Méthodes de descente

Michel Bierlaire

michel.bierlaire@epfl.ch

Laboratoire Transport et Mobilité

EPFL - ENAC - TRANSP-OR

Méthode de descente

Idée

- 1. Trouver une direction de descente d_k , c'est-à-dire telle que $\nabla f(x_k)^T d_k < 0$.
- 2. Trouver un pas α_k tel que $f(x_k + \alpha_k d_k) < f(x_k)$.
- 3. Calculer $x_{k+1} = x_k + \alpha_k d_k$.

Plus forte pente

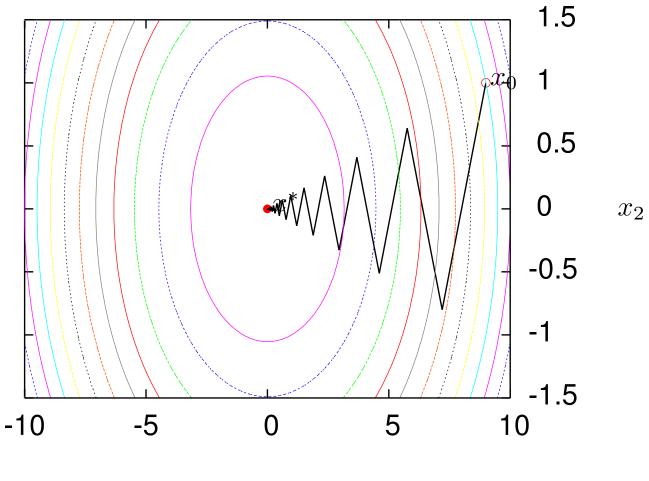
- Choix intuitif de la direction : $d_k = -\nabla f(x_k)$
- Choix du pas

$$\alpha_k = \operatorname{argmin}_{\alpha \in \mathbb{R}_0^+} f(x_k + \alpha d_k).$$

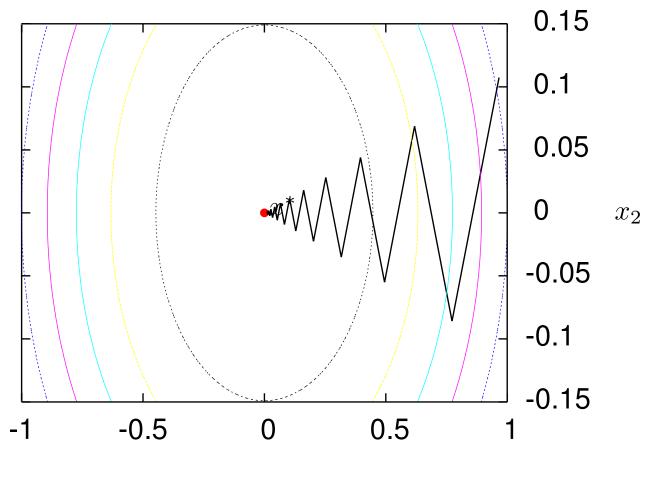
Exemple:

