# Specification of the cross nested logit model with sampling of alternatives for route choice models

### Xinjun Lai Michel Bierlaire

Transport and Mobility Laboratory
School of Architecture, Civil and Environmental Engineering
Ecole Polytechnique Fédérale de Lausanne

June 19, 2014





## Outline

- Introduction
- Sampling of alternatives
- MEV models
- Validation on synthetic data
- Case study with real data







## Motivation

#### Route choice model

- Given an origin and a destination
- what is the preferred itinerary of a given traveler?

### **Difficulties**

- Data
- Very large choice set
- Structural correlation among alternatives







### Data

### Revealed preferences

- Usually GPS data
- Unavailability of socio-economic variables

### Stated preferences

- Hypothetical paths
- Simplified paths

### In this paper...

GPS data





## Very large choice set

#### Issue

Number of paths grows exponentially with the number of nodes

#### Literature

- link elimination Azevedo et al. (1993)
- link penalty de la Barra et al. (1993)
- labeled paths Ben-Akiva et al. (1984)
- SP on random costs Ramming (2002), Bovy and Fiorenzo-Catalano (2006)
- Sampling Frejinger et al. (2009)





### Structural correlation

#### Issue

### Significant physical overlap

#### Literature

- C-logit Cascetta et al. (1996)
- Path-size Ben-Akiva and Bierlaire (1999)
- Link-based cross-nested logit Prashker and Bekhor (1999)
- Error components Ramming (2002); Frejinger and Bierlaire (2007)







## In this paper...

## Methodology

- Cross Nested logit
- Sampling of alternatives

#### Builds on...

- McFadden (1978)
- Vovsha and Bekhor (1998)
- Bierlaire et al. (2008)
- Frejinger et al. (2009)
- Guevara and Ben-Akiva (2013)
- Flötteröd and Bierlaire (2013)



ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

## Outline

- Introduction
- Sampling of alternatives
- MEV models
- 4 Validation on synthetic data
- Case study with real data







## Logit model

$$P(i|\mathcal{C}) = \frac{e^{V_i}}{\sum_{j \in \mathcal{C}} e^{V_j}}$$

McFadden (1978)

### Sampling protocol

- Sample subset  $\mathcal{D} \subseteq \mathcal{C}$
- Sampling probability  $q(\mathcal{D}|j)$
- Positive conditioning property

$$q(\mathcal{D}|i) > 0 \implies q(\mathcal{D}|j) > 0 \ \forall j \in \mathcal{D}.$$





## Logit model

$$P(i|\mathcal{C}) \approx P(i|\mathcal{D}) = \frac{e^{V_i + \ln q(\mathcal{D}|i)}}{\sum_{j \in \mathcal{D}} e^{V_j + \ln q(\mathcal{D}|j)}}$$

## Simple random sampling

- $q(\mathcal{D}|i) = q(\mathcal{D}|j) \ \forall i, j \in \mathcal{C}$
- Correction terms cancel out
- Irrelevant, circuitous paths
- How to draw?

### Importance sampling

- In  $q(\mathcal{D}|i)$  are confounded with ASC
- How to draw?







## How to draw?

### Shortest path-based procedures

- link elimination: deterministic
- link penalty: deterministic
- labeled paths: deterministic
- SP on random costs:
  - some paths have 0 probability to be drawn
  - how to compute the sampling probability?







## Metropolis-Hastings algorithm

Flötteröd and Bierlaire (2013)

#### **Features**

- Designed to draw from complex distributions
- Does not require the exact pmf/pdf
- Only a quantity proportional to it.
- For instance, to draw a path p with probability

$$rac{b_p}{\sum_{q\in\mathcal{C}}b_q}$$

only  $b_p$  are needed.

