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This talk

Recent progress in random regret minimization (Part Ia, Ib)

• Brief intro into the model

• New generalization with strong empirical potential

• Exploration of difficulties wrt economic appraisal

Discrete choice analysis for moral decision making (Part II)

• Highlight importance of moral choice behavior

• Review key results from Economics, Psychology

• Research agenda for discrete choice modelers

Relatively new material, including some very first ideas. 

Your suggestions are welcome, as are ideas for collaborations.
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Background literature

Random Regret Minimization: capturing flexibility in decision rules

van Cranenburgh, S., Guevara, C.A., Chorus, C.G., 2015. New insights on random 

regret minimization models. Transportation Research Part A, 74, 91-109

Random Regret Minimization: issues with economic appraisal

Dekker, T., Chorus, C.G. Consumer surplus for Random Regret Minimization models. 

Transportation (under revision)

Moral decision-making: Research agenda for DCM

Chorus, C.G. Models of moral decision Making: Literature review and research agenda 

for discrete choice analysis. Journal of Choice Modelling (under review)
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Part I

Random Regret Minimization:
New insights
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Regret minimization well established concept in microeconomics

Generally considered in context of binary, single-attribute lotteries (risk)

• No risk, uncertainty? Then no regret possible…

• Think: lottery-ticket for which you know the outcome.

• Foundation for Regret Theory, MiniMax Regret, etc.

RRM based on a different conceptualization of regret

• When alternatives have multiple attributes…

• decision-makers have to make trade-offs…

• and put up with poor performances for some attributes…

• to achieve a better performance for others.

• This causes regret at the attribute-level.

• RRM tailored to model minimization of this type of regret.

• [RRM also capable of dealing with risky choices]

Random Regret Minimization:

An unusal type of regret…
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Core assumptions:

• Considered alternative compared with other alternative, in terms of attribute

• Worse performance: regret

• Better performance: rejoice

• Regret/rejoice increases with:

• Size of difference in attribute-performance 

• Importance of the attribute

• Achieving regret is assigned more weight than attaining rejoice

• Summation over all attributes, all competing alternatives

• Minimum regret alternative chosen

RRM captures choice set composition-effects, semi-compensatory behavior, 

reference dependency (with no extra parameters)

Random Regret Minimization
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RRM – mathematical notation

�� = ∑ ∑ ln 1 + exp �
 ∙ ��
 − ��

���

Regret of 
Alternative i

Compare i‘s performance
on attribute m, with j’s

Weigh, according
to importance of 
attribute m

(estimable 
parameter!
can be <0 )

Repeat and
sum over all
attributes

Repeat and sum over all 
competing alternatives

So, what does this ln 1 + exp ∗ function do? Or look like? 

(this is called the binary attribute-regret function; core of RRM)
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• Route A is compared to route B

• In terms of travel time (beta<0)

• B’s travel time = 45 mins

• A’s travel time is varied

• A’s binary travel time regret 

is plotted as green line

• Travel time deterioration matters 

much more than improvement

• Relative position wrt reference 

point (45 mins) matters

Convexity: Avoiding regret 

is more important than 

attaining rejoice

Binary attribute-regret: Convex 

function of attribute-difference

��,�� = ln 1 + exp ��� ∙ ��� − ���

���
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RRM: Summary of empirical evidence 

Tested on few dozens of datasets, in- and outside of transportation

Main conclusions so far:

Model fit / predictive ability:

• 1/3 best fit for RUM; 1/3 best fit for RRM; 1/3 best fit for Hybrid RUM-RRM

• Hybrid means some attributes are RUM, others RRM

• Differences generally statistically significant, but often small

• But can be substantial when considering individual choices (next slide)
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Analysis:

Compute choice probs.
for all observations, 
based on estimated
RUM, RRM models
(with almost identical
model fit)

Conclusions:

