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INTRODUCTION

This presentation gives an overview of Tien Mai’s dissertation
(seven papers)

Many transport related choice problems (e.g. location, activity,
route, mode, departure time) share some characteristics

Network-based
Large number of alternatives
Dynamic
Alternatives are similar (can, in a RUM framework, be
translated to correlated random terms)

In this presentation we focus on route choice modelling
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INTRODUCTION – ROUTE CHOICE

Given an origin and destination in a transport network, which route
does a traveller choose?

Shortest path and/or recommended route

Analyst has imperfect knowledge of travellers’ generalized cost and
perception of network

Discrete choice models estimated based on RP data are used to
define choice probability distributions over alternatives
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INTRODUCTION – ROUTE CHOICE

Objectives

Models that can be consistently estimated using maximum
likelihood
Models that produce accurate predictions in short
computational time

Main challenges

Definition of choice sets
Modelling correlation
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INTRODUCTION
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RECURSIVE LOGIT

Proposed by Fosgerau, Frejinger and Karlstrom (2013)

Shortest path problems are typically solved by dynamic
programming (DP)

Deterministic problem: labelling correction methods and
associated heuristics such as A∗

Stochastic problem: find an optimal stationary policy in an
infinite horizon formulation with absorbing state

How to formulate a discrete choice model defining path choice
probabilities using the DP framework (i.e. network-based approach)?
Optimal policy is utility maximization and utilities are link-additive
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RECURSIVE LOGIT

Simple case: deterministic attributes and link choice model is logit
which yields a logit model over all paths (no correlation)

The recursive logit is based on results from Rust (1987)
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RECURSIVE LOGIT

Link additive instantaneous utilities u(a|k) = v(a|k)+µε(a)

v(a|k) = v(xa|k;β )< 0, v(d|k) = 0

E[ε(a)] = 0
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RECURSIVE LOGIT

Bellman’s equation: V d(k) = E
[
maxa∈A(k)(v(a|k)+µε(a)+V d(a))

]
Logsum

V d(k) = µ ln ∑
a∈A(k)

e
1
µ
(v(a|k)+V d(a))

System of linear equations

z = Mz+b⇔ (I−M)z = b

z (|Ã|×1), zk = e
1
µ

V (k), b (|Ã|×1), bk = 0 ∀k ∈ A, bk = 1,k = d

M (|Ã|× |Ã|)

Mka =

{
δ (a|k)e

1
µ

v(a|k) ∀a ∈ Ã, ∀k ∈ A
0 otherwise
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RECURSIVE LOGIT

Probability of choosing link a given state k

P(a|k) = e
1
µ
(v(a|k)+V (a))

∑
a′∈A(k)

e
1
µ
(v(a′|k)+V (a′))

Path σ = {ki}I
i=0, k0 is the origin and kI = d, P(σ) = ∏

I−1
i=0 P(ki+1|ki)

P(σ) =
I−1

∏
i=0

e
1
µ
(v(ki+1|ki)+V (ki+1)−V (ki))

= e−
1
µ

V (k0)
I−1

∏
i=0

e
1
µ

v(ki+1|ki)
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CONTRIBUTIONS
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CONTRIBUTIONS
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RECURSIVE MODELS

Mai T., Fosgereau M., Frejinger E. (2015). A nested recursive logit
for route choice analysis, Transportation Research Part B, 75(1),
p.100-112.

Mai T., Recursive network MEV model for route choice analysis,
submitted to Transportation Research Part B.

Mai, T., Bastin, F., and Frejinger, E. A decomposition method for
estimating recursive logit based route choice models, under revision
EURO Journal on Transportation and Logistics.

Mai, T., Bastin, F., and Frejinger, E. Comparing regret
minimization and utility maximization for route choice using the
recursive logit model, under revision Journal of Choice Modeling
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RECURSIVE MODELS – NESTED

Scale parameters of the random terms are assumed to be link
specific

Logit at each choice stage but IIA property does not hold

Bellman’s equation:
V d(k) = E

[
maxa∈A(k)(v(a|k)+µkε(a)+V d(a))

]
, ε(a) are i.i.d. EV

zd
k = ∑

a∈A(k)
Mka(zd

a)
µa
µk +bk

Large system of non-linear equations, can be solved by value
iteration (we propose “dynamic accuracy”)
Fixed point solution exits if ∑a∈A(k) Mka < 1 ∀k
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RECURSIVE MODELS – GENERALIZED

Model at each choice stage can be any network MEV model (Daly
and Bierlaire, 2006)

Bellman’s equation V d(k) = E
[
maxa∈A(k)(v(a|k)+ ε(a|k)+V d(a))

]
where ε(a|k) ∀a ∈ A(k) follow a MEV distribution with CPGF Gk

Challenge: compute Gk and ∂Gk ∀k

Trick: change the graph to include correlation structure at each
stage (state augmentation), then use the same way to compute
value function as the nested recursive model
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RECURSIVE MODELS – MIXED

Error component model combined with subnetwork (Frejinger and
Bierlaire, 2007)

Challenge: solve a very large number of linear systems

Decomposition method that allows to solve one system of linear
equations to obtain the value functions for all observations (useful
also for RL model)
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RECURSIVE MODELS – RANDOM REGRET

Random regret minimization instead of random utility maximization

Three different link regret functions (GRRM, ERRM, ARRM)

rERRM(a|k) = ∑
a′∈A(k)

∑
t

ln
(

λt + eβt(x(a′|k)t−x(a|k)t)+δt x(a′|k)t
)

“Competitive RUM” models
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RESULTS – COMPARISON

Borlänge data (some of the models have also been estimated and
applied to Delft and Eugene networks but they are not presented
here)

Static and deterministic network

1832 observations, 466 destinations

5 attributes and all parameters have expected signs, are significant
and have plausible relative magnitudes

In-sample model fit cannot be compared across all models
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RESULTS – COMPARISON

c©www.intermodal.iro.umontreal.ca |Page 20/23



RESULTS – COMPARISON

Non parallelized MATLAB code running under an Intel(R) 3.20GHz
machine with a x64-based processor

Estimation cost
RL: 4 minutes (with the DeC), 2 hours (without the DeC method)
RL-LS : 8 hours
NRL-LS: 30 hours
RCNL-LS: 3 days
MRL-LS (500 draws): 5-7 days
RRM, CRUM models: 10 hours (with the DeC method)

For all the recursive models
Less than 1 minute to solve Bellman’s equation
Few seconds to compute link flows, simulate a path
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ONGOING WORK
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CONCLUSIONS

Different ways to analyze route choices (estimation and prediction)
using discrete choice models

No generation of choice sets of paths
Correlated utilities
Prediction

MATLAB code distributed on GitHub
https://github.com/maitien86/RecursiveLogitCode
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