Méthode de Newton locale pour l'optimisation

Michel Bierlaire

michel.bierlaire@epfl.ch

EPFL - Laboratoire Transport et Mobilité - ENAC

Conditions nécessaires d'optimalité

$$\nabla f(x) = 0$$

- Il s'agit d'un système d'équations non linéaires
- Appliquons la méthode de Newton
- Rappel: pour résoudre F(x) = 0, $F: \mathbb{R}^n \to \mathbb{R}^n$,
 - 1. Résoudre $\nabla F(x_k)d_{k+1} = -F(x_k)$
 - 2. Définir $x_{k+1} = x_k + d_{k+1}$.

Algorithme: Newton locale

Objectif

Trouver une approximation de la solution du système

$$\nabla f(x) = 0.$$

Input

- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f : \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme : Newton locale

Output

Une approximation de la solution $x^* \in \mathbb{R}^n$

Initialisation

$$k = 0$$

Algorithme: Newton locale

Itérations

- 1. Calculer d_{k+1} solution de $\nabla^2 f(x_k) d_{k+1} = -\nabla f(x_k)$,
- 2. $x_{k+1} = x_k + d_{k+1}$,
- 3. k = k + 1.

Critère d'arrêt

Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

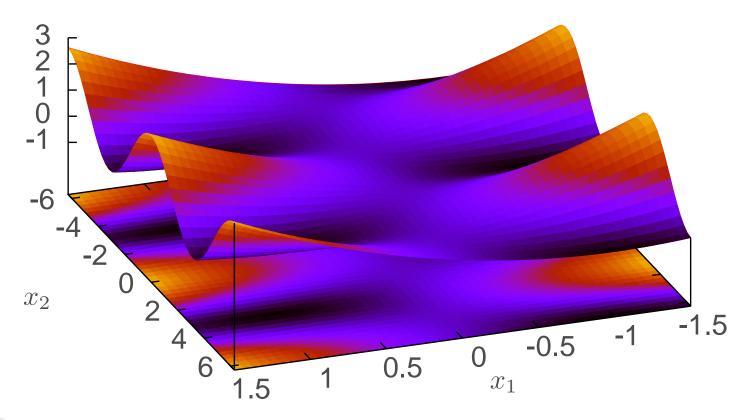
Mêmes propriétés que pour les équations

- 1. convergence *q*-quadratique dans les conditions favorables
- 2. divergence possible si le point de départ est trop éloigné de la solution,
- 3. méthode non définie si $\nabla^2 f(x_k)$ n'est pas inversible.

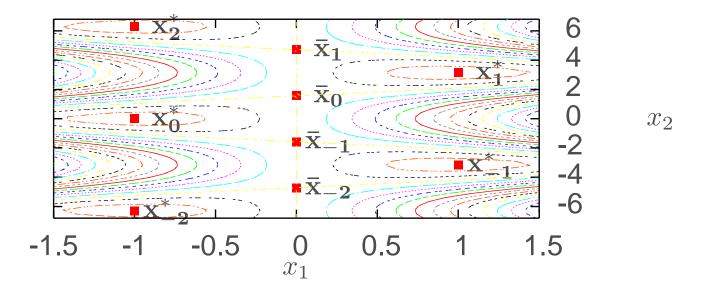
Inconvénient supplémentaire :

incapacité à distinguer minimum, maximum et point de selle

$$\min f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2,$$



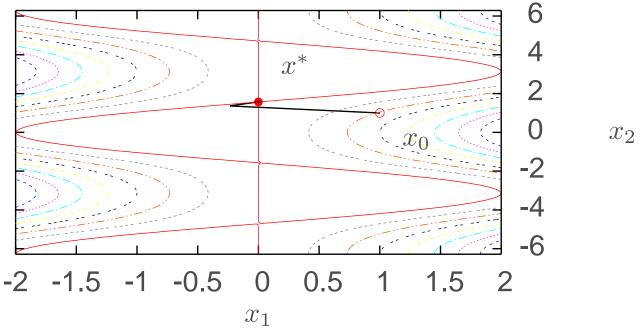
$$\min f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2,$$



Point de départ $x_0 = (1 \ 1)^T$. Convergence rapide.