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Plus forte pente



Plus forte pente



\k	$(x_k)_1$	$(x_k)_2$	$\nabla f(x_k)_1$	$\nabla f(x_k)_2$	α_k	$f(x_k)$
0	+9.00000E+00	+1.000000E+00	+9.00000E+00	+9.00000E+00	0.2	+4.500000E+01
1	+7.200000E+00	-8.000000E-01	+7.200000E+00	-7.200000E+00	0.2	+2.880000E+01
2	+5.760000E+00	+6.400000E-01	+5.760000E+00	+5.760000E+00	0.2	+1.843200E+01
3	+4.608000E+00	-5.120000E-01	+4.608000E+00	-4.608000E+00	0.2	+1.179648E+01
4	+3.686400E+00	+4.096000E-01	+3.686400E+00	+3.686400E+00	0.2	+7.549747E+00
5	+2.949120E+00	-3.276800E-01	+2.949120E+00	-2.949120E+00	0.2	+4.831838E+00
20	+1.037629E-01	+1.152922E-02	+1.037629E-01	+1.037629E-01	0.2	+5.981526E-03
21	+8.301035E-02	-9.223372E-03	+8.301035E-02	-8.301035E-02	0.2	+3.828177E-03
22	+6.640828E-02	+7.378698E-03	+6.640828E-02	+6.640828E-02	0.2	+2.450033E-03
23	+5.312662E-02	-5.902958E-03	+5.312662E-02	-5.312662E-02	0.2	+1.568021E-03
24	+4.250130E-02	+4.722366E-03	+4.250130E-02	+4.250130E-02	0.2	+1.003534E-03
25	+3.400104E-02	-3.777893E-03	+3.400104E-02	-3.400104E-02	0.2	+6.422615E-04
:						
5 O	+1.284523E-04	+1.427248E-05	+1.284523E-04	+1.284523E-04	0.2	+9.166662E-09
51	+1.027618E-04	-1.141798E-05	+1.027618E-04	-1.027618E-04	0.2	+5.86664E-09
52	+8.220947E-05	+9.134385E-06	+8.220947E-05	+8.220947E-05	0.2	+3.754665E-09
53	+6.576757E-05	-7.307508E-06	+6.576757E-05	-6.576757E-05	0.2	+2.402985E-09
54	+5.261406E-05	+5.846007E-06	+5.261406E-05	+5.261406E-05	0.2	+1.537911E-09
55	+4.209125E-05	-4.676805E-06	+4.209125E-05	-4.209125E-05	0.2	+9.842628E-10
55	14.2071235-03	- 0 / 00 0 JE - 0 0	14.2071235-03	4 • Z O J I Z J E - O J	0 • ∠	17.0420205-10

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$

Changement de variable :

$$\begin{array}{rcl} x_1' & = & x_1 \\ x_2' & = & 3x_2 \end{array}$$

et

$$\tilde{f}(x') = \frac{1}{2}x_1'^2 + \frac{9}{2}(\frac{1}{3}x_2')^2 = \frac{1}{2}x_1'^2 + \frac{1}{2}x_2'^2.$$

$$\tilde{f}(x') = \frac{1}{2}x_1'^2 + \frac{1}{2}x_2'^2.$$

Direction:

$$d = -\nabla \tilde{f}(x') = \begin{pmatrix} -x_1' \\ -x_2' \end{pmatrix}.$$

Pas:

$$\underset{\alpha}{\operatorname{argmin}}_{\alpha} f(x' - \alpha \nabla f(x')) = \min_{\alpha} \frac{1}{2} (x'_1 - \alpha x'_1)^2 + \frac{1}{2} (x'_2 - \alpha x'_2)^2,$$

Solution : $\alpha = 1$

$$\begin{pmatrix} x_1' \\ x_2' \end{pmatrix} + \begin{pmatrix} -x_1' \\ -x_2' \end{pmatrix} = 0,$$

- Après conditionnement, la méthode de la plus forte pente converge en une seule itération sur cet exemple
- D'une manière générale, un pré-conditionnement peut significativement accélérer la méthode
- Analysons l'impact d'un changement de variables sur la méthode.

(p. 261)

Changement de variable

- Soit H_k une matrice symétrique définie positive: $H_k = L_k L_k^T$
- Changement de variable:

$$x' = L_k^T x.$$

• Plus forte pente pour les variables x':

$$x'_{k+1} = x'_k - \alpha_k \nabla \tilde{f}(x'_k).$$

ou encore

$$x'_{k+1} = x'_k - \alpha_k L_k^{-1} \nabla f(L_k^{-T} x'_k).$$

Retour dans les variables originales :

$$L_k^T x_{k+1} = L_k^T x_k - \alpha_k L_k^{-1} \nabla f(x_k),$$

Changement de variable (ctd)

