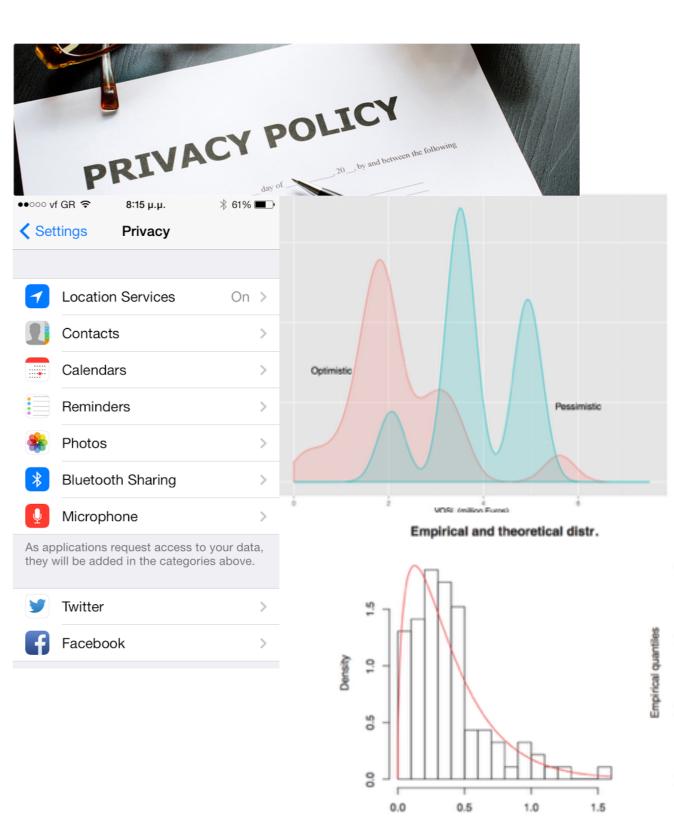
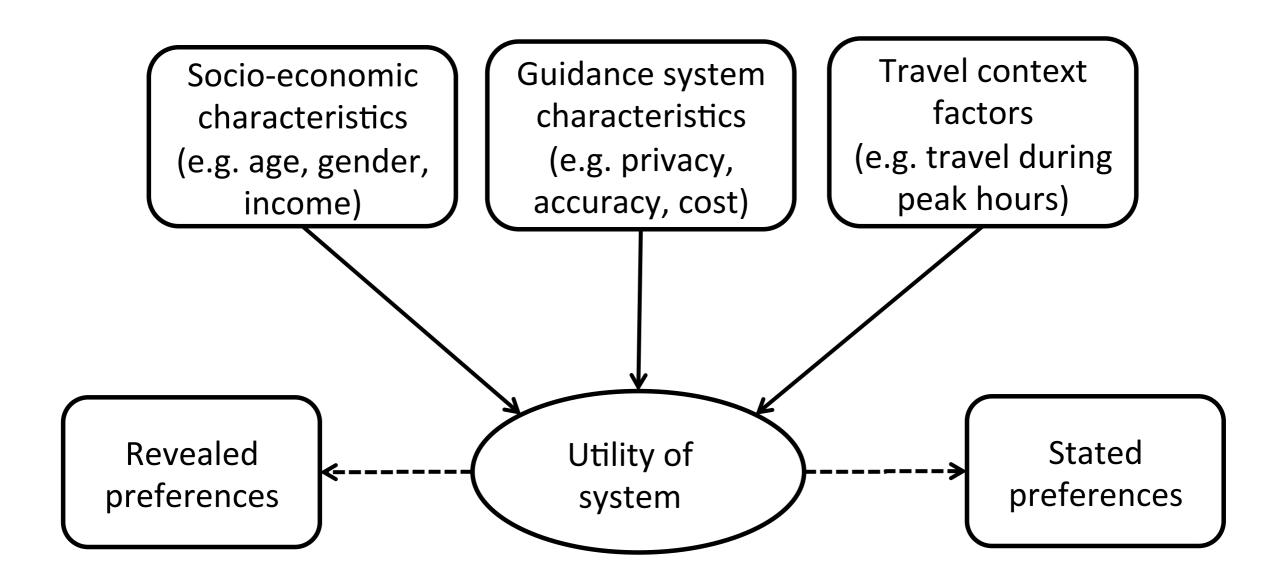


