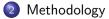
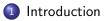

A Route Choice Model Based on Mental Representations


Evanthia Kazagli & Michel Bierlaire

Transport and Mobility Laboratory School of Architecture, Civil and Environmental Engineering École Polytechnique Fédérale de Lausanne

May 28, 2015

Agenda



Agenda

Methodology

Motivation

Estimation of ${\rm RUMs}^1$ with ${\rm RP}^2$ data and path assumption is challenging

Operational limitations

- Data
- Choice set
- Structural correlation

Behavioral limitations

¹Random Utility Models. ²Revealed Preferences.

Kazagli & Bierlaire (EPFL, TRANSP-OR)

Proposed framework

- Simple model exploiting RP data
- Not based on paths
- Sey feature: mental representations
- The general framework may be network-free, yet applicable to traffic assignment

Agenda

Backbone of the framework

A *path* is solely the manifestation of the route choice –the way the traveler implements her decision to take a specific route.

How can we represent a route in a behaviorally realistic way without increasing the model complexity?

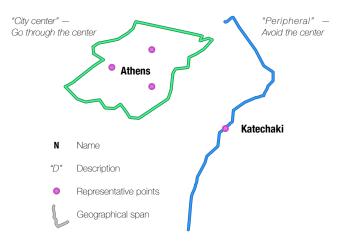
• Choice takes place at a higher conceptual level.

 \rightarrow Mental Representation Item (*MRI*) = main modeling element

Outline of the methodology

- Definition of the MRI:
 - Empirical evidence through simple qualitative analyzes
 - ② Literature review in relevant fields
- 2 Definition of a RUM model based on MRI:
 - Choice set C_n
 - Explanatory variables x_{in}, z_n
 - Specification of the deterministic utility function V_{in}
 - **(a)** Assumption about the error terms ε_{in}

Mental Representation Item (MRI)


- *MRIs* are associated with mental representations used in daily language to describe a route.
- An *MRI* is an item characterising the mental representation of an itinerary:

E.g. a highway, the city center or a bridge.

• Strategic decisions.

The *MRI* components

Perceptual: a name and a description; Tangible: a point and a span

A B K A B K

< A

Definition of the alternatives

A route is either one-*MRI* or a sequence-of-*MRIs*.

The number of MRIs should be kept low so that the number of sequences-of-MRIs is also low and can be enumerated.

Issues:

- I How to relate available data to MRI alternatives; and
- Output to specify the utility function for the abstract alternatives.

 \rightarrow Different heuristics can be considered and evaluated.

From data to MRIs

Geographical span

Maximum likelihood estimation:

Let *i* be an alternative of the *MRI* model, and *y* an observation, then:

$$\sum_{i} P(y|i) \cdot P(i|C, x_{in}, z_n)$$

where P(y|i) is the measurement model, $P(i|C, x_{in}, z_n)$ is the choice model. Associating each piece of data to a single alternative, so that P(y|i) takes values 0 and 1 only, is convenient. For more complex measurement models, we refer to [?] and [?].

Specification of the utility function

Probably the most complex part

The main modeling element is a mental representation. This has implications for the specification of the utility functions:

! The attributes are fuzzy and based on perceptions rather than objective measurements.

- \checkmark Possibilities to investigate the impact of perception on behavior:
 - Model perceptions –e.g. using latent variables;
 - Network-free approach –e.g. using the level of service of the MRIs;
 - Use network data to generate attributes for each *MRI* and specify the utility functions.

Specification of utility functions

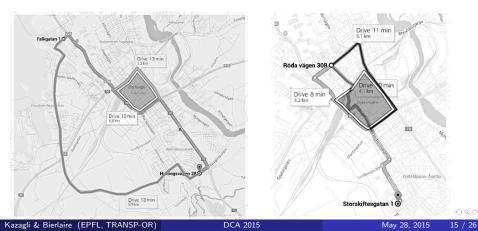
Deterministic approach

- Series For each MRI determine a representative node m (OD dependent).
- **2** Calculate the fastest path from O to m.
- Solution \bigcirc Calculate the fastest path from m to D.
- Use the attributes of the generated path for the MRI.

Agenda

크

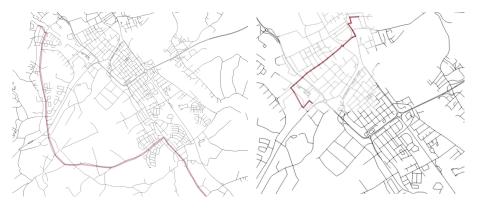
Borlänge data


- \checkmark GPS data \rightarrow map-matched trajectories
- ✓ Borlänge road network:
 - 3077 nodes and 7459 unidirectional links
 - 2 Link travel times
 - Olear choices
- We use a sample of 139 observations.
- We present one possible way to operationalize the model.