/ IKANSP-UK

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

## Metropolis-Hastings algorithm

### Methodology

- Design a Markov chain Q visiting the states/paths
- Accept/reject method
- Accept probability depends on
  - target (unnormalized) probabilities
  - transition probabilities of the Markov chain:

$$P(\mathsf{accept}) = \min\left(rac{b_q Q_{qp}}{b_p Q_{pq}}, 1
ight)$$







## Example

$$b = (20, 8, 3, 1) \quad \pi = \left(\frac{5}{8}, \frac{1}{4}, \frac{3}{32}, \frac{1}{32}\right)$$

$$Q = \begin{pmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}$$

### Run MH for 10000 iterations. Collect statistics after 1000

Accept: [2488, 1532, 801, 283]

• Reject: [0, 952, 1705, 2239]

• Simulated: [0.627, 0.250, 0.095, 0.028]

• Target: [0.625, 0.250, 0.09375, 0.03125]



## Sampling of paths

#### **Difficulties**

Design Q such that

- Every path can be generated with nonzero probability
- Both  $Q_{pq}$  and  $Q_{qp}$  are known

### Flötteröd and Bierlaire (2013)

- Proof of concept on synthetic data
- Application to Tel Aviv (17K links, 8K nodes)





## Outline

- Introduction
- Sampling of alternatives
- MEV models
- 4 Validation on synthetic data
- Case study with real data







## MEV models

#### Generic model

$$P(i|\mathcal{C}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}))}{\sum_{j \in \mathcal{C}} \exp(V_j + \ln G_j(\mathcal{C}))}$$

where  $G_i(\mathcal{C}) = G_i(e^{V_1}, \dots, e^{V_J})$  is the derivative of the CPGF wrt  $e^{V_i}$ .

## Cross nested logit

$$G_{i}(\mathcal{C}) = \sum_{m=1}^{M} \left[ \mu \alpha_{im} e^{V_{i}(\mu_{m}-1)} \left( \sum_{j \in \mathcal{C}} \alpha_{jm} e^{\mu_{m} V_{j}} \right)^{\frac{\mu-\mu_{m}}{\mu_{m}}} \right],$$







## MEV models

#### Generic model

$$P(i|\mathcal{C}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}))}{\sum_{j \in \mathcal{C}} \exp(V_j + \ln G_j(\mathcal{C}))}$$

where  $G_i(\mathcal{C}) = G_i(e^{V_{1n}},...,e^{V_j})$  is the derivative of the CPGF wrt  $e^{V_i}$ .

Cross nested logit

$$G_{i}(\mathcal{C}) = \sum_{m=1}^{M} \left[ \mu \alpha_{im} e^{V_{i}(\mu_{m}-1)} \left( \sum_{j \in \mathcal{C}} \alpha_{jm} e^{\mu_{m} V_{j}} \right)^{\frac{\mu-\mu_{m}}{\mu_{m}}} \right],$$







## Sampling and MEV

$$P(i|\mathcal{C}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}))}{\sum_{j \in \mathcal{C}} \exp(V_j + \ln G_j(\mathcal{C}))}$$

### Sampling correction

Bierlaire et al. (2008)

• If In  $G_i(\mathcal{C})$  is known, same idea as for logit

$$\Pr(i|\mathcal{D}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}) + \ln \Pr(\mathcal{D}|i))}{\sum_{i \in \mathcal{D}} \exp(V_i + \ln G_i(\mathcal{C}) + \ln \Pr(\mathcal{D}|i))}.$$

• Not counfounded with the constants anymore.

PEDERALE DE LAUSANÑE

## Sampling and MEV

#### Correction term

$$\Pr(\mathcal{D}|p) \propto \frac{k_p}{q(p)}$$

#### where

- $k_p$  is the number of times path p has been generated
- q(p) is the sampling probability of path p
- $q(p) \propto b_p$







## Model I

$$\Pr(i|\mathcal{D}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}) + \ln \frac{k_i}{b_i})}{\sum_{j \in \mathcal{D}} \exp(V_j + \ln G_j(\mathcal{C}) + \ln \frac{k_j}{b_j})},$$







## Approximation of In $G_i(\mathcal{C})$

### Guevara and Ben-Akiva (2013)

$$G_i(\mathcal{C}) pprox \widehat{G}_i(D, w) = \sum_{m=1}^{M} \left[ \mu \alpha_{im} e^{V_i(\mu_m - 1)} \left( \sum_{j \in \mathcal{D}} w_j \alpha_{jm} e^{\mu_m V_j} \right)^{\frac{\mu - \mu_m}{\mu_m}} \right]$$

where  $w_j$  expansion factor to be defined.