WORKSHOP ON DISCRETE CHOICE MODELS 2016

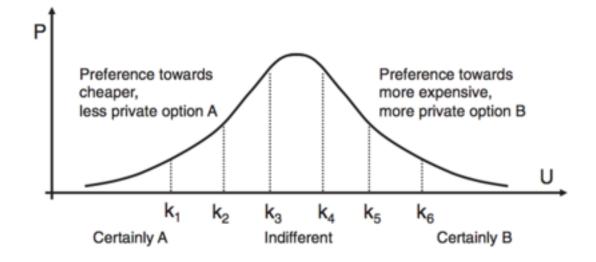

Measuring the value of *, for * in {privacy, preventing a fatality}

Constantinos Antoniou National Technical University of Athens, Greece



Outline

- Background
- Methodology
- Survey design and data collection
- Value of privacy
- Value of preventing a fatality


Behavioural model

Methodology

- Ordered logit/probit model
- Random effects model
- Interact main variables with explanatory variables
 - Allows us to estimate distributions of coefficients

Marginal rates of substitution

$$MRS = -\frac{dY}{dX}\bigg|_{U = U_1}$$

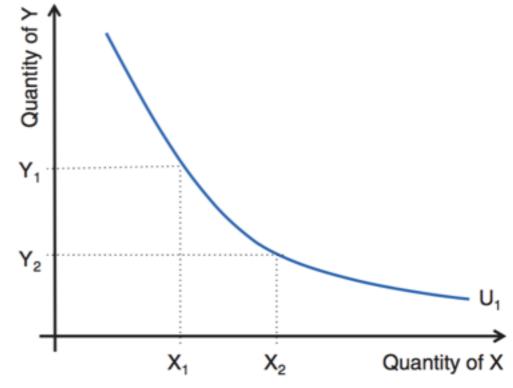


Figure 3 Indifference curve.

$$V_{i} = \Delta cost_{i} * \left(a_{0} + \sum_{k} a_{k} \ variable_{ki}\right)$$

$$+ \Delta privacy_{i} * \left(\beta_{0} + \sum_{l} \beta_{l} \ variable_{li}\right)$$

$$+ \Delta accuracy_{i} * \left(\gamma_{0} + \sum_{m} a_{m} \ variable_{mi}\right) + \dots$$

$$(2)$$

where:

- $\Delta cost_i$, $\Delta privacy_i$, $\Delta accuracy_i$, are the difference in cost, privacy level, and accuracy level between the two alternatives.
- a_0, β_0, γ_0 are the main coefficients for cost, privacy, and accuracy.
- a_k, β_l, γ_m are the additional coefficients, which measure the effect of cost, privacy, and accuracy in the other variables that enter the model specification.
- "..." corresponds to additional explanatory parameters in the model.

		would you choose? Alternative A			Alternative B		
		Alternative A			Anternative B		
Mode of operation		No location data			Driving pattern		
Accuracy		Better			Good		
Cost		8€/month			2€/month		
1	2	3	4	5	6	7	
Strong preference towards A	Moderate preference towards A	Mild preference towards A	Indiffe- rent	Mild preference towards B	Moderate preference towards B	Strong preference towards B	

Survey design

have units of €/privacy level, which is the expected unit for a value-of-privacy (VOP) measure:

$$VOP = \frac{\beta_{privacy}}{\beta_{cost}} \left(\frac{utils/privacy\ level}{utils/\epsilon} = \epsilon/privacy\ level \right)$$
(3)

Similarly, the value of service accuracy (VOA) can be obtained by:

$$VOA = \frac{\beta_{accuracy}}{\beta_{cost}} \left(\frac{utils/accuracy\ level}{utils/\varepsilon} = \varepsilon/accuracy\ level \right)$$