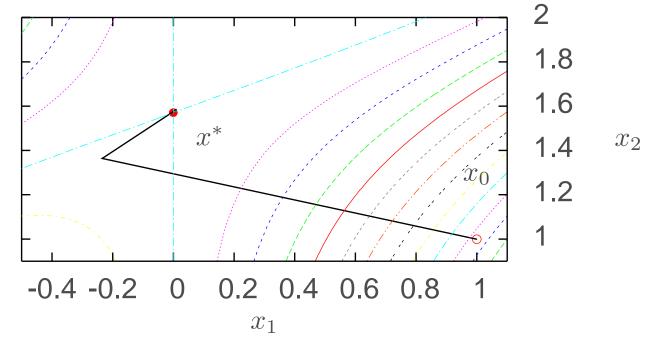
Solution:

$$x^* = \begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$



Solution:

$$x^* = \begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$



- Méthode rapide mais peu fiable
- Interprétation géométrique
 - Equations : modèle linéaire à chaque itération
 - Optimisation : modèle quadratique

Modèle quadratique d'une fonction

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable. Le modèle quadratique de f en \widehat{x} est une fonction $m_{\widehat{x}}: \mathbb{R}^n \to \mathbb{R}$ définie par

$$m_{\widehat{x}}(x) = f(\widehat{x}) + (x - \widehat{x})^T \nabla f(\widehat{x}) + \frac{1}{2} (x - \widehat{x})^T \nabla^2 f(\widehat{x}) (x - \widehat{x}),$$

où $\nabla f(\widehat{x})$ est le gradient de f en \widehat{x} et $\nabla^2 f(\widehat{x})$ est la matrice hessienne de f en \widehat{x} . En posant $d=x-\widehat{x}$, on obtient la formulation équivalente:

$$m_{\widehat{x}}(\widehat{x}+d) = f(\widehat{x}) + d^T \nabla f(\widehat{x}) + \frac{1}{2} d^T \nabla^2 f(\widehat{x}) d.$$

$$\min_{x} m_{\widehat{x}}(x) = f(\widehat{x}) + (x - \widehat{x})^{T} \nabla f(\widehat{x}) + \frac{1}{2} (x - \widehat{x})^{T} \nabla^{2} f(\widehat{x}) (x - \widehat{x})$$

Condition suffisante d'optimalité (premier ordre)

$$\nabla m_{\widehat{x}}(\widehat{x}+d) = \nabla f(\widehat{x}) + \nabla^2 f(\widehat{x})d = 0$$

c'est-à-dire

$$d = -\nabla^2 f(\widehat{x})^{-1} \nabla f(\widehat{x}),$$

ou encore

$$x = \widehat{x} - \nabla^2 f(\widehat{x})^{-1} \nabla f(\widehat{x}),$$

Condition suffisante d'optimalité (second ordre)

 $abla^2 f(\widehat{x})$ définie positive

Lorsque la matrice hessienne de la fonction est définie positive en x_k , une itération de la méthode de Newton locale revient à minimiser le modèle quadratique de la fonction en x_k , et ainsi définir

$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} m_{x_k}(x).$$

Objectif

Trouver une approximation de la solution du système

$$\nabla f(x) = 0. \tag{1}$$

Input

- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Output

Une approximation de la solution $x^* \in \mathbb{R}^n$

Initialisation

$$k = 0$$

Itérations

1. Construire le modèle quadratique

$$m_{\widehat{x}}(\widehat{x}+d) = f(\widehat{x}) + d^T \nabla f(\widehat{x}) + \frac{1}{2} d^T \nabla^2 f(\widehat{x}) d,$$