$$L_{k}^{T} x_{k+1} = L_{k}^{T} x_{k} - \alpha_{k} L_{k}^{-1} \nabla f(x_{k}),$$

• en multipliant par L_k^{-T} :

$$x_{k+1} = x_k - \alpha_k L_k^{-T} L_k^{-1} \nabla f(x_k)$$
$$= x_k - \alpha_k H_k^{-1} \nabla f(x_k).$$

$$x_{k+1} = x_k + \alpha_k d_k$$

avec

$$d_k = -H_k^{-1} \nabla f(x_k).$$

En posant $H_k^{-1} = D_k$, on obtient de manière équivalente

$$d_k = -D_k \nabla f(x_k).$$

Il s'agit bien d'une méthode de descente car, si $\nabla f(x_k) \neq 0$,

$$\nabla f(x_k)^T d_k = -\nabla f(x_k)^T D_k \nabla f(x_k) < 0$$

En effet, H_k est définie positive, et D_k également.

Algorithme: Plus forte pente préconditionnée

Objectif

Trouver une approximation de la solution du problème

$$\min_{x \in \mathbb{R}^n} f(x).$$

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Une famille de préconditionneurs $(D_k)_k$ telle que D_k est définie positive pour tout k;
- $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme: Plus forte pente préconditionnée

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Itérations

- 1. $d_k = -D_k \nabla f(x_k)$,
- 2. Déterminer α_k , par exemple $\alpha_k = \operatorname{argmin}_{\alpha>0} f(x_k + \alpha d_k)$,
- 3. $x_{k+1} = x_k + \alpha_k d_k$,
- 4. k = k + 1.

Critère d'arrêt Si $\|\nabla f(x_k)\| \leq \varepsilon$, alors $x^* = x_k$.

Il reste à préciser

- comment choisir D_k
- comment choisir α_k

et il reste à s'assurer que cela fonctionne...

Résolution de

$$\alpha_k = \operatorname{argmin}_{\alpha \in \mathbb{R}_0^+} f(x_k + \alpha d_k).$$

trop coûteuse

- Travail inutile si la direction n'est pas bonne
- Prenons n'importe quel α tel que

$$f(x_k + \alpha d_k) < f(x_k)$$

Malheureusement, cela ne suffit pas...

- Exemple : $f(x) = x^2$
- Appliquons l'algorithme avec $x_0 = 2$, et

$$D_k = 1/2|x_k| = \operatorname{sgn}(x_k)/2x_k$$

 $\alpha_k = 2 + 3(2^{-k-1}).$

- D_k est bien (défini) positif pour tout k.
- $\nabla f(x_k) = 2x_k \Rightarrow d_k = -D_k \nabla f(x_k) = -\operatorname{sgn}(x_k)$
- La méthode s'écrit

$$x_{k+1} = \begin{cases} x_k - 2 - 3(2^{-k-1}) & \text{si } x_k \ge 0, \\ x_k + 2 + 3(2^{-k-1}) & \text{si } x_k < 0, \end{cases}$$

Nous avons que

$$x_k = (-1)^k (1 + 2^{-k})$$

et

$$|x_{k+1}| < |x_k|.$$

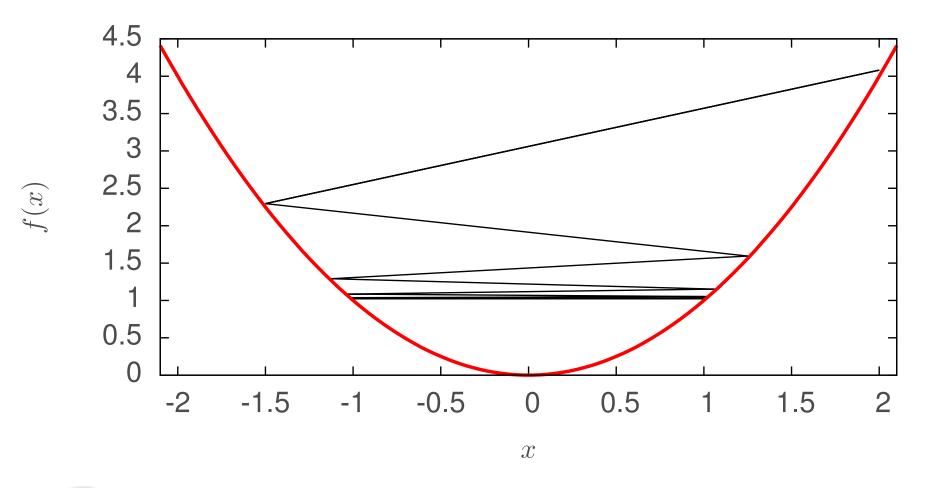
(p. 264)