• Differences often 
small

• But: in 26% of 
cases, >5%-points

• And: in 4% of 
cases, >10%-points

• In 7% of cases: 
different ‘winner’
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RRM: Summary of empirical evidence 

Tested on few dozens of datasets, in- and outside of transportation

Main conclusions so far:

Model fit / predictive ability:

• 1/3 best fit for RUM; 1/3 best fit for RRM; 1/3 best fit for Hybrid RUM-RRM

• Hybrid means some attributes are RUM, others RRM

• Differences generally statistically significant, but often small

• But can be substantial when considering individual choices

Managerial implications:

• Differences with RUM still too small to have impact? Part Ia

• And how about Economic Appraisal? Part Ib
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Part Ia

Random Regret Minimization:
A new generalization

(Based on joint work with Sander van Cranenburgh and Angelo Guevara)
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RRM: Convexity of regret function

Difference between RRM and 

RUM determined by:

Non-linearity (convexity) of 

regret function.

In practice, this function is often 

found (i.e., estimated) to be not 

quite so non-linear.

Why is that?

Observation: � determines 

importance weight and degree of 

non-linearity at the same time…

ln 1 + exp ��� ∙ ��� − ���

��� − ���

estimated
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RRM: Convexity of regret function (II)

ln 1 + exp ��� ∙ ��� − ���

��� − ���

ln 1 + exp �� ∗ ��� ∙ ��� − ���

��� − ���

Higher importance weight for attribute, implies more non-linearity.
Or: more asymmetry, more empasis on avoiding regret

And apparently, levels of attribute importance underlying choice data are
usually small (relative to error term variance), leading to ‘linear’ regret functions.
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Towards a generalization of RRM

Observation (consider single attribute): under linear RUM

� ∙ �� = � ∙ �� ∙ �� =
 
� ∙ � ∙ � ∙ �� 	; multiply utility, divide taste parameter by � cancels out

(in other words: � and �	not jointly identifiable)

Observation (consider single attribute): under RRM

ln 1 + exp � ∙ ∆� ≠ � ∙ ln 1 + exp �
� ∙ ∆� ≠ 1

� ∙ ln 1 + exp � ∙ � ∙ ∆�

(due to non-linearity of the ln(1+exp[])-operator)

Since ��	, �, �� not only give different slope, but also different shape, of regret function.
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Towards a generalization of RRM (II)

1
100 ∗ ln 1 + exp 100 ∗ � ∙ ∆�

100 ∗ ln 1 + exp 1
100 ∗ � ∙ ∆�

�=-1, 

Constant added, to ensure
regret goes through origin.

ln 1 + exp � ∙ ∆�
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Towards a generalization of RRM (III)

Previous slides: &	is another parameter to be estimated.

[possibly one �	per attribute, but in this talk one generic �]

Different, yet related, conceptual derivations, interpretations of this result are 

possible. I prefer the following (yet see paper for other perspectives):

• ln 1 + exp � ∙ ∆� originally proposed as a smoothing-function of max 0, � ∙ ∆�
• max-operator caused difficulties with model estimation, derivation of WtP, etc.

• two iid EV Type I-errors added to 0 and � ∙ ∆�, respectively; integrated out.

• results in Logsum-formulation (ignoring cnst):                    

• in doing so, it was implicitly assumed that error-variances (+) normalized to ,- 6⁄ .

• this implicit assumption can be relaxed: variance of implicit errors can be estimated.

• if variance of + = ,- 6⁄ ∙ �-, 
• small (large) variance of implicit errors implies kink (smooth transition) around zero.

• as such, � determines the ‘smoothness’, or linearity, of the regret function.

( ) [ ]( )1 2max 0 , ln 1 expE x xν β ν β + ⋅∆ + = + ⋅∆ 

( )1 2max 0 , ln 1 expE x x
βν β ν µ
µ

  
 + ⋅∆ + = ⋅ + ⋅∆      
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Towards a generalization of RRM (IV)

By estimating � as well as �, we identify the importance-weight of the 

attribute (�) and the degree of non-linearity of the regret function (�	), instead 

of lumping them together in �.