## Expansion factors: Guevara and Ben-Akiva (2013)

### Realized / expected

$$w_j^G = \frac{k_j}{\mathsf{E}[k_j]} = \frac{k_j}{q(j)R} = \frac{k_jB}{b(j)R}$$

where

- ullet R is the number of draws used to generate  ${\cal D}$
- $B = \sum_{i \in \mathcal{C}} b(j)$  [Requires enumeration of  $\mathcal{C}$ ]

### Approximate B

$$B = \sum_{i \in \mathcal{C}} b(j) = |\mathcal{C}| \frac{\sum_{i \in \mathcal{C}} b(i)}{|\mathcal{C}|} = |\mathcal{C}| \bar{b},$$

and

$$\bar{b} = \frac{\sum_{i \in \mathcal{C}} b(i)}{|\mathcal{C}|} \approx \frac{\sum_{i \in \mathcal{D}} b(i)}{|\mathcal{D}|}.$$

## Expansion factors: Guevara and Ben-Akiva (2013)

## Approximation

$$w_j^G = \frac{k_j}{b(j)R} \frac{|\mathcal{C}|}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} b(i)$$

which require  $|\mathcal{C}|$ 

## Approximate |C|

Roberts and Kroese (2007)

N random walks in the network

$$|\mathcal{C}| \approx \frac{1}{N} \sum_{i=1}^{N} \frac{1}{\ell^{(i)}}.$$

 $\ell^{(i)}$ : likelihood of the path generated by the algorithm during run i

## Expansion factors: Frejinger et al. (2009)

### Account for the upper bound

$$w_j^F = \begin{cases} 1 & \text{if } b(j)R > B, \\ \frac{B}{b(j)R} & \text{otherwise.} \end{cases}$$

### Same approximation of B

$$B \approx \frac{|\mathcal{C}|}{|\mathcal{D}|} \sum_{i \in \mathcal{D}} b(i)$$

Again, requires |C|







## Expansion factors: Lai and Bierlaire (2014)

## Avoiding |C|

- ullet Let s be the path which has been sampled the most in  ${\mathcal D}$
- $k_s \ge k_p$ , for each  $p \in \mathcal{D}$ .
- If sample is large enough,  $k_s \approx q(s)R$

$$w_j^G = \frac{k_j}{q(j)R} \approx w_j^L = \frac{k_j}{q(j)R} \frac{q(s)R}{k_s} = \frac{k_j}{b(j)} \frac{b(s)}{k_s}$$

which does not require B or |C|.







## Expansion factors

Guevara and Ben-Akiva (2013)

$$w_j^G = \frac{k_j}{b(j)R}B$$
 with  $B \approx \frac{|\mathcal{C}|}{|\mathcal{D}|}\sum_{i\in\mathcal{D}}b(i)$ 

Frejinger et al. (2009)

$$w_j^F = \begin{cases} 1 & \text{if } b(j)R > B, \\ \frac{B}{b(j)R} & \text{otherwise.} \end{cases}$$
 with  $B \approx \frac{|\mathcal{C}|}{|\mathcal{D}|} \sum_{j \in \mathcal{D}} b(i)$ .

Lai and Bierlaire (2014)

$$w_j^L = \frac{k_j}{b(j)} \frac{b(s)}{k_s}$$



## Models to be compared

• Model I: true  $G_i$  (impossible in practice)

$$\Pr(i|\mathcal{D}) = \frac{\exp(V_i + \ln G_i(\mathcal{C}) + \ln \frac{k_i}{b(i)})}{\sum_{j \in \mathcal{D}} \exp(V_j + \ln G_j(\mathcal{C}) + \ln \frac{k_j}{b(j)})}$$

Model II: the proposed model

$$\Pr(i|\mathcal{D}, \mathcal{D}', w) = \frac{\exp(V_i + \ln G_i(\mathcal{D}', w)) + \ln \frac{k_i}{b(i)})}{\sum_{j \in \mathcal{D}} \exp(V_j + \ln G_j(\mathcal{D}', w) + \ln \frac{k_j}{b(j)})}.$$