Dès lors

$$f(x_{k+1}) < f(x_k)$$

Cependant, la suite x_k a deux points d'accumulation: -1 et 1

	k	x_k	d_k	$lpha_k$
-	0	+2.000000e+00	-1	+3.500000e+00
	1	-1.500000e+00	1	+2.750000e+00
	2	+1.250000e+00	-1	+2.375000e+00
	3	-1.125000e+00	1	+2.187500e+00
	4	+1.062500e+00	-1	+2.093750e+00
	5	-1.031250e+00	1	+2.046875e+00
	:			
	46	+1.000000e+00	-1	+2.000000e+00
	47	-1.000000e+00	1	+2.000000e+00
	48	+1.000000e+00	-1	+2.000000e+00
	49	-1.000000e+00	1	+2.000000e+00
	50	+1.000000e+00	-1	+2.000000e+00



Pourquoi cela ne fonctionne pas ?

- Origine théorique : théorème de Taylor
- Théorie locale
- Ici, pas trop longs
- Le fait que $f(x_{k+1}) < f(x_k)$ est du à la chance et non au fait que $d^T \nabla f(x_k) < 0$
- Les pas sont trop longs par rapport au bénéfice obtenu

Notion de diminution suffisante

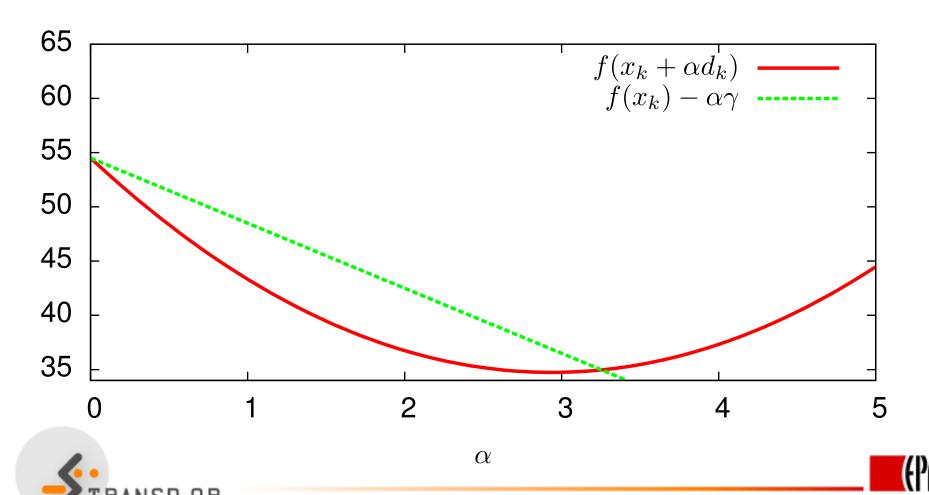
Soit $\gamma > 0$. On veut

$$f(x_k) - f(x_k + \alpha_k d_k) \ge \alpha_k \gamma,$$

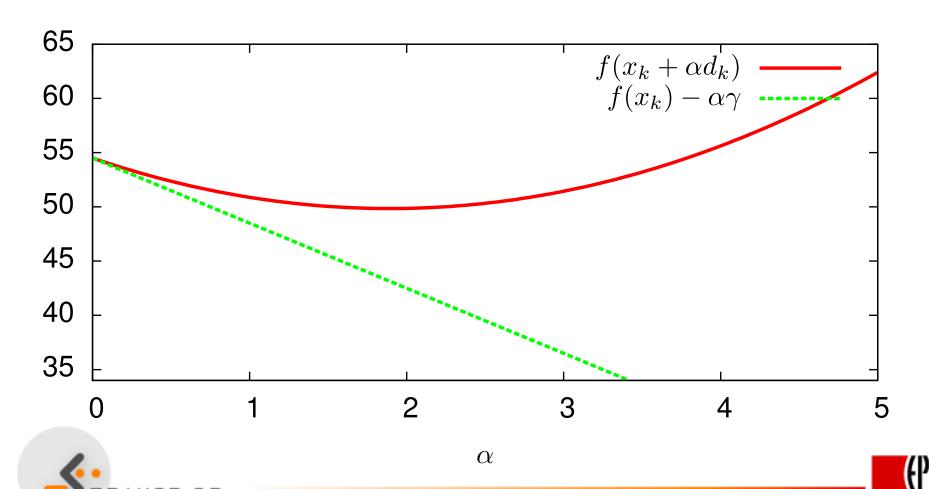
ou encore

$$f(x_k + \alpha_k d_k) \le f(x_k) - \alpha_k \gamma.$$

Exemple:
$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$
, $x_0 = \begin{pmatrix} 10 \\ 1 \end{pmatrix}$, $d = \begin{pmatrix} \frac{-10}{\sqrt{181}} \\ \frac{-9}{\sqrt{181}} \end{pmatrix}$, $\gamma = 6$.



