

Introduction à l'optimisation et la recherche opérationnelle (2016-2017)

Professeur : Michel Bierlaire, Assistant responsable : Yousef Maknoon

Réseaux (2) (18 Novembre 2016)

Question 1:

Considérer le problème d'optimisation linéaire suivant :

$$\min x_1 + x_2$$

sous contraintes

$$-x_1 + x_2 \ge 1$$
$$2x_1 - x_2 \le 2$$
$$x_1, x_2 \ge 0.$$

- 1. Résoudre ce problème par la méthode graphique.
- 2. Déterminer le problème dual.
- 3. Résoudre le dual par la méthode graphique.
- 4. Vérifier que le théorème de dualité forte est valable sur cet exemple.
- 5. Vérifier le corollaire 6.32, qui dit que que la solution optimale du dual est donnée par

$$B^{-T}c_B$$
,

où B est la matrice de base optimale du problème primal.

Introduction à l'optimisation et la recherche opérationnelle (2016–2017)

Professeur : Michel Bierlaire, Assistant responsable : Yousef Maknoon

Réseaux (2) (18 Novembre 2016)

Question 2:

1. Formuler le problème dual du problème d'optimisation linéaire suivant, sans le convertir en forme canonique.

$$\min -x_1 - x_2$$

sous contraintes

$$x_1 - 2x_2 = 0$$

$$x_1 + x_2 \le 7$$

$$2x_1 + x_2 \ge 2$$

$$x_1 \in \mathbb{R}$$

$$x_2 \ge 0$$

2. Completer le tableau suivant en indiquant quelles combinaisons sont possibles ou pas.

Dual/Primal	Optimal	Non borné	Non admissible
Optimal			
Non borné			
Non admissible			

Introduction à l'optimisation et la recherche opérationnelle (2016–2017)

Professeur: Michel Bierlaire, Assistant responsable: Yousef Maknoon

Réseaux (2) (18 Novembre 2016)

Question 3:

La direction d'une usine de turbines électriques a accepté de livrer 53 turbines durant les 4 prochains mois. Le coût de production d'une turbine est de 12 millions de dollars en heures régulières; ce coût augmente de 50% pour les unités produites durant les heures supplémentaires.

		Capacité de production (en turbines)		
Mois	Nombre de	en heures	pendant les heures	
	turbines à livrer	régulières	supplémentaires	
1	14	10	6	
2	9	10	6	
3	18	10	6	
4	12	10	6	

Entreposer une turbine pendant 1 mois revient à \$100000. La capacité de stockage de l'usine est de 8 turbines. Au début du mois 1, l'usine détient 2 turbines en stock. La direction désire qu'il n'y en ait aucune à la fin de la période de planification.

Donner un modèle de réseau qui permettra d'obtenir un plan optimal de production pour les 4 prochains mois.

Introduction à l'optimisation et la recherche opérationnelle (2016–2017)

Professeur: Michel Bierlaire, Assistant responsable: Yousef Maknoon

Réseaux (2) (18 Novembre 2016)

Question 4:

La rénovation du séjour d'un appartement se décompose en plusieurs tâches énumérées dans le tableau ci-dessous. Ce dernier contient également les précédences à respecter lors de la planification des travaux, ainsi que la durée de chacune des tâches.

Tâche	Description	Précédences	Durée [jours]
A	Enlèvement des portes		1/2
В	Ponçage et peinture des portes	A	3
С	Pose des portes	B, J	1/2
D	Arrachage des papiers peints		1
E	Tirage des fils électriques	D	1
F	Pose des prises	E, H, I	1/2
G	Ragréage des murs	E, A	2
Н	Peinture du plafond	G	2
I	Pose des papiers peints	G	3
J	Peinture des cadres	Н, І	1
K	Arrachage de la moquette	H, I, J	1/2
L	Ponçage du parquet	K	1
M	Imprégnation et séchage du parquet	L, F	4
N	Peinture du balcon		2
О	Changement des protections solaires	N	1

- 1. Donner la réprésentation en réseau de ce projet.
- 2. Identifier les tâches critiques, ne pouvant souffrir d'aucun délai sans retarder le projet, et donner la durée minimale des travaux.
- 3. Calculer les dates de début au plus tôt et au plus tard de chacune des tâches.

Indice: consultez la section 23.4 du livre.