} = \beta_{C_O} + \beta_{O_n} \cdot X_{O_n} + \beta_{sc,O} * sc_O * \left(\frac{inc}{inc}\right)^{\lambda_{inc}} + \mu_{LV} \cdot (LV_n - \overline{LV_n}) + \qquad (1)$$

$$\mu_{sc,LV} \cdot sc_{O_n} \cdot (LV_n - \overline{LV_n}) + \epsilon_{O_n}$$

$$U_{IS_n} = \beta_{IS} \cdot X_{IS_n} + \beta_{sc,IS} * sc_{IS} * \left(\frac{inc}{inc}\right)^{\lambda_{inc}} + \mu_{sc,LV} \cdot sc_{IS_n} \cdot (LV_n - \overline{LV_n}) + \epsilon_{IS_n} \qquad (2)$$

Latent variable equation with socio-economic characteristics X_n :

$$LV_n = \overline{LV_n} + \kappa_X \cdot X_n + \omega_{LV_n} \tag{3}$$

Relative importance of choice attribute X_{i_n} compared to shopping costs as a function of income and the latent variable LV_n :

$$f(inc_n, LV_n) = \frac{\beta_{X_{i_n}}}{\beta_{sc} \cdot \left(\frac{inc_n}{inc_n}\right)^{\lambda_{inc}} + \mu_{sc, LV} \cdot (LV_n - \overline{LV_n})}$$
(4)

- If $\lambda_{inc} < 0$ and $\mu_{cost,LV} > 0$: Shopping cost sensitivity increases with lower income and a more positive attitude towards online shopping
- For the "average" respondent, the equation collapses to

$$f(\overline{inc}, \overline{LV_n}) = \frac{\beta_{X_{i_n}}}{\beta_{sc}}$$
(5)

Latent variable measurement equations with responses to the 7 online shopping items I_{sh} :

$$I_{sh_n} = \overline{I_{sh}} + \tau_{LV_{I_{sh}}} \cdot LV_n + \epsilon_{I_{sh_n}}$$
(6)

Choice equation: Choice of individual n for shopping channel i by maximizing utility U_i :

if
$$U_{O,n} > U_{IS,n}$$
: choice_{i,n} =

$$\begin{cases}
Online shopping \\
else In-store shopping
\end{cases}$$
(7)

 β_j , μ_j , λ_{inc} , $\overline{LV_n}$, κ_j , $\sigma_{\omega_{LV}}$, $\overline{I_{sh}}$, τ_{sh} and $\sigma_{I_{sh}}$ are the parameters to be estimated (45 in total)

Estimation

Likelihood of individual *n* choosing alternative *i* is the joint probability of observing the choice and the 7 online shopping items I_{sh_n} , given choice attributes and socio-economic characteristics $X_{i,n}$:

$$Likelihood = \int_{\omega_{LV_n}} P(choice_{i,n}|X_{i,n},\omega_{LV_n}) \prod_{sh=1}^7 f_{sh_n}(I_{sh_n},\omega_{LV_n})\phi(\omega_{LV})d\omega_{LV_n}$$
(8)

$$\omega_{LV} \sim N(0, \sigma_{\omega_{LV}}) \tag{9}$$

$$P(ch_{i,n}|X_{i,n},\omega_{LV_n}) = \frac{exp(U(X_{i,n}))}{\sum_{j=1}^{2}exp(U(X_{j,n}))}$$
(10)

$$f_{sh_n}(I_{sh_n},\omega_{LV_n}) = \frac{1}{\sigma_{I_{sh}}}\phi\left(\frac{I_{sh_n} - \overline{I_{sh}} - \tau_{I_{sh}} \cdot LV_n}{\sigma_{I_{sh}}}\right)$$
(11)

Maximum likelihood estimation with PythonBiogeme version 2.4 on Euler (HPCC, 2 cores, runtime 45 min., 139 iterations)