Exemple:
$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2$$
, $x_0 = \begin{pmatrix} 10 \\ 1 \end{pmatrix}$, $d = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$, $\gamma = 6$.



- γ ne peut pas être constant
- Il doit dépendre de la direction
- Utilisons la théorie

Rappel

Direction de descente Soit $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ une fonction différentiable.

Soient $x \in \mathbb{R}^n$ tel que $\nabla f(x) \neq 0$ et $d \in \mathbb{R}^n$.

Si d est une direction de descente, alors il existe $\eta > 0$ tel que

$$f(x + \alpha d) < f(x) \quad \forall 0 < \alpha \le \eta.$$

De plus, pour tout $\beta < 1$, il existe $\widehat{\eta} > 0$ tel que

$$f(x + \alpha d) < f(x) + \alpha \beta \nabla f(x)^T d,$$

pour tout $0 < \alpha \leq \widehat{\eta}$.

(voir p. 36)

Choisissons

$$\gamma = -\beta \nabla f(x_k)^T d_k$$

avec $0 < \beta < 1$.

Diminution suffisante : première condition de Wolfe

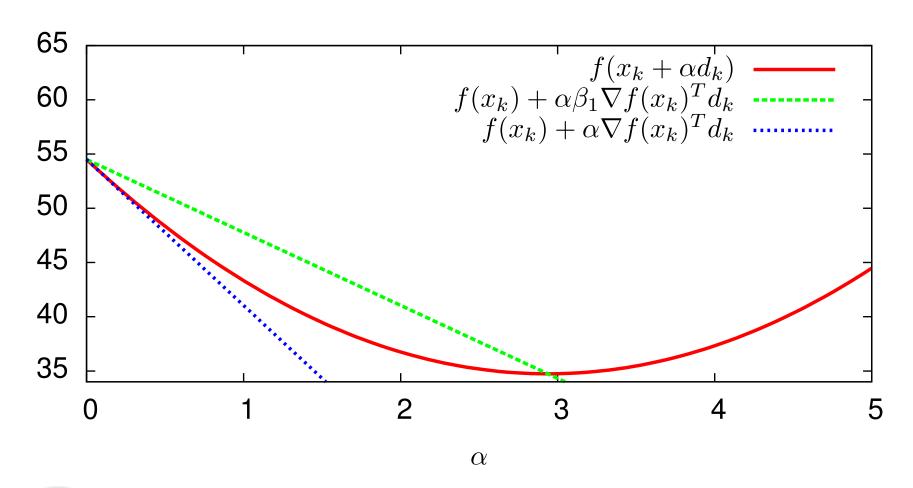
Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$, une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et un pas $\alpha_k \in \mathbb{R}$, $\alpha_k > 0$.