Model III: no expansion factor, no sampling correction (benchmark)

$$\Pr(i|\mathcal{D}, \mathcal{D}') = \frac{\exp(V_i + \ln G_i(\mathcal{D}', 1))}{\sum_{j \in \mathcal{D}} \exp(V_j + \ln G_j(\mathcal{D}', 1))},$$



## Outline

- Introduction
- Sampling of alternatives
- MEV models
- Validation on synthetic data
- Case study with real data







## The network: 170 paths (Frejinger (2008))







## The true model: cross-nested logit

## Utility

$$V_i = \beta_L L_i + \beta_{SB} SB_i,$$

### "True" parameters

- $\bullet \ \beta_{\textit{L}} = -0.5 \ \text{and} \ \beta_{\textit{SB}} = -0.1$
- $\mu_m = 1.5$  for each link m
- $\alpha_{im} = \ell_m/L_i$

#### Data

3000 synthetic choices





## Re-estimate the parameters of the true model

#### Full choice set

| Parameters    | Est.    | Std err. | t-test (0) | t-test (true) |
|---------------|---------|----------|------------|---------------|
| $\beta_L$     | -0.501  | 0.0118   | 43.1       | 0.678         |
| $eta_{SB}$    | -0.0910 | 0.0240   | 3.19       | 0.375         |
| $\mu_{\it m}$ | 1.49    | 0.0269   | 55.2       | 0.0535        |







## Sampling paths

## Metropolis-Hastings

$$b(i) = \exp(-\theta L_i), \quad \theta \ge 0$$







## Number of generated paths



## Model I: true $G_i$ — MH $\theta = 0.5$

| 10 draws                                         | Est.           | Std err.           | t-test(0)         | t-test(true) |  |
|--------------------------------------------------|----------------|--------------------|-------------------|--------------|--|
| $\beta_L$ (-0.5)                                 | -0.443         | 0.0163             | 27.3              | 3.48         |  |
| $\beta_{SB}$ (-0.1)                              | -0.0647        | 0.0427             | 1.51              | 0.826        |  |
| $\mu_m$ (1.5)                                    | 1.56           | 0.0340             | 45.8              | 1.72         |  |
| Estimation time: 1362 seconds                    |                |                    |                   |              |  |
|                                                  |                |                    |                   |              |  |
| 40 draws                                         | Est.           | Std err.           | t-test(0)         | t-test(true) |  |
| $\frac{\text{40 draws}}{\beta_L \text{ (-0.5)}}$ | Est.<br>-0.479 | Std err.<br>0.0156 | t-test(0)<br>30.8 | t-test(true) |  |
|                                                  |                |                    |                   |              |  |
| $\beta_L$ (-0.5)                                 | -0.479         | 0.0156             | 30.8              | 1.34         |  |





## Model I: true $G_i$ — MH $\theta = 0.01$

| 10 draws                                          | Est.                          | Std err.           | t-test(0)         | t-test(true)         |  |  |  |
|---------------------------------------------------|-------------------------------|--------------------|-------------------|----------------------|--|--|--|
| $\beta_L$ (-0.5)                                  | -0.535                        | 0.0174             | 30.8              | 2.01                 |  |  |  |
| $\beta_{SB}$ (-0.1)                               | -0.132                        | 0.0545             | 2.42              | 0.580                |  |  |  |
| $\mu_m$ (1.5)                                     | 1.41                          | 0.0355             | 39.8              | 2.47                 |  |  |  |
| Estimation                                        | Estimation time: 1612 seconds |                    |                   |                      |  |  |  |
|                                                   |                               |                    |                   |                      |  |  |  |
| 40 draws                                          | Est.                          | Std err.           | t-test(0)         | t-test(true)         |  |  |  |
| $\frac{40 \text{ draws}}{\beta_L \text{ (-0.5)}}$ | Est.<br>-0.544                | Std err.<br>0.0160 | t-test(0)<br>33.9 | t-test(true)<br>2.76 |  |  |  |
|                                                   |                               |                    | . ,               |                      |  |  |  |
| $\beta_L$ (-0.5)                                  | -0.544                        | 0.0160             | 33.9              | 2.76                 |  |  |  |