Antoniou and Polydoropoulou (2014)

Initial results

	Value of privacy	Value of accuracy					
	€/month for each privacy level	(€/month)					
Ordered logit models							
All respondents	2.21	0.96					
Random effects ordered logit models							
All respondents	2.19	0.95					
Female respondents	2.62	1.04					
Male respondents	1.80	0.83					

Random-effects ordered probit results Gender-based market segmentation

Cost (Euro/month)

Accuracy

Operation w.r.t. privacy

Own GPS

Drive both in urban and rural roads

Age less than 25 years

Family income less than 1800 Euro/month

Salaried office worker

Residence: Suburb

Own GPS and drive both in urban and rural roads Age less than 25 years and family income less than 1800 Euro/month

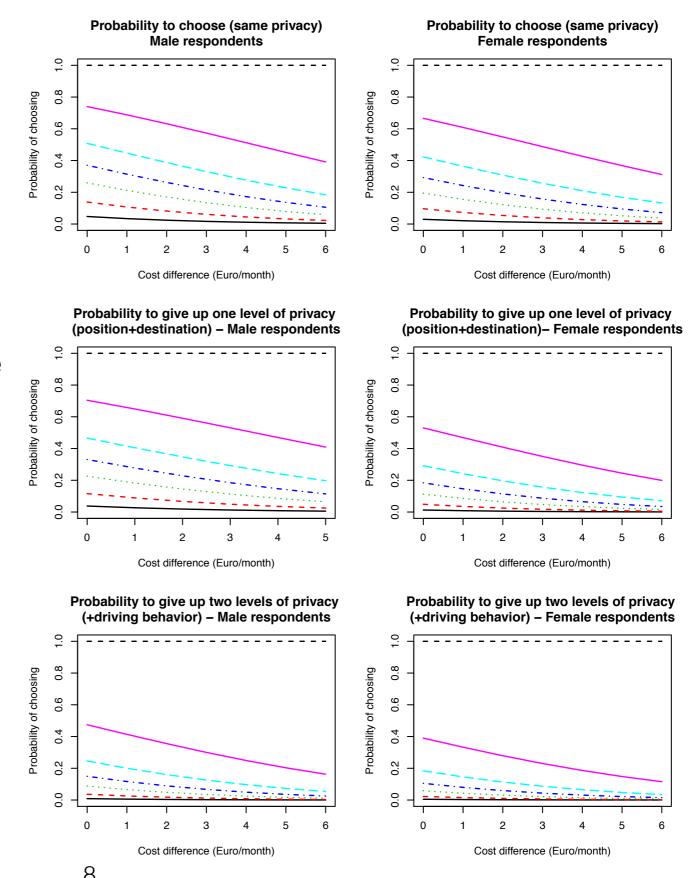
mu_1

mu_2

mu_3

mu 4

mu_5


sigma

Antoniou and Polydoropoulou (2014)

Results

- Presented a framework for the estimation of the willingness to accept giving up privacy
- It can be inferred that women are willing to give out less personal information (relative to men)
- Average amount that the respondents would like to receive in order to give up one level of privacy is 2.2€/month
- Women would demand 2.6€/ month and men 1.8€/month

Antoniou and Polydoropoulou (2014)