2. Calculer

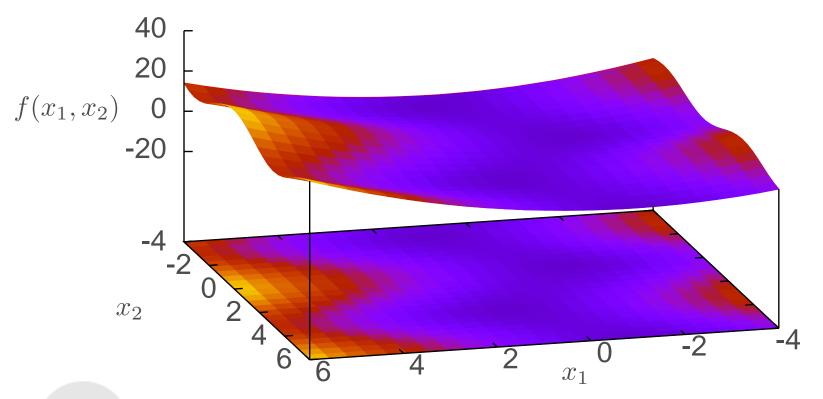
$$d_{k+1} = \operatorname{argmin}_d m_{\widehat{x}}(\widehat{x} + d)$$

- 3. $x_{k+1} = x_k + d_{k+1}$,
- 4. k = k + 1.

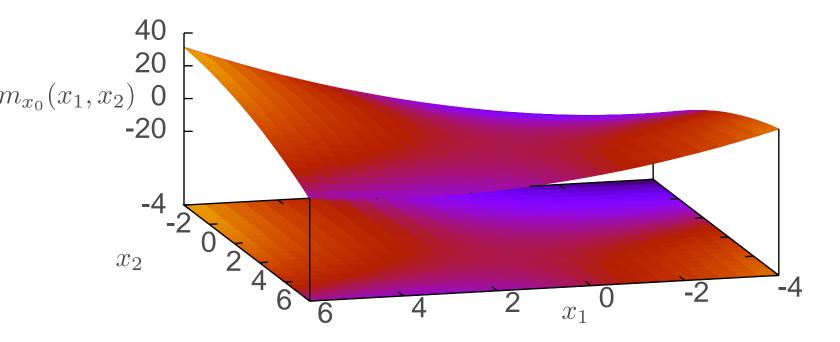
Critère d'arrêt

Si
$$\|\nabla f(x_k)\| \le \varepsilon$$
, alors $x^* = x_k$.

Attention : si $\nabla^2 f(x_k)$ n'est pas définie positive, le modèle n'est par borné inférieurement



Attention : si $\nabla^2 f(x_k)$ n'est pas définie positive, le modèle n'est par borné inférieurement

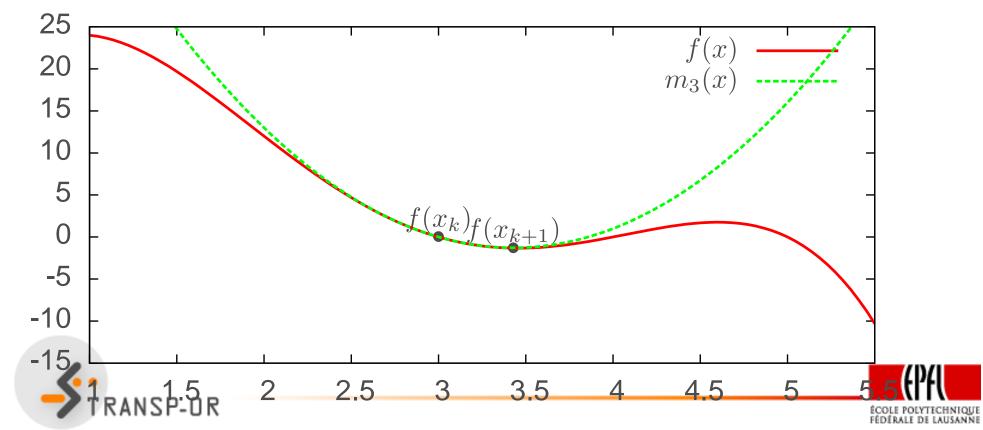


Dans e cas, l'algorithme ne peut être appliqué.