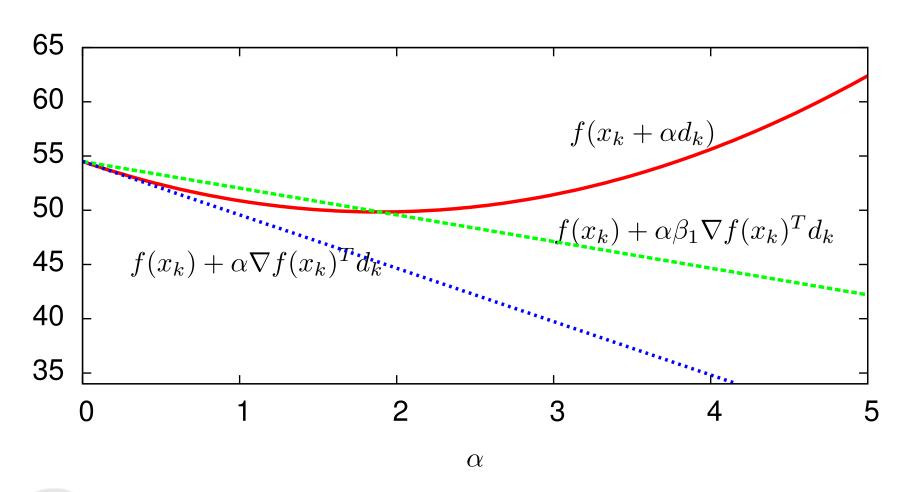
On dira que la fonction f diminue suffisamment en $x_k + \alpha_k d_k$ par rapport à x_k si

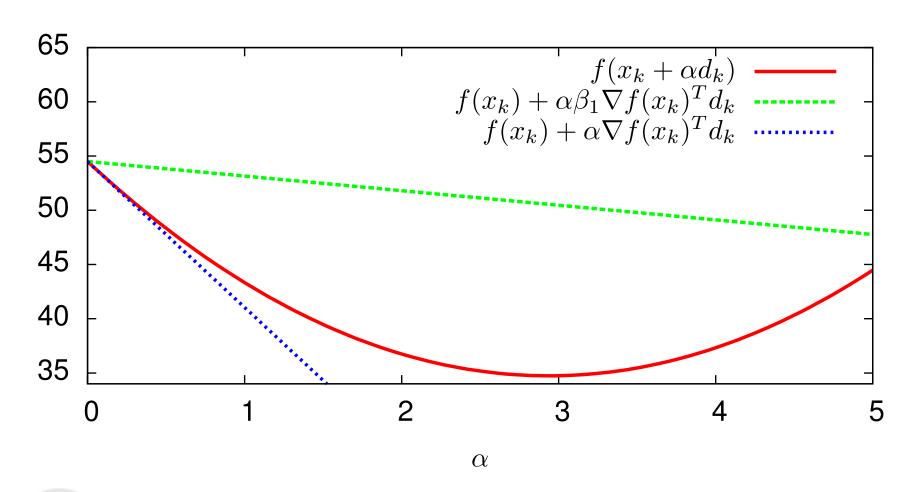
$$f(x_k + \alpha_k d_k) \le f(x_k) + \alpha_k \beta_1 \nabla f(x_k)^T d_k,$$