We call this the μRRM model:

When the (negative of) the error is iid EV Type I, with variance ,- 6⁄ :

Special cases:

• � → 0: largest possible asymmetry between regret, rejoice. ‘Pure-RRM’. 

• � = 1: conventional RRM (Chorus, 2010)

• � → +∞: linear RUM.                             (where J is choice set size)

ln 1 expRMM m
i jm im i

j i m

RR x xµ βµ ε
µ≠

  
 = ⋅ + − +   

  
∑∑

i

j

R
RRM

i R

J

e
P

e
µ

−

−=
∑

1
2

ˆ ˆRUM RRM
m mJ µβ β≅
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Estimating μRRM – precaution 

In the limit, �	becomes unidentifiable

• � → 0 (Pure-RRM): due to piecewize linearity 

(in regret-, respectively rejoice-domain)

• � → +∞ (linear RUM): due to linearity 

(just like linear RUM)

Pragmatic solutions (iterative):

• First estimate constrained μRRM. Experience: � ∈ 0.01	, 5
• If estimate close to constraint, re-estimate Pure-RRM or RUM model.

• If no constraints can be specified, first estimate � as a binary logit.

• Then re-estimate if implicit constraints are met.
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Estimating μRRM – shopping location

Model
Final Log-likelihoog
Number of parameters

ρ
2

Parameters Est t-stat Est t-stat Est t-stat Est t-stat
Floor_space_Groceries 0.106 6.690 0.068 6.766 0.146 11.920.131 11.615
Floor_space_Other 0.011 4.978 0.003 2.777 -0.001 -0.302 0.001 1.1825
Travel_Time -0.045 -8.961 -0.016 -8.337 -0.010 -5.886 -0.012 -6.926
µ 0.139 87.83a

a t -test for difference from one

RUM Classical RRM µRRMP-RRM

0.047

3
-2300.9

0.049

-2262.6
4

0.058

3
-2278.5

3
-2305.2

0.065
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Estimating μRRM – shopping location (II)

Estimation for diff. 
values of &:

Linear RUM fits worst.

Conventional RRM 
does somewhat better.

Pure-RRM does a lot 
Better.

But the best fit is for a
model that 
approaches,
yet not equals, 
Pure-RRM.
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Estimating μRRM – shopping location (III)
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Revisited 10 datasets used in previous publications to compare RRM, RUM.

• On 6 out of 10 datasets, conventional RRM outperforms RUM.

• On 4 out of 10, RUM fits the data better.

• Differences usually significant, but with one exception, small or modest.

Results based on new, generalized μRRM :

• For all 4 datasets where RUM did better than RRM, μRRM reduces to RUM.

• Of the 6 datasets where RRM did better than RRM:

• On 2 datasets, μRRM reduces to conventional RRM

• On 3 datasets, μRRM achieves values in-between conventional RRM and Pure-RRM

• On 1 dataset, μRRM reduces to Pure-RRM

• For the last 4 datasets, model fit improvement found to be very substantial

• At the cost of one extra parameter

Estimating μRRM – 10 datasets
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• Provides a way to separate importance-effect and regret-effect

• Alleviates a restrictive assumption underlying conventional RRM

• Nests linear RUM, conventional RRM, Pure-RRM

• Explains small differences in model fit between conventional RRM-RUM

• Added flexibility potentially results in large increases in model fit

• Data, code (Matlab, Biogeme), examples available at 

http://www.advancedrrmmodels.com/ (SvC)

Work to be done:

• Allow � to differ between attributes

• Parameterize �, to explore determinants of regret-minimization behavior

• Incorporate in Latent Class approach (allowing � to vary across classes)

• Comparing μRRM with RUM, non-linear models, on different datasets

μRRM – Conclusions



25Regret in Traveler Decision Making

Part Ib

Random Regret Minimization:
Issues wrt economic appraisal

(Based on joint work with Thijs Dekker)
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Consumer Surplus for linear RUM 

Suppose with some policy you change the utility of alternative 8	by some 
very small amount 9:�. 
The impact on welfare then equals 9:� if 8	is chosen, and 0 otherwise. 