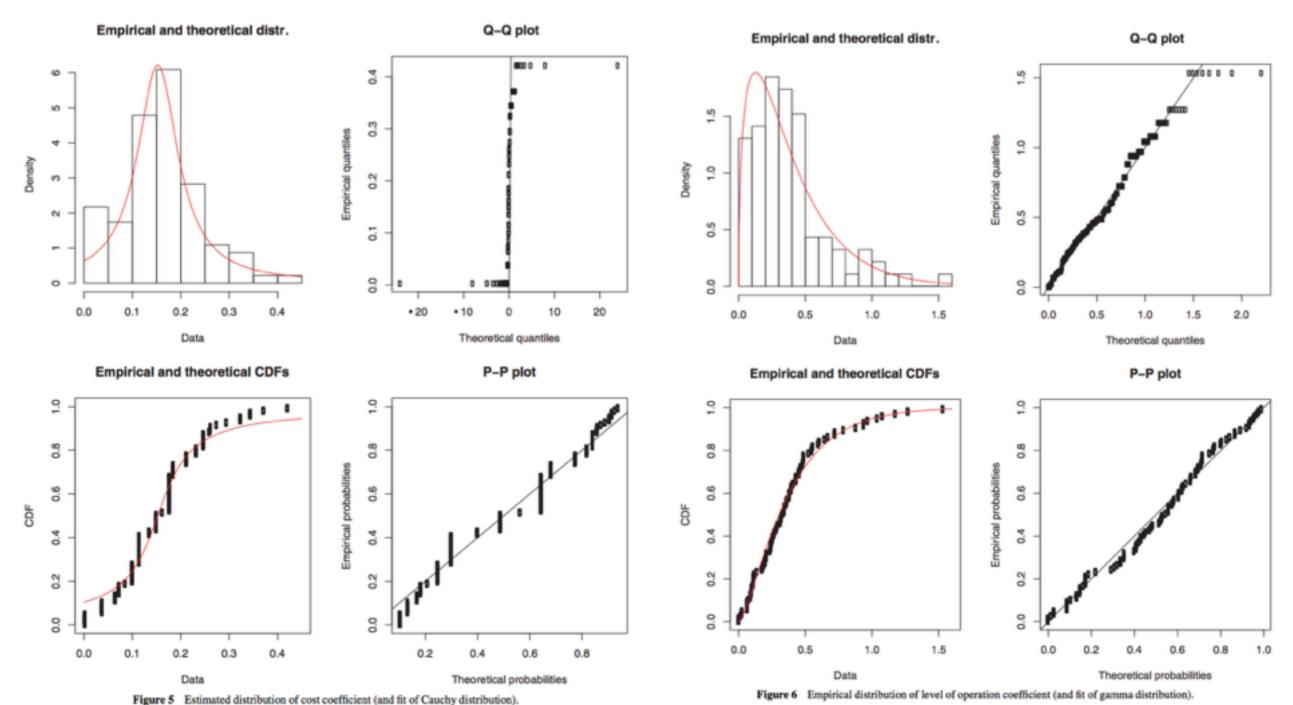
$$V_{i} = \Delta cost_{i} * \left(a_{0} + \sum_{k} a_{k} \ variable_{ki}\right)$$

$$+ \Delta privacy_{i} * \left(\beta_{0} + \sum_{l} \beta_{l} \ variable_{li}\right)$$