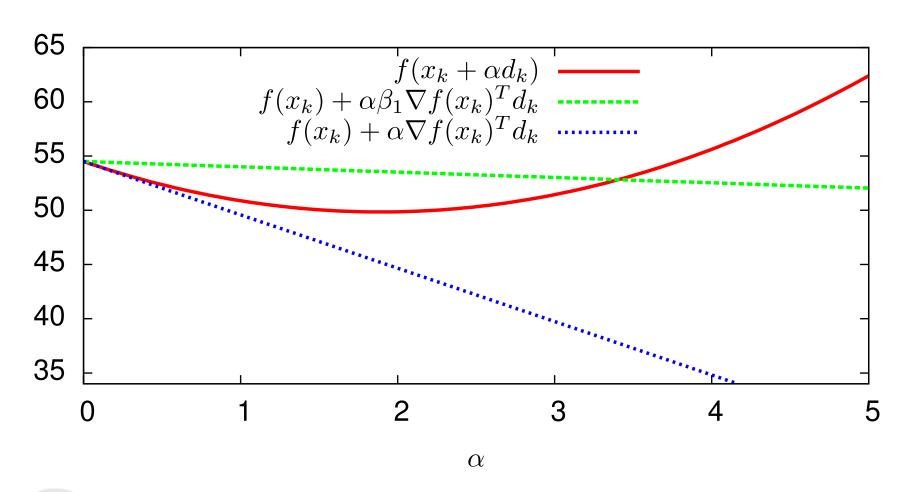
avec $0 < \beta_1 < 1$.

Cette condition s'appelle la première condition de Wolfe









- Exemple : $f(x) = x^2$
- Appliquons l'algorithme avec $x_0 = 2$, et

$$D_k = 1/2x_k$$

$$\alpha_k = 2^{-k-1}.$$

- D_k est bien (défini) positif pour tout k.
- $\nabla f(x_k) = 2x_k \Rightarrow d_k = -D_k \nabla f(x_k) = -1$
- La méthode s'écrit

$$x_{k+1} = x_k - 2^{-k-1}$$

Nous avons que

$$x_k = 1 + 2^{-k}.$$

(p. 269)

Dès lors

$$f(x_{k+1}) < f(x_k)$$

Cependant,

$$\lim_{k \to \infty} x_k = 1 \neq 0$$


```
k
                     d_k
                         \alpha_k
    x_k
0
    +2.000000e+00
                     -1
                         +5.000000e-01
    +1.500000e+00
                     -1
                         +2.500000e-01
1
2
   +1.250000e+00
                         +1.250000e-01
                     -1
3
    +1.125000e+00
                         +6.250000e-02
                     -1
    +1.062500e+00
                         +3.125000e-02
4
                     -1
5
    +1.031250e+00
                         +1.562500e-02
                     -1
    +1.000000e+00
46
                     -1
                         +7.105427e-15
    +1.000000e+00
47
                     -1
                         +3.552714e-15
48
    +1.000000e+00
                     -1
                         +1.776357e-15
    +1.000000e+00
                         +8.881784e-16
49
                     -1
50
    +1.000000e+00
                         +4.440892e-16
                     -1
```

Choix du pas

Pourquoi cela ne fonctionne pas ?

- Dégénérescence
- Pas trop petits

Notion de progrès suffisant

- $\bullet \quad \nabla f(x_k)^T d_k < 0$
- Si α_k minimum dans la direction alors $\nabla f(x_k + \alpha_k d_k)^T d_k = 0$
- La dérivée directionnelle augmente

Choix du pas

Progrès suffisant : seconde condition de Wolfe

Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$, une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et un pas $\alpha_k \in \mathbb{R}$, $\alpha_k > 0$.