So, welfare gain associated with 9:� is measured by ;� ∙ 9:�.
Then, impact on welfare of larger change from :�<=> to :�<= is given by 

the integral of the choice probability function between :�<=> and	:�<= 

(that is: every marginal change 9:� is weighted with the probability ;�
that a randomly sampled individual experiences the change)

In other words, difference in welfare equals difference in ‘area under-
neath probabilistic demand curve’; for Logit model, this results in a 
Logsum-difference.
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Consumer Surplus for linear RUM (II)

9:�

;� ∙ 9:�

:�<=> :�<= 

? ;� ∙ 9:�
@ABCD

@ABCE
=

ln F exp :�<= 
�= ..G

− ln F exp :�<=>
�= ..G
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Consumer Surplus for linear RUM (III)

ln ∑ exp :�<= �= ..G − ln ∑ exp :�<=>�= ..G

Associated gain in Welfare (i.e., in Expected Utility) equals: 

But: welfare gain or benefits associated with the policy now measured in 
utilities, while costs are in € → no trade-off possible. Solution: divide by 
marginal utility of income (H: util / €) to give diff. in Consumer Surplus.

∆IJ =  
K ln ∑ exp :�<= �= ..G − ln ∑ exp :�<=>�= ..G

Issue: H not estimable. Neg. of travel cost parameter may be used instead. 

(Issue: assumes no income effects. OK for relatively small policy effects.)
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RRM: Problems with appraisal

Two issues which so far have hampered derivation of consistent 

Logsum-based Consumer Surplus measures for RRM:

1. No such thing as ‘marginal regret of income’

• Adding x euros to price of all alternatives leaves regret levels unchanged (since 

regret is a function of price-differences)

• So, no way to translate regret differences into monetary terms

2. Changes in an alternative’s attributes affect all alts.’ regrets

• So, impact of A’s travel time increase influences B’s regret;

• This implies that changes in regrets of all alternatives have to be considered, 

when computing change in choice set regret…
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A solution for ‘issue 1’

‘Forgotten’ insight from Environmental Econ. (McConnel, 1995): 

• Derive CS directly in monetary terms

• Circumvent in-between step (utility terms)

Approach explained for the case of an alternative’s existence value

(how valuable is the mere presence of the alternative?)

1. Levy a hypothetical tax on top of the alternative’s price

2. Integrate probabilistic demand over the tax, until +∞

3. Interpretation: ‘tax prices the alternative out of the market’

4. Gives monetary existence value of alternative:	L ; tax NtaxO
>

McConnel, 1995: equivalent to Logsum-approach for linear RUM. 

Works for RRM as it relies on prices, not utility/income.
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A solution for ‘issue 1’ (II)

McConnell (1995) approach predicts meaningful differences in 

existence value between RUM, RRM.

Note: route B is a compromise alternative, as it has an intermediate 

performance on every attribute; A and C are ‘extreme’ alternatives.

1

Route A Route B Route C

Average travel time 45 60 75

Percentage of travel time in congestion 10% 25% 40%

Travel time variability ±5 ±15 ±25

Travel costs €12,5 €9 €5,5

YOUR CHOICE

□ □ □
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A (very) partial solution for ‘issue 2’

Changes in an alternative’s attribute(s) affect all alternatives’ regrets

• No problem for derivation of (changes in) value of an alternative; like in case of 

existence value.

• Problematic for derivation of (changes in) value of a choice set; and this is what 

policy makers care about most.

RRM: not sufficient to know ;� ∙ 9��, along the ‘policy-path’ (e.g. 

price change), since all regrets change following i’s price change.

