7th Discrete Choice Modelling Workshop, EPFL 2011

Modelling regret effects in route-choice with real-time and feedback information

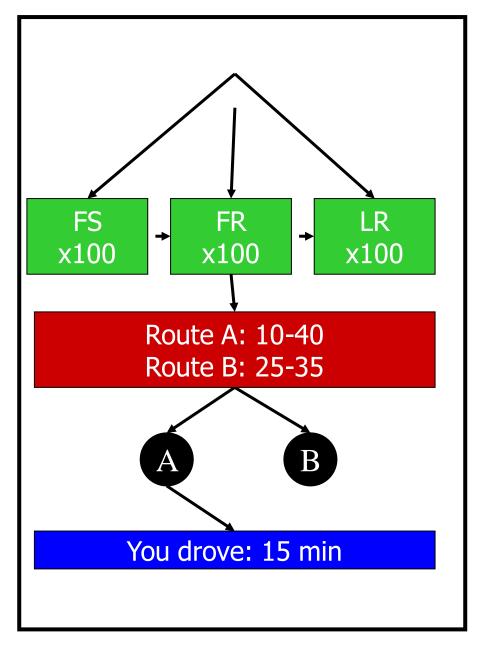
Eran Ben-Elia - U. of the West of England Robert Ishaq, Yoram Shiftan - Technion

Outline

- Background
- Experiment setup
- Modelling approach
- Model specifications
- Results
- Conclusions

Background

- Like EUT and Prospect Theory, Regret Theory (RT) is a model of human decision making under uncertainty.
- The three theories explain situations where choices are based on information providing a description of the alternatives.
- RT postulates choices are influenced not only by the attractiveness of a considered alternative as EUT, but also by the regret associated with not choosing a foregone one [i.e. Regret Aversion].
- But..in order to compare 'what is' with 'what would have been..', the DM needs to learn from experience what the foregone alternative implies.
- The 'trigger' for regret is not that obvious.



Experiment setup

- Choice between a faster and a slower route (5 min. mean dif.)
- 24 participants
- Panel: 100 repeated choice-trials in 3 scenarios.

Scen.	Description	Range FAST [mean±min]	Range SLOW [mean±min]
Fast and Safe	Low var. on FAST	25 ± 5	30 ± 15
Fast and Risky	High var. on FAST	25 ± 15	30 ± 5
Low Risk	Low var. on both	25 ± 5	30 ± 5

- □ Information: in each trial 2 sources are always available:
- 1. Descriptive: Travel time range expected on each route
- 2. Experiential: Feedback on actual travel times of chosen route

Data was not designed with the objective of testing RT.

If regret is a significant effect, this is a strong indication to the relevance of regret in similar experienced-based route-choice decisions

Centre for

Modelling approach

- 1. EU expected utility
- 2. EMU expected modified utilty

utility (U) of alternative i for person m in response t is:

$$U_{imt} = \alpha_{im} + \beta_{im} X_{imt}$$

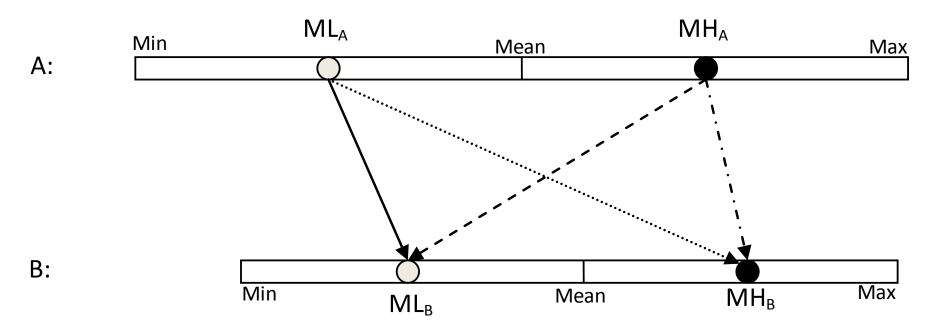
 β - fixed coefficients for alternatives' attributes - X; α - random coefficients $\alpha \sim N(0, \sigma_{\alpha}^2)$

$$EU_{imt} = \left(\sum_{j=1,j\in S}^{J} p_{jt}U_{imjt}\right) + \varepsilon_{imt}$$

 p_j [0,1] is the probability that state-of-the world j will occur at response t out of the set of J possible states of the world -5

Modelling cont.

Modified Utility (MU) depends on both the considered (i) and foregone (k) alternatives. Following Chorus (2010), the modified utility (MU) is:


$$\begin{array}{ll} MU_{ikmt} &= \alpha_{im} + \beta_{im}X_{imt} \\ &+ \left\{ 1 - e^{\left[-\rho \left(\beta_{im}X_{imt} - \beta_{im}X_{kmt} \right) \right]} \right\} \end{array}$$

 $\rho \in [0, +\infty]$ is a regret aversion parameter. Higher values imply that person m will become more and more sensitive to regret

$$EMU_{ikmt} = \left(\sum_{j=1, j \in S}^{J} p_{jt} MU_{ikmt}\right) + \varepsilon_{imt}$$

Specification

Assume that the DM regards \underline{two} points on the TT range as being identified with the possible states of the world one below (i.e. the first quarter) and the other above (i.e. the 3^{rd} quarter) the mean value

Specification cont.