Borlänge road network

Borlänge MRI CS

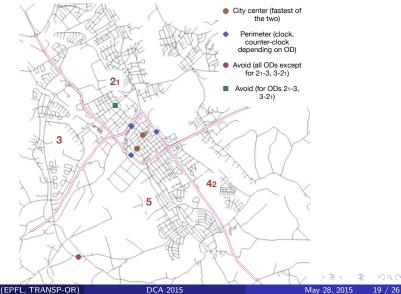
- $\mathcal{C}=\!\{1\colon$ through the city center (CC),
 - 2: clockwise movement around the CC,
 - 3: counter-clockwise movement around the CC,
 - 4: avoid the CC}


Example of observed routes (1)

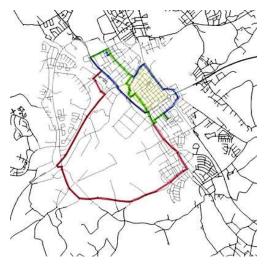
Around the CC movements

Example of observed routes (2)

Avoid the CC alternatives


Example of observed routes (3)

Through the CC movements


DCA 2015

Representative nodes

Kazagli & Bierlaire (EPFL, TRANSP-OR)

Example of MRI choice set

——— chosen alternative
(through CC)

------ around CC alternatives (clock and counter-clockwise)

---- avoid CC alternative

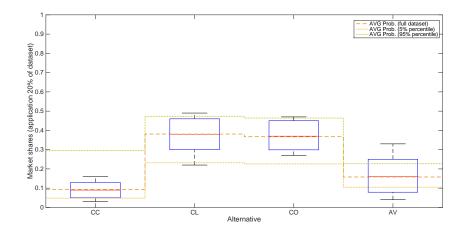
Estimation results

	Model 1	Model 2
Parameters	Parameter value; Rob. Std	Parameter value; Rob. Std
Parameters	(Rob. t-test 0)	(Rob. t-test 0)
-	(ROD. 1-LEST 0)	(Rob. 1-test 0)
ASCAROUND	-2.11; 1.44; (-1.47)	-0.975; 1.67; (-0.58)
ASCAROUND	-2.11, 1.44, (-1.47)	-0.515, 1.07, (-0.50)
ASCAVOID	1.87; 2.09; (0.89)	0.307 ; 1.70; (0.18)
AVOID		
$\beta TIME_{CC}$	-0.772; 0.274; (-2.82)	
$\beta TIME_{AROUND}^{(0-10min)}$	-0.286; 0.165; (-1.74)	
AROUND		
$\beta TIME_{AROUND}^{(>10min)}$	-0.616; 0.216; (-2.86)	
AROUND	-0.010, 0.210, (-2.00)	
$\beta TIME_{AVOID}$	-0.583; 0.187; (-3.11)	
PTIMEAVOID	0.000; 0.101; (0.11)	
βLENGTH		-0.871; 0.173; (-5.03)
r -		
$\beta LENGTH_{CC}$		-1.48; 0.493; (-2.99)
$\beta LEFT$	-0.288; 0.130; (2.22)	- 0.270 ; 0.143; (-1.89)
βIS	- 0.0474 ; 0.022; (-2.16)	- 0.063 ; 0.018; (-3.42)
Number of observations	139	139
Number of parameters	8	6
$\overline{\rho}$	0.375	0.416
 (0)	-183.201	-183.201
$\mathcal{L}(\beta)$	-106.563	-101.064

Kazagli & Bierlaire (EPFL, TRANSP-OR)

May 28, 2015 21 / 2

メロト メポト メヨト


Э

Forecasting results (Model 1)

- Randomly select 80% of the data for estimation.
- Apply the model in the rest 20%.
- Repeat 100 times.

 \rightarrow Check market shares (MS), predicted probabilities, elasticities.

Boxplot of MS from the application in 20% of the data and CI from the estimation with the full dataset

Agenda

크

Conclusion

It is possible to have a meaningful model using simple heuristics.

Achievements

- Simple and flexible.
- Behaviorally realistic.

Challenges

- Involved modeling.
- Data processing.

Future steps

- Traffic assignment.
- Sextention using a multiple-level representation.
- Other model specifications.