#### Model I: comments

- ullet Trade-off between dispersion (low heta) and number of draws
- Lower value of  $\theta$  requires more draws
- ullet  $\theta = 0.5$ , 40 draws: parameters are correctly estimated
- First sampling scheme is validated
- No specific guideline for  $\theta$  and R







## Approximeting $\bar{b}$ and $|\mathcal{C}|$

#### Protocol

- ullet For  $ar{b}$ : generate  ${\cal D}$  using MH with 100 draws and heta=0.01
- $\bullet$  For  $|\mathcal{C}|:$  generate 10000 paths using random walk
- Repeat 100 times
- Compute the empirical mean and standard error

#### Results

|                 | True  | Mean  | Std err | t-test(true) |
|-----------------|-------|-------|---------|--------------|
| $\bar{b}$       | 0.688 | 0.684 | 0.0023  | 1.62         |
| $ \mathcal{C} $ | 170   | 169.8 | 2.52    | 0.0722       |





#### Model II

#### Protocol

- ullet Denominator:  ${\cal D}$  generated with MH (40 draws, heta= 0.5)
- Expansion factor:  $\mathcal{D}'$  MH with various values







## Model II: 100 draws (t-test vs true value)

| Sampling protocol for $\mathcal{D}'$ : $\theta = 0.5$ |                |       |          |       |       |  |
|-------------------------------------------------------|----------------|-------|----------|-------|-------|--|
|                                                       |                |       | Mod. III |       |       |  |
|                                                       | w <sup>G</sup> |       |          |       |       |  |
| $\beta_L$                                             | 2.48           | 4.34  | 1.25     | 3.59  | 19.4  |  |
| $eta_{	extsf{L}}$ $eta_{	extsf{SB}}$                  | 0.910          | 0.867 | 0.722    | 0.179 | 0.221 |  |
| $\mu_{m}$                                             | 2.02           | 3.09  | 0.437    | 2.98  | 1.06  |  |

Sampling protocol for  $\mathcal{D}'$ :  $\theta = 0.01$ 

|              |                           | Mod. III |       |       |       |
|--------------|---------------------------|----------|-------|-------|-------|
|              | $w^G 	 w^F 	 w^L 	 w = 1$ |          |       |       |       |
| $\beta_L$    | 4.61                      | 4.23     | 4.48  | 4.30  | 18.9  |
| $\beta_{SB}$ | 0.303                     | 0.297    | 0.254 | 0.467 | 0.634 |
| $\mu_{m}$    | 4.70                      | 4.71     | 5.38  | 4.55  | 3.63  |





## Model II: 200 draws (t-test vs true value)

| Sampling protocol for $\mathcal{D}'$ : $\theta = 0.5$ |                |          |        |      |       |  |
|-------------------------------------------------------|----------------|----------|--------|------|-------|--|
|                                                       |                | Mod. III |        |      |       |  |
|                                                       | w <sup>G</sup> |          |        |      |       |  |
| $\beta_L$                                             | 0.578          | 10.5     | 0.0374 | 3.38 | 18.9  |  |
| $eta_{\sf SB}$                                        | 0.513          | 0.269    |        |      |       |  |
| $\mu_{\it m}$                                         | 1.36           | 5.02     | 1.34   | 3.07 | 0.965 |  |

Sampling protocol for  $\mathcal{D}'$ :  $\theta = 0.01$ 

|                  |                           | Mod. III |       |       |       |
|------------------|---------------------------|----------|-------|-------|-------|
|                  | $w^G 	 w^F 	 w^L 	 w = 1$ |          |       |       |       |
| $\beta_L$        | 3.51                      | 3.84     | 2.86  | 4.37  | 18.5  |
| $\beta_{\sf SB}$ | 0.173                     | 0.119    | 0.298 | 0.409 | 0.571 |
| $\mu_{m}$        | 9.11                      | 8.65     | 7.19  | 5.41  | 3.72  |