• Change in one alt.’s attribute: Difference in existence value of the alternative 

before and after the change gives upper bound (improvement), respectively lower 

bound (deterioration) of difference in CS at the choice set level.

• Change in multiple alternatives, attributes: path-dependency precludes 

derivation of CS at the choice set level.
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RRM for economic appraisal: 

Conclusions

RRM: not so fertile ground for economic appraisal.

No ‘marginal regret of income’, subtle impacts at choice set level.

• Some progress (is being) made: Existence value, but also RRM-VoT (Dekker, 2014)

• But much work still to be done – you are cordially invited!

My personal view:

• RRM is a model of behavior, not of valuation. Linear RUM is both.

• RRM’s upside (reference-dependency, choice set effects) is also its downside.

• All of this holds for many other non-RUM models (RAM, CCM, etc.) as well.

• And: note that RUM-economic appraisal also becomes very difficult when marginal 

utility of income is assumed to be non-linear.
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Part II

Discrete choice analysis
for Moral decision making

(some very first ideas)
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Backgroud, Motivation

Research gap

• Choice models ignore moral dimension of choice behavior.

• Also when it is present, as it is, in many cases.

• Economics, Psychology: moral decision making high on agenda.

• Integrating choice models, moral decision making: contribution to science
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Scope 

• Descriptive (as opposed to normative) perspective

• How people behave vs how they should behave

• Literature review draws on Economics, Psychology, more than Philosophy

• Although distinction is sometimes hard to make

• Research agenda largely focuses on choice models & data

• Capitalizing on existing research strengths, focus of workshop

• Research agenda not confined to transport / travel behavior

• Also health, criminology, etc.

• Two lines of thought, parts of the talk

• Nature of moral decision making (decision strategies)

• Origins of moral decision making (‘social endogeneity’)
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Many choices have moral dimension

Can to some extent be categorized as “Right vs Wrong”

Some examples from classical choice modeling application domains:

[Much more to be found outside those domains]

• Drinking and driving

• Sustainable mobility choices

• Social routing / travel information

• Contingent valuation: trading off nature, money

• VoSL: trading off mortality risks, money

• Sexually risky behavior (HIV)

• Vaccination (free-riding)

• Consumer goods: child labor

• Food choices: industrial agriculture vs organic

• …
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Nature of moral decision making

Mainstream (neo-classical) economists

• Veil of ignorance 

• E.g. x% of society will be slave

• You don’t know what you will be

• Rawls: MaxiMin

• Harsanyi: Expected Utility Maximization

• [Becker: ignore moral dimension, veil of ignorance; EU-max for oneself]

Behavioral economists

• Bounded rationality leads to moral satisficing (Gigerenzer), moral heuristics (Sunstein)

• E.g. ‘choose the default option’ (explains organ donorship Austria / Netherlands)

• Heuristics are reasonable (Gigerenzer) but may misfire (Sunstein)

• Large role of task environment gives opportunities for nudging
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Nature of moral decision making (II)

Psychologists

• Schwartz, Forsyth, Nye: is a situation perceived as having a moral dimension?

• Answer determines which decision strategy is applied

• Important role of cues (e.g., ‘lie’ vs ‘give feedback’)

• Haidt: no strategy, reasoning at all, only for ex post rationalization

• Haidt: role of emotions, intuitions (see also Roeser for normative perspective)

Synthesis 

• Hybrid, over-arching theories: 

• A bit of reasoning, a bit of emotion

• Depending on situation (incl. cheap talk), individual, etc.

• E.g. moral choices involving people trigger emotions as opposed to reason
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Nature of moral decision making –

research agenda

Choice modelers are experts at inferring decision rules from choices

• Rational (EU-max) versus boundedly rational (satisficing, other heursitics)

• Study heterogeneity in decision rules across people, situations (LC)

• Differences between moral and non-moral choice situations?