- Four models are specified.
- 1. Simple EU model (control)

$$EU_A = \alpha_A + 0.5(\beta M H_A + \beta M L_A) + \varepsilon$$

2. Description-based RT model

```
EMU_{A} = \alpha_{A} + 0.25(\beta MH_{A} + 1 - e^{[-\rho(\beta MH_{A} - \beta MH_{B})]}) + 0.25(\beta MH_{A} + 1 - e^{[-\rho(\beta MH_{A} - \beta ML_{B})]}) + 0.25(\beta ML_{A} + 1 - e^{[-\rho(\beta ML_{A} - \beta MH_{B})]}) + 0.25(\beta ML_{A} + 1 - e^{[-\rho(\beta ML_{A} - \beta ML_{B})]}) + \varepsilon
```

3. Description and experienced-based RT model

```
EMU_{A} = \alpha_{A} + 0.25(\beta MH_{A} + 1 - e^{\{-\rho[w(\beta MH_{A} - \beta MH_{B}) + (1-w)(\beta F_{A} - \beta F_{B})]\}})
+0.25(\beta MH_{A} + 1 - e^{\{-\rho[w(\beta MH_{A} - \beta ML_{B}) + (1-w)(\beta F_{A} - \beta F_{B})]\}})
+0.25(\beta ML_{A} + 1 - e^{\{-\rho[w(\beta ML_{A} - \beta MH_{B}) + (1-w)(\beta F_{A} - \beta F_{B})]\}})
+0.25(\beta ML_{A} + 1 - e^{\{-\rho[w(\beta ML_{A} - \beta ML_{B}) + (1-w)(\beta F_{A} - \beta F_{B})]\}}) + \varepsilon
```

0 < w < 1 is a weight attributed to the descriptive information (MH_i, ML_i) ; (1-w) is the weight for feedbacks

 F_i is the feedback received for Route i the last time i is chosen

Specification cont.

w=1 means only descriptive information affects regret (the same as Model II).

w=0, means only feedbacks affect regret. The information provided ex-ante is not responsible for generating regret.

w is estimated exogenously (trial and error)

4. Effect of risk on regret: Regret coefficients specified for each scenario (s).

$$EMU_{A} = \alpha_{A} + \sum_{s=1}^{3} \left[0.25 (\beta M H_{As} + 1 - e^{\{-\rho_{s}[w(\beta M H_{As} - \beta M H_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}}) + 0.25 (\beta M H_{As} + 1 - e^{\{-\rho_{s}[w(\beta M H_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}}) + 0.25 (\beta M L_{As} + 1 - e^{\{-\rho_{s}[w(\beta M L_{As} - \beta M H_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}}) + 0.25 (\beta M L_{As} + 1 - e^{\{-\rho_{s}[w(\beta M L_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}})] + \varepsilon^{\{-\rho_{s}[w(\beta M L_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}\}})] + \varepsilon^{\{-\rho_{s}[w(\beta M L_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}})] + \varepsilon^{\{-\rho_{s}[w(\beta M L_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}})] + \varepsilon^{\{-\rho_{s}[w(\beta M L_{As} - \beta M L_{Bs}) + (1-w)(\beta F_{As} - \beta F_{Bs})]\}\}})$$

Estimation

- Biogeme 2.0
- Mixed logit model with non linear utilities
- Log likelihood maximization:

$$LL(\beta, \rho, \sigma) = \sum_{m=1}^{M} log(P_{mi})$$

$$= \sum_{m=1}^{M} log \left\{ \int_{\alpha} \left[\prod_{t=1}^{T} \left(\frac{e^{EMU_{it}}}{\sum_{k=1, i \in K}^{K} e^{EMU_{kt}}} \right) \right] d\alpha \right\}$$

M=24 participants, T=300 trials, K=2 alternative routes

Simulated LL using 1000 Halton draws.

Results

No	Coef.	Est.	Std err*	t-test	p-value
1	β	-0.545	0.055	-9.83	< 0.001
	σ_{α}	1.28	0.18	7.14	< 0.001
	LL ₀	-4940.8			
	LL _β	-2086.3			
	β	-1.24	0.148	-8.39	< 0.001
	σ_{α}	1.32	0.181	7.26	< 0.001
2	ρ	-0.134	0.0073	-18.46	< 0.001
	LL ₀	-4940.8			
	LL_{eta}	-1969.2			
3	β	-0.471	0.055	-8.58	< 0.001
	σ_{α}	1.23	0.174	7.05	< 0.001
	ρ	0.0777	0.019	4.2	< 0.001
	W	0			
	LL ₀	-4940.8			
	LL_{eta}	-1985.6			

No	Coef.	Est.	Std err*	t-test	p-value
4	β	-0.45	0.0575	-7.82	< 0.001
	σα	1.27	0.173	7.31	< 0.001
	ρ_1	0.0359	0.0254	1.41	0.160
	ρ_2	0.0913	0.0208	4.39	< 0.001
	ρ_3	0.313	0.064	4.89	< 0.001
	W	0			
	LL ₀	-4940.8			
	LL_{eta}	-1869.4			

Conclusions

- Effect of regret do occur in the observed data.
- Regret is associated more with experiential feedback than with the descriptional information regarding the expected travel time ranges.
- Accounting for effects of risk Regret is more apparent in situations involving less risk, whereas riskier situation seem to inhibit regret.
- More research in understanding the relations between Regret, learning and risk attitudes.

Thanks, Merci.

eran.ben-elia@uwe.ac.uk