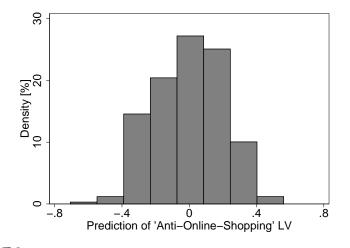
Estimation results: Choice models

Variable	Base model	Factor model	Hybrid mod
Shopping cost	-0.021***	-0.024***	-0.025
Income elasticity of shopping cost	0.041	-0.034	-0.054
"Anti-onlshop." factor/LV \times shop. cost	_	0.007***	0.019
Travel time (IS)	-0.022***	-0.024***	-0.025
Travel cost (IS)	-0.036**	-0.035**	-0.037
Medium delivery time (ONL)	-0.110	-0.142	-0.152
Med. delivery time x durables (ONL)	-0.182	-0.172	-0.172
High delivery time (ONL)	-0.813^{***}	-0.873***	-0.894
High delivery time x durables (ONL)	0.256	0.243	0.243
Delivery cost (ONL)	-0.093***	-0.099***	-0.101
Delivery cost x durables (ONL)	0.057***	0.055***	0.055
ASC (ONL)	-1.550^{***}	-1.540***	-1.570
Purpose durables (ONL)	0.529**	0.425*	0.448
Medium size (ONL)	1.050***	1.100***	
Large size (ONL)	2.250***	2.410***	
"Anti-online-shopping" factor/LV (ONL)	—	-0.466***	-1.210
# estimated parameters	14	16	45
Choice observations (participants)		2698 (339)	
Log-likelihood null	-1870.1	-1870.1	-66075.5
Log-likelihood model	-1485.5	-1393.5	-23098.9
McFadden ρ^2	0.21	0.26	0.65
Iterations	16	29	139

 $p^{***} p < 0.01, p^{**} p < 0.05, p^{*} p < 0.1$

Estimation results: LV model

Variable	Dep. variable: LV_n	
$\overline{LV_n}$	2.160***	
Age	-0.012**	
$Age^2/100$	0.019***	
Car availability	-0.125***	
High education	-0.111^{***}	
Income	-0.084***	
Rural	0.119***	
Male	-0.247***	
Swiss	0.106***	
$\sigma_{\omega_{LV}}$	0.469***	
*** ** .	a a= * . a t	


 $^{***}p < 0.01, \, ^{**}p < 0.05, \, ^{*}p < 0.1$

- Female and Swiss non-car users with low education and income living in rural residential locations have the most negative attitudes towards online shopping
- Maximal pro-online shopping attitudes with 32 years of age

Value of time for shopping trips/delivery

Coefficient ratios	Base model	Factor model	Hybrid model
VTTS shopping trips (travel cost) [CHF/h]	36.46	41.02	39.89
VTTS shopping trips (shop. cost) [CHF/h]	62.86	61.01	60.00
VDTS medium delivery time groceries [*] [CHF/t.u.]	1.19	1.43	1.50
VDTS high delivery time groceries [CHF/t.u.]	8.76	8.80	8.85
VDTS medium delivery time durables [CHF/t.u.]	8.09	7.12	7.01
VDTS high delivery time durables [CHF/t.u.]	15.43	14.29	14.12
VDTS groceries [CHF/day]	6.1	6.2	6.2
VDTS durable goods [CHF/day]	2.6	2.4	2.4
Travel cost / shopping cost [-]	1.72	1.49	1.50
Delivery cost groceries / shopping cost [-]	4.42	4.17	4.11
Delivery cost durables / shopping cost [-]	1.72	1.85	1.87

- Current study: Value of travel time savings (VTTS) of 40 CHF/h; about 50 % higher if considering shopping instead of travel costs as reference (values in brackets)
- VDTS: For easier interpretation, linear interpolation of delivery time

• $\widetilde{LV_n} = LV_n - \overline{LV_n}$ is approximately normally distributed with mean 0

Total market shares	Online 51%	In-store 49%
Shopping cost Shopping cost (max. $\widehat{LV_n}$)	-2.83 (2.96) -1.61 (1.69)	-3.12 (2.98) -1.78 (1.70)
Shopping cost (min. \widehat{LV}_n) Travel time	-4.37 (4.57)	-4.82 (4.61) -0.31 (0.29)
Travel cost	_	-0.10 (0.09)
Delivery cost groceries Delivery cost durables	-0.37 (0.39) -0.17 (0.18)	-

*: Not significant at the 5% level.

• Attribute sensitivities relative to shopping costs are increasing for higher anti-online shopping attitudes \implies price-insensitive trade-off behavior; in-store dominant channel

Conclusions

- Behavioral richness and estimation efficiency increase substantially when including latent variables
- Structural model reveals distribution of LV in the population based on fundamental socio-demographic characteristics
- VTTS vs. VDTS: Large potential of online shopping given the relatively high value of travel time savings for shopping trips
- Pro-online shopping attitudes lead to a sign. increase in shopping cost sensitivity ⇒ larger choice set when considering both online and in-store shopping as possible shopping channels
- 1 CHF ≠ 1 CHF: Delivery costs are perceived as more negative than travel and shopping costs (avoidability hypothesis) ⇒ online retailers better incorporate delivery costs in shopping prices

Problems

- Panel structure: Was not able to account for it when working on Euler (same code, same data, but error). bioDraws('...'), bioNormalDraws('...','id')
- Other distributions?
- $\widetilde{LV_n} = LV_n \overline{LV_n}$: Evaluation of interaction effects at their means? Problem: $\widetilde{LV_n} \neq 0$
- How to account for scale heterogeneity (SMNL) in PythonBiogeme?
- Including more latent variables (risk aversion, love of variety, etc.): What's the right estimation approach in PythonBiogeme? (eirass_panel.py)

Project website:

http://postcarworld.epfl.ch/