$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 3$$

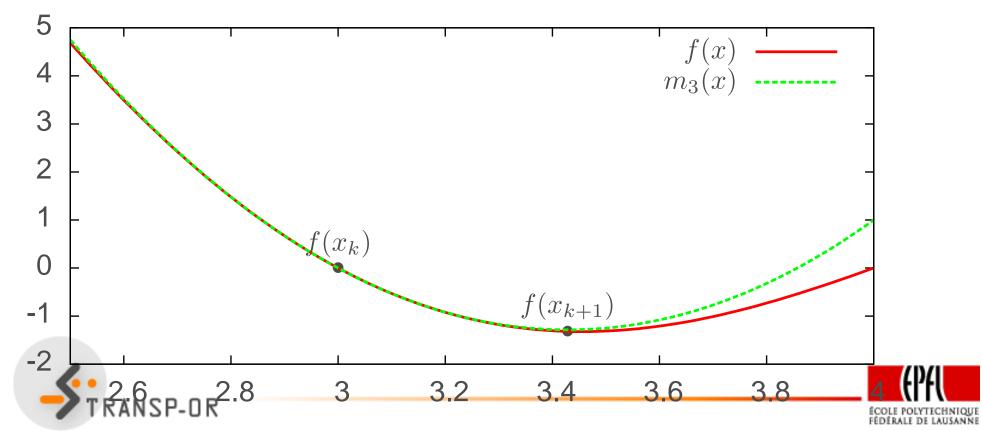
$$m_3(x) = 7x^2 - 48x + 81$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 3$$

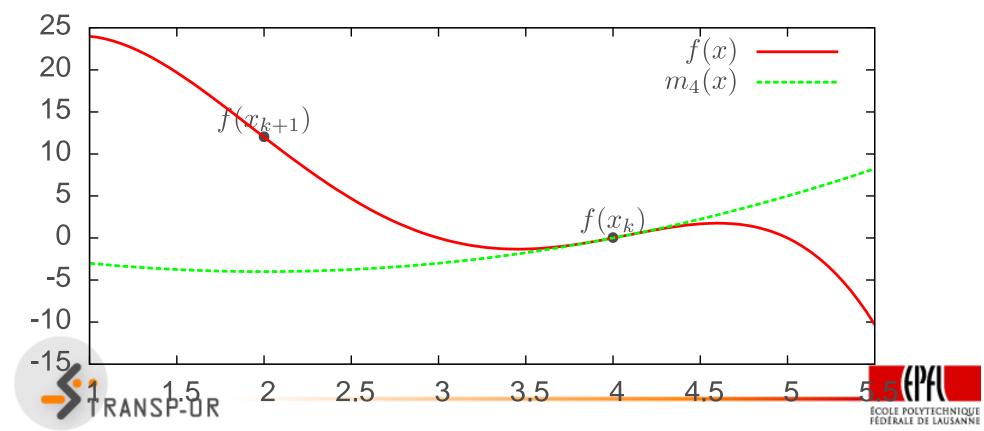
$$m_3(x) = 7x^2 - 48x + 81$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 4$$

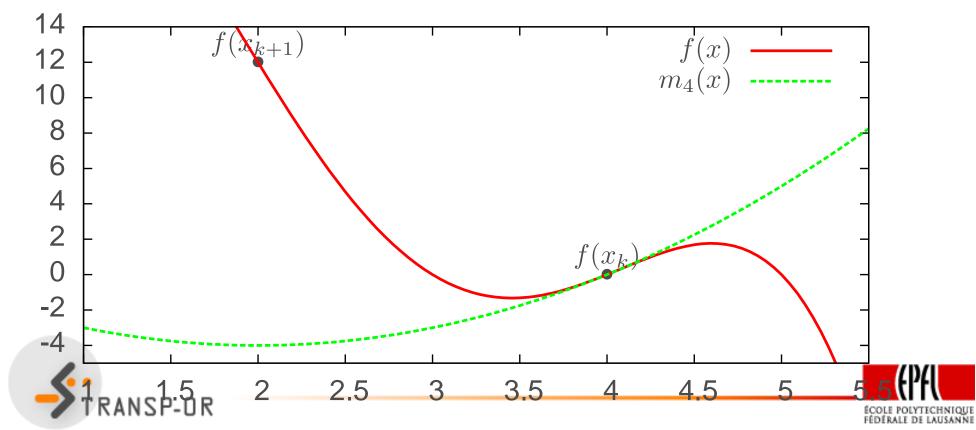
$$m_4(x) = x^2 - 4x$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 4$$