## Model II: 300 draws (*t*-test vs true value)

| Sampling protocol for $\mathcal{D}'$ : $	heta=0.5$ |                |         |       |       |        |  |
|----------------------------------------------------|----------------|---------|-------|-------|--------|--|
|                                                    |                | Mod. II |       |       |        |  |
|                                                    | w <sup>G</sup> | w = 1   |       |       |        |  |
| $\beta_L$                                          | 0.981          | 3.62    | 0.703 | 0.981 | 19.3   |  |
| $eta_{\sf SB}$                                     | 0.428          | 1.34    | 0.537 | 0.428 | 0.0052 |  |
| $\mu_{\it m}$                                      | 2.28           | 3.12    | 1.70  | 2.28  | 1.66   |  |

Sampling protocol for  $\mathcal{D}'$ :  $\theta = 0.01$ 

|              |                | Mod. III |       |       |       |
|--------------|----------------|----------|-------|-------|-------|
|              | w <sup>G</sup> |          |       |       |       |
| $\beta_L$    | 0.809          | 0.0271   | 1.02  | 5.05  | 18.5  |
| $\beta_{SB}$ | 0.565          | 0.780    | 0.480 | 0.564 | 0.654 |
| $\mu_{m}$    | 1.66           | 0.650    | 1.84  | 5.19  | 3.01  |







#### Comments

- $\theta = 0.5$  seems again the most appropriate
- Model II outperforms Model III (no correction, no expansion factor)
- New expansion factor is the most appropriate (already good resuts with 100 draws)
- $\mu_m$  seems to be the most sensitive parameters





## t-tests with $w^L$ and $\theta = 0.5$



#### Outline

- Introduction
- Sampling of alternatives
- MEV models
- 4 Validation on synthetic data
- Case study with real data







# Tianhe region (CBD) of Guangzhou (China)



#### Data

#### Network

- 208 nodes
- 662 links
- 24 major roads
- 34 arterial streets
- 32 minor streets
- 57 signalized intersections

#### GPS traces from taxis

- 7 ODs
- 740 trips







#### Model

### Utility

$$V_i = \beta_L \text{Length}_i + \beta_{ARR} \text{ArteryRoadRatio}_i + \beta_S \text{Signal}_i$$
.

#### Cross-nested logit

- Two nests:  $\mu$ : non-artery roads,  $\mu_{mA}$ : artery roads
- $\alpha_{im} = \ell_m/L_i$

#### MH sampling

| $\theta$ | $ \mathcal{D} $ | $\theta$ | $ \mathcal{D} $ |
|----------|-----------------|----------|-----------------|
| 0.005    | 29              | 0.0025   | 3813            |
| 0.004    | 54              | 0.0023   | 5624            |
| 0.003    | 201             | 0.002    | 7766            |
| 0.0028   | 2036            | 0.001    | 9836            |

# Estimation results (with Matlab, Intel i5 with 4GB RAM, one processor)

| $\theta = 0.003$       |          |            |                    |  |  |  |
|------------------------|----------|------------|--------------------|--|--|--|
|                        |          | Model I    |                    |  |  |  |
|                        | Est.     | Std. err.  | <i>t</i> -test (0) |  |  |  |
| $\beta_{L}$            | -1.58    | 0.0566     | 27.9               |  |  |  |
| $eta_{ARR}$            | 8.09     | 0.636      | 12.7               |  |  |  |
| $eta_{\mathcal{S}}$    | -0.513   | 0.267      | 1.91               |  |  |  |
| $\mu_{	extsf{m}}$      | 3.90     | 0.117      | 33.3               |  |  |  |
| $\mu_{	extsf{mA}}$     | 2.22     | 0.257      | 8.62               |  |  |  |
| Number of observations | 740 trip | s from 7 O | D                  |  |  |  |
| Null log likelihood    | -3.4078  | e+03       |                    |  |  |  |
| Final log likelihood   | -1.9206  | e+03       |                    |  |  |  |
| Estimation time        | 22.32 h  | ours       |                    |  |  |  |

#### Conclusion

#### Contributions

- Application of sampling of alternative for MEV and route choice
- New expansion factor
- Validity check: synthetic data
- Feasibility check: real data
- Heavy, but tractable

#### Future work

- Investigate other nesting structures
- Different ways to approximate G<sub>i</sub>
- Estimation of  $\alpha_{im}$  (?)