• Multi-attribute perspective (trading off moral and non-moral attributes)

• Regret minimization as a moral heuristic (emotion + reason, omission bias, …)

Choice modelers are experts at experimental data collection

• Stated choice paradigm more sophisticated than current experiments

• Multi-attribute, experimental control, statistical efficiency

• Allows for contextual framing, etc.

• Possibly enriched with verbal reports

• But be careful (Gigerenzer, Haidt, and earlier Nisbett & Wilson): rationalization
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Origins of moral decision making

Why do we have moral preferences?

• Innate morality? Moral norms? ...?

• And where do those come from?

Behavioral economists

• Data from prisoner dilemma, ultimatum game, public goods game

• Distribution of money between players, contribution to public goods

• Results violate paradigm of selfish agent, imply social preferences (subset of moral prefs.)

• Rabin, Fehr: focus on direct social endogeneity (tit for tat)

• Reciprocity: help (hurt) who is helping (hurting) you

• Punish unfair behavior (distinguish fair behavior from fair distribution)

• de Boer: mutually reinforcing cycle of expectations

• Punish violation of one’s own expectations 

• Avoid violating other people’s expectations (e.g. tipping taxi driver, not bus driver)
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Origins of moral decision making (II)

Why do we have moral preferences?

• Innate morality? Moral norms? ...?

• And where do those come from?

Behavioral economists (II)

• Large differences in behavior across different cultures

• Suggests that ‘moral norms’ play a substantial role

• (Evolutionary) process of indirect social endogeneity

• But de Boer: talk of norms “does not pull extra explanatory weight”

• No qualitative difference between direct (‘tit for tat’) and indirect (‘norm’) social endogeneity

• No need to explore where norms come from – focus on cycle of expectations

• In sum, economists view moral (social) behavior as a transactional process
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Origins of moral decision making (III)

Why do we have moral preferences?

• Innate morality? Moral norms? ...?

• And where do those come from?

Psychologists

• Different types of experiments

• Focus on distributing money, but also broader

• Lesser role of social interaction, expectations, iterated games

• Find remarkably stable innate moralities (e.g., slider measure of Murphy)

• Altruists, individualists, co-operators, competitors

• Partly result of experimental setup?

• But note that even economists find large heterogeneity in moral behavior

• Also within highly homogenous sample (e.g. undergads at US university)

• Clearly suggests that transactional perspective is incomplete
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Origins of moral decision making (IV)

Why do we have moral preferences?

• Innate morality? Moral norms? ...?

• And where do those come from?

Agent based modelers (Dirk Helbing and colleagues)

• Innate morality

• Inheritence + mutations

• Direct social endogeneity (tit for tat)

• Indirect social endogeneity (moral norms)

• Spatial relevance (who are your ‘neighbours’)

Together determine, in very long time frames: 

• Who survives, reproduces

• Moral behavior, moral norms/expectations
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Origins of moral decision making –

research agenda

Discrete choice approach to modeling group decision making

• Lot of expertise in terms of econometrics, data collection tools

• Households: non-cooperative bargainers, power struggle? Or altruists?

• Different models, different interpretation, different policy implications

• Use slide measure (social values) to check innate morality

• Use Interactive Agency data to study tit for tat / reciprocity

Discrete choice approach to modeling social network effects

• Econometric identification of how my choice influences yours

• Very difficult to infer causality, due to endogeneity; some solutions available

• Focus so far on spreading preferences, hypes, information cascades

• New development: modeling spreading of norms / moral expectations

• Input for agent based models (Helbing) – give them empirical footing
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Conceptual model of moral choice
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DCA for moral choices: Conclusions

Moral decision making: fascinating research field

Huge potential for discrete choice analysis / choice modelers

• Enrich our models with insights from moral decision making literature

• New insights into morality of choices in our traditional domains (e.g. transport)

• Provide econometric /data collection sophistication, rigor to Econs/Psych

• New insights into nature and origins of moral decision making in general

• In sum: broader applicability and appeal of discrete choice models

• Throughout the social sciences