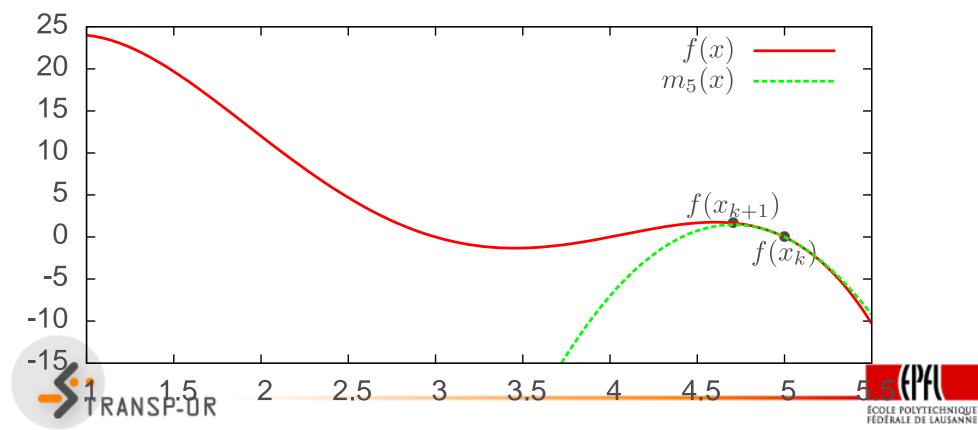
$$m_4(x) = x^2 - 4x$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 5$$

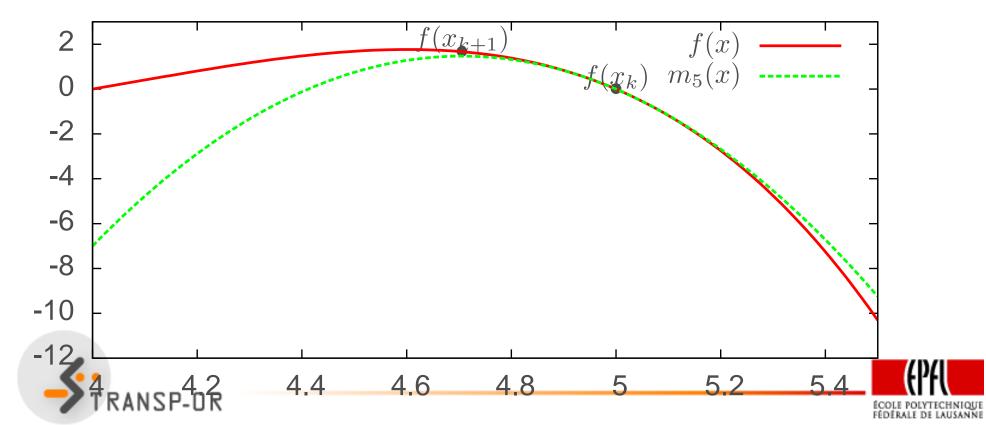
$$m_5(x) = -17x^2 + 160x - 375.$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

 $x_k = 5$

$$m_5(x) = -17x^2 + 160x - 375.$$



Point de Newton

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable, et soit $x_k \in \mathbb{R}^n$. Le point de Newton de f en x_k est le point

$$x_N = x_k + d_N$$

où d_N est solution du système d'équations

$$\nabla^2 f(x_k) d_N = -\nabla f(x_k).$$

Ce système est souvent appelé équations de Newton.

Résumé

- Conditions nécessaires d'optimalité = système d'équations.
- Méthode de Newton locale.
- Rapide ... sous conditions.
- Pas de distinctions entre minima, maxima et point de selle.