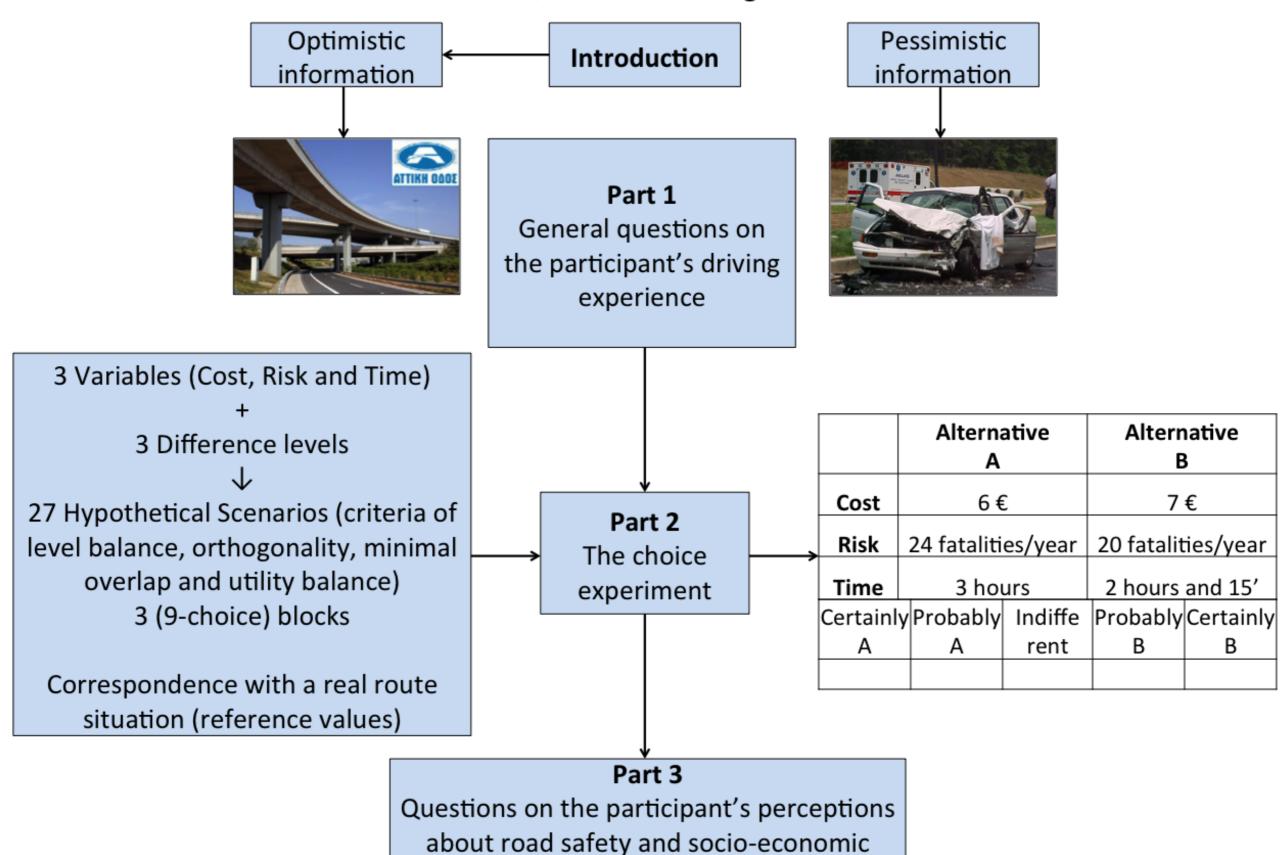
$$+ \Delta accuracy_{i} * \left(\gamma_{0} + \sum_{m} a_{m} \ variable_{mi}\right) + \dots$$

$$(2)$$

where:


- $\Delta cost_i$, $\Delta privacy_i$, $\Delta accuracy_i$, are the difference in cost, privacy level, and accuracy level between the two alternatives.
- a_0, β_0, γ_0 are the main coefficients for cost, privacy, and accuracy.
- a_k, β_l, γ_m are the additional coefficients, which measure the effect of cost, privacy, and accuracy in the other variables that enter the model specification.
- "..." corresponds to additional explanatory parameters in the model.

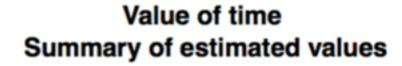
 9 Antoniou and Polydoropoulou (2015)

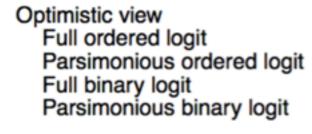

Table 2 Model estimation results—all respondents.