## Bibliography I

- Azevedo, J., Costa, M. S., Madeira, J. S., and Martins, E. V. (1993). An algorithm for the ranking of shortest paths. 69(1):97–106.
- Ben-Akiva, M., Bergman, M., Daly, A., and Ramaswamy, R. (1984). Modeling inter urban route choice behaviour. In Vollmuller, J. and Hamerslag, R., editors, *Proceedings of the 9th International Symposium on Transportation and Traffic Theory*, pages 299–330. VNU Science Press, Utrecht, Netherlands.
- Ben-Akiva, M. and Bierlaire, M. (1999). Discrete choice methods and their applications to short-term travel decisions. In Hall, R., editor, *Handbook of Transportation Science*, Operations Research and Management Science, pages 5–34. Kluwer. ISBN:0-7923-8587-X.
- Bierlaire, M., Bolduc, D., and McFadden, D. (2008). The estimation of generalized extreme value models from choice-based samples. *Transportation Research Part B: Methodological*, 42(4):381–394.

## Bibliography II

- Bovy, P. H. L. and Fiorenzo-Catalano, S. (2006). Stochastic route choice set generation: behavioral and probabilistic foundations. In *Proceedings of the 11th International Conference on Travel Behaviour Research*, Kyoto, Japan.
- Cascetta, E., Nuzzolo, A., Russo, F., and Vitetta, A. (1996). A modified logit route choice model overcoming path overlapping problems: Specification and some calibration results for interurban networks. In *Proceedings of the 13th International Symposium on Transportation and Traffic Theory*, pages 697–711. Pergamon.
- de la Barra, T., Pérez, B., and Añez, J. (1993). Mutidimensional path search and assignment. In *Proceedings of the 21st PTRC Summer Meeting*, pages 307–319.
- Flötteröd, G. and Bierlaire, M. (2013). Metropolis-hastings sampling of paths. *Transportation Research Part B: Methodological*, 48:53–66.

## Bibliography III

- Frejinger, E. (2008). Route choice analysis data, models, algorithms and applications. PhD thesis, Ecole Polytechnique Fédérale de Lausanne.
- Frejinger, E. and Bierlaire, M. (2007). Capturing correlation with subnetworks in route choice models. *Transportation Research Part B: Methodological*, 41(3):363–378.
- Frejinger, E., Bierlaire, M., and Ben-Akiva, M. (2009). Sampling of alternatives for route choice modeling. *Transportation Research Part B: Methodological*, 43(10):984–994.
- Guevara, C. A. and Ben-Akiva, M. E. (2013). Sampling of alternatives in multivariate extreme value (mev) models. *Transportation Research Part B: Methodological*, 48(0):31–52.

## Bibliography IV

- Lai, X. and Bierlaire, M. (2014). Specification of the cross nested logit model with sampling of alternatives for route choice models. Technical Report 140602, Transport and Mobility Laboratory, Ecole Polytechnique Fédérale de Lausanne.
- McFadden, D. (1978). Modelling the choice of residential location. In A. Karlquist *et al.*, editor, *Spatial interaction theory and residential location*, pages 75–96, Amsterdam. North-Holland.
- Prashker, J. and Bekhor, S. (1999). Stochastic user-equilibrium formulations for extended-logit assignment models. *Transportation Research Record: Journal of the Transportation Research Board*, 1676(-1):145–152.
- Ramming, M. S. (2002). *Network Knowledge and Route Choice*. PhD thesis, Massachusetts Institute of Technology.

## Bibliography V

Roberts, B. and Kroese, D. P. (2007). Estimating the number of st paths in a graph. *J. Graph Algorithms Appl.*, 11(1):195–214.

Vovsha, P. and Bekhor, S. (1998). Link-nested logit model of route choice: Overcoming route overlapping problem. *Transportation Research Record: Journal of the Transportation Research Board*, 1645(-1):133–142.