May 28, 2015

25 / 26

THANK YOU!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Appendix

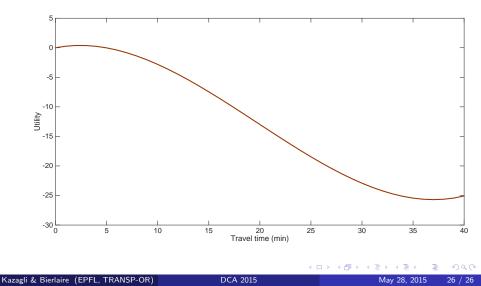
Descriptive statistics of the main variables

	mean	median	min	max	std.dev
TT_CC (min)	10.18	8.38	3.88	38.03	6.41
TT_CL (min)	9.98	8.18	2.86	38.93	6.32
TT_CO (min)	10.21	8.37	3.81	36.47	6.23
TT_AV (min)	11.80	13.12	2.66	38.58	11.81
L_CC (km)	7.65	5.21	1.88	42.91	7.39
L_CL (km)	7.84	5.47	1.57	43.82	7.30
L_CO (km)	7.95	5.48	2.33	42.62	7.23
L_AV (km)	9.18	9.04	1.54	42.29	8.90

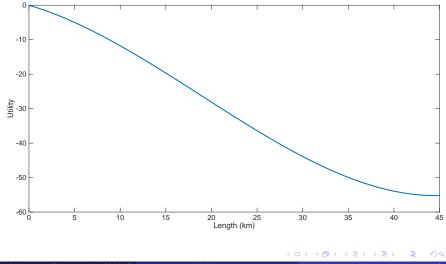
alternative	# times chosen
Through CC	13
Clockwise	53
Counter-clockwise	51
Avoid CC	22

-

크


Specification table of model 1

Piecewise linear travel time for the around alternatives


Parameter name	Through CC	Around clock CC	Around counter CC	Avoid CC
ASC _{CC} ASC _{AROUND} ASC _{AVOID}	0 0 0	0 1 0	0 1 0	0 0 1
$\beta TIME_{CC}$	TT (min)	0	0	0
$\beta TIME_{AROUND}^{(0-10min)}$	0	TT (min) \leq 10	TT (min) \leq 10	0
$\beta TIME_{AROUND}^{(>10min)}$	0	TT (min) > 10	TT (min) > 10	0
$\beta TIME_{AVOID}$	0	0	0	TT (min)
$\beta LEFT$	# left turns	# left turns	# left turns	# left turns
βIS	# intersections	# intersections	# intersections	# intersections

3

Power series of degree 3 for the travel time

Power series of degree 3 for the length

Kazagli & Bierlaire (EPFL, TRANSP-OR)

May 28, 2015 26 / 26

Specification table of model 2

Length

Parameter name	Through CC	Around clock CC	Around counter CC	Avoid CC
ASC _{CC} ASC _{AROUND} ASC _{AVOID} βLENGTH _{CC} βLENGTH	0 0 0 Length (km)	0 1 0		0 0 1 0
βLENGTΗ βLEFT βIS	# left turns # intersections	Length (km) # left turns # intersections	Length (km) # left turns # intersections	Length (km) # left turns # intersections

4 AP

크

Application

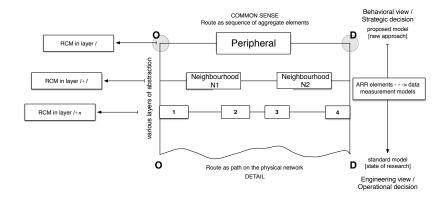
Traffic assignment

- Metropolis-Hastings (MH) algorithm [?] to sample paths given the OD and C.
- The probability of each *path p* to be selected, given the OD and *C*, is: $P(p|C) = \sum_{i} P(p|i) \cdot P(i|C)$

where the sum spans the alternatives in the MRI models, P(i|C) is the MRI-choice model, and P(p|i) is the probability of path p to be actually used by a traveler who has chosen the sequence of MRIs *i*.

Application

Route guidance


Provision of information in an aggregate manner:

- Guidance on VMS³
- 2 Radio announcements
- Oral instructions in in-vehicle navigation systems

Appendix

Hierarchical ordering of the decision process

Multi-level hierarchical structure ~Normative Pedestrian Flow Theory [?]

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Model structure

Layer ℓ

- Choice set: list of *MRIs* C_{ℓ} .
- Choice model:

 $P_{\ell}(i|\mathcal{C}_{\ell};\beta^{\ell})$

Layer $\ell + 1$

- Choice set: list of *MRIs* $C_{\ell+1}$.
- Choice model:

$$P_{\ell+1}(i|\mathcal{C}_{\ell+1};\beta^{\ell+1})$$

Behavioral consistency

- All layers refer to the same choice.
- Level of granularity varies.
- Analysis can be performed in any layer.

Structural consistency

$$\bar{P}_{\ell}(i|\mathcal{C}_{\ell};\beta^{\ell}) = \sum_{j\in\mathcal{C}_{\ell+1}} P(i|j,\mathcal{C}_{\ell};\beta^{\ell}) P(j|\mathcal{C}_{\ell+1};\beta^{\ell+1})$$