	All respondents		
Variables	Estimate	t Value	
Cost (€/month)	-0.116	-2.000	
Accuracy	1.271	3.973	
$Cost \times Suburb$	0.077	4.068	
$Cost \times Peak$	-0.147	-2.123	
$Cost \times Own GPS$	0.112	2.228	
$Cost \times Male$	-0.062	-3.248	
$Cost \times Age less than 25 years$	-0.159	-1.444	
Accuracy × Own GPS	-0.920	-3.147	
Accuracy × Use GPS frequently	-0.285	-3.514	
Accuracy × Children	-0.130	-2.076	
Operation × Peak	-0.389	-1.817	
Operation × Use GPS frequently	-0.119	-2.922	
Operation × Children	-0.069	-1.581	
Operation × Income	0.072	4.161	
Operation × Age less than 25 years	-0.625	-1.818	
Operation × Age more than 50 years	-0.227	-2.616	
Operation × Own GPS and drive both in urban and rural roads	-0.174	-1.922	
Threshold parameters for index model			
1 2	-1.117	-14.044	
2 3	-0.527	-7.132	
3 4	-0.181	-2.496	
4 5	0.127	1.748	
5 6	0.569	7.572	
6 7	1.181	14.214	
Summary statistics			
Number of observations	840		
Initial log-likelihood	-1620.07		
Final log-likelihood	-1581.63		
AIC	3209.26		

Distributions of estimated coefficients

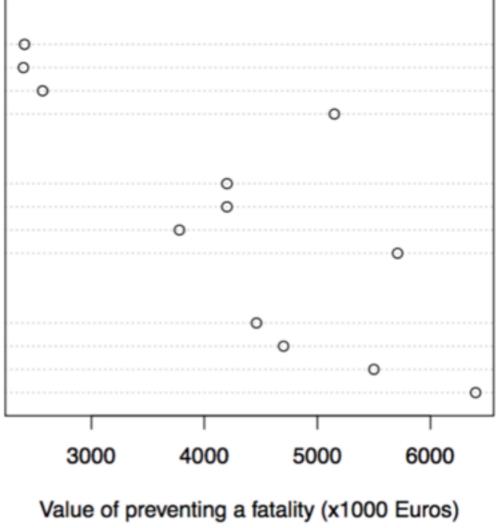
Questionnaire Design

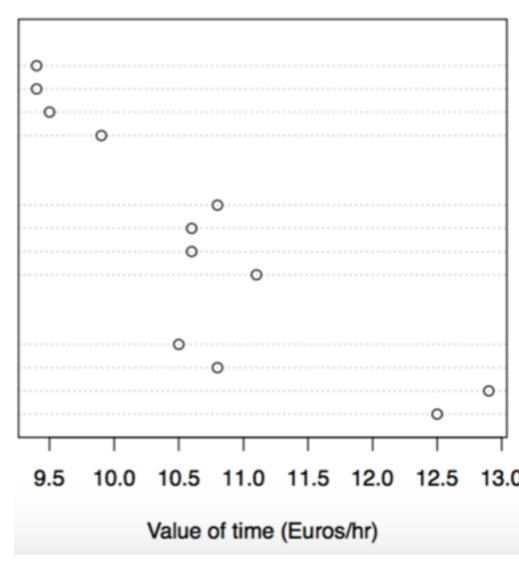



Antoniou and Kostovasilis (2012)

data

ORDERED LOGIT MODELS	Pooled		Optimistic		Pessimistic	
Variable	Est.	z-value	Est.	z-value	Est.	z-value
Travel cost	-0.176	-3.710	-0.161	-2.378	-0.147	-2.179
Travel time	-1.900	-12.712	-1.518	-7.645	-1.546	-7.672
Risk	-0.136	-4.824	-0.071	-1.896	-0.12	-3.082
Self-reported driving ability: better than average	0.505	3.577	-0.238	-1.16		
Data: face-to-face interview	0.854	5.850			1,105	5.067
Road safety measures perception: insufficient	-0.277	-1.892	-0.379	-1.92		
Crashes as passenger	-0.209	-2.805	0.277	2.578		
Kilometers traveled per year (x1000)			-0.015	-1.654	-0.036	-2.656
Young (Age < 30 years)					0.565	2.601
Gender: Male	-0.823	-5.353	0.658	2.801		
Road: other	-0.686	-3.629			-1.764	-6.203
Road: Athens-Thessaloniki National Highway	-0.573	-3.542			-0.305	-1.343
Intercept						
k 1 2	-2.217	-7.039	-1.912	-4.401	-1,799	-4.298
k2 3	-1.171	-3.854	-0.925	-2.179	-0.806	-1.994
k3 4	-0.946	-3.129	-0.713	-1.683	-0.61	-1.516
k4 5	0.468	1.565	0.446	1.056	0.87	2.158
Observations	846		423		423	
AIC	1912.1		1011.4		978.4	


Value of preventing a fatality Summary of estimated values



Optim.+Pessim.
Full ordered logit
Parsimonious ordered logit
Full binary logit
Parsimonious binary logit

Pessimistic view
Full ordered logit
Parsimonious ordered logit
Full binary logit
Parsimonious binary logit

3.4 Value of preventing a fatality

Suppose the following general formulation for the systematic component of the utility function is used (to get the full utility specification one needs to add the error term):

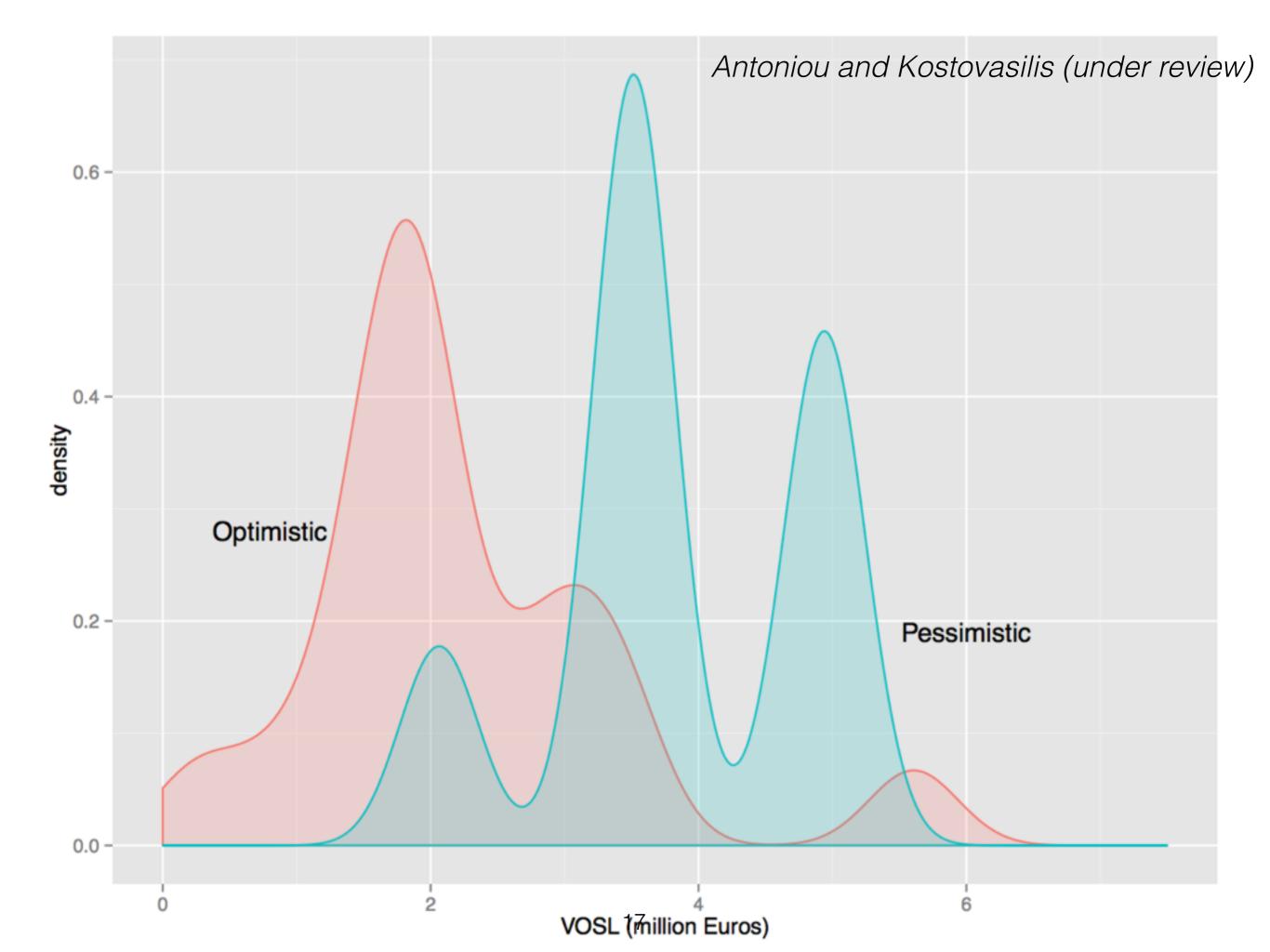
$$V_{i} = \Delta cost_{i} * (a_{0} + \sum_{k} a_{k} variable_{ki}) +$$

$$+\Delta time_{i} * (\beta_{0} + \sum_{l} \beta_{l} variable_{li}) +$$

$$+\Delta risk_{i} * (\gamma_{0} + \sum_{m} a_{m} variable_{mi}) + \dots$$

$$(1)$$

where:


 $\Delta cost_i$, $\Delta time_i$, $\Delta risk_i$ are the difference in travel cost, travel time and travel risk level between the two alternatives;

 a_0, β_0, γ_0 are the main coefficients for cost, time and risk;

 a_k , β_l , γ_m are the additional coefficients, which measure the interaction of cost, time and risk in the other variables that enter the model specification; and

"..." corresponds to additional explanatory parameters in the model.

Antoniou and Kostovasilis (under reviev	v) Optim	istic	Pessir	Pessimistic		
Variables	Estimate	t-value	Estimate	t-value		
Intercept	1.152	8.335	1.108	7.835		
Travel time	-0.585	-2.616	-0.606	-2.802		
Travel risk	-0.311	-3.585	-0.163	-6.556		
Cost*(Age <30 years)	-0.258	-4.572	-0.244	-4.542		
Cost*(45 <age<65)< td=""><td>-0.308</td><td>-3.590</td><td></td><td></td></age<65)<>	-0.308	-3.590				
Cost*(Km driven per year x1000)	0.009	3.514				
Time*(Drive mostly on other main roads)	-0.686	-2.821	-0.598	-2.126		
Time*(Drive mostly on Athens- Thessaloniki Motorway)	-0.529	-2.404				
Time*Email response			-0.829	-4.109		
Time*(Road Safety Measures Considered Insufficient)	-0.594	-3.072				
Time*(Had Accident as Driver)			-0.214	-3.188		
Time*(Had Accident as Passenger)			-0.380	-3.136		
Risk*Female	-0.089	-4.976				
Risk*(Drive mostly on other main roads)			0.052	2.050		
Risk*(Drive mostly on Athens- Thessaloniki Motorway)			0.051	2.891		
Risk*Email respondent	0.122	6.872				
Pick* (Ago < 30 years)	0.173	1 970	0.035	1 582		

References

- Antoniou, C. and K. Kostovasilis (2012). Can external stimuli affect the perceived value of statistical life? Proceedings of the 91st Annual Meeting of the Transportation Research Board, January 2012, Washington, D.C.
- Antoniou, C. and A. Polydoropoulou (2014). How likely are travelers to give up information in exchange for better user information services? Proceedings of the 93rd Annual Meeting of the Transportation Research Board, January 2014, Washington, D.C.
- Antoniou, C. and A. Polydoropoulou (2015). The value of privacy. Evidence from the use of mobile devices for traveler information systems. Journal of Intelligent Transportation Systems: Technology, Planning and Operations, 19(2), pp. 167-180.
- Antoniou, C., and K. Kostovasilis (under review). How may external information affect traffic risk perception?

WORKSHOP ON DISCRETE CHOICE MODELS 2016

Measuring the value of *, for * in {privacy, preventing a fatality}

Constantinos Antoniou National Technical University of Athens, Greece