On dira que le point $x_k + \alpha_k d_k$ apporte un progrès suffisant par rapport à x_k si

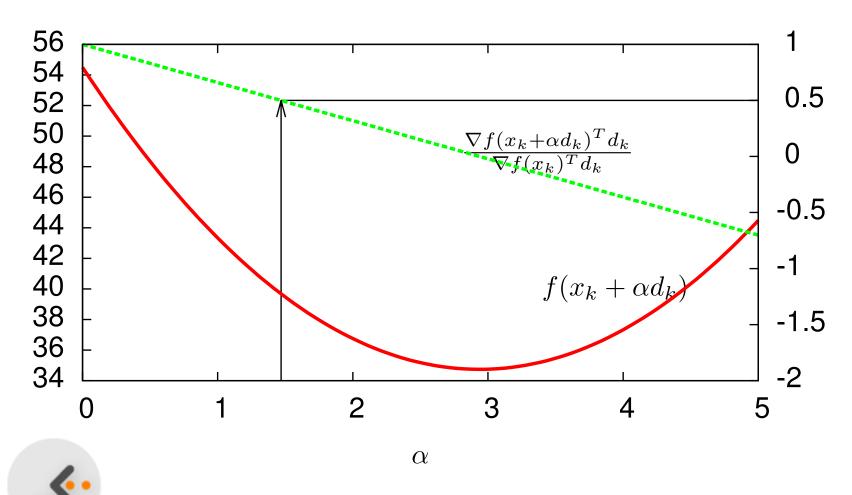
$$\nabla f(x_k + \alpha_k d_k)^T d_k \ge \beta_2 \nabla f(x_k)^T d_k,$$

avec $0 < \beta_2 < 1$.

Cette condition s'appelle la seconde condition de Wolfe.

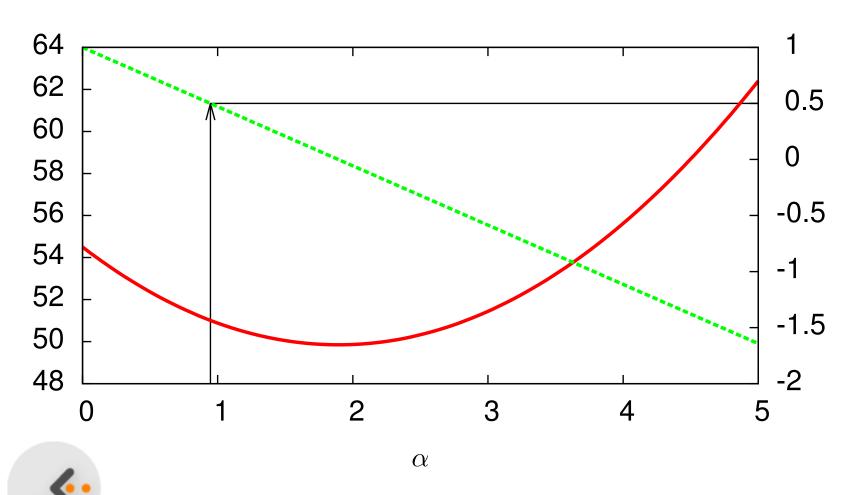
Progrès suffisant $\beta_2 = 0.5$

$$d_k = (-10/\sqrt{181} - 9/\sqrt{181})^T \qquad \alpha \ge 1.4687$$



Progrès suffisant $\beta_2 = 0.5$

$$d_k = (-2/\sqrt{5} \quad 1/\sqrt{5})^T \qquad \alpha \ge 0.94603$$



Conditions de Wolfe

Validité des conditions de Wolfe Soient $f: \mathbb{R}^n \to \mathbb{R}$ une fonction différentiable, un point $x_k \in \mathbb{R}^n$ et une direction (de descente) $d_k \in \mathbb{R}^n$ telle que $\nabla f(x_k)^T d_k < 0$ et f est bornée inférieurement dans la direction d_k , c'est-à-dire il existe f_0 tel que $f(x_k + \alpha d_k) \geq f_0$ pour tout $\alpha \geq 0$.

Si $0 < \beta_1 < 1$, il existe η tel que la première condition de Wolfe soit vérifiée pour tout $\alpha_k \leq \eta$. De plus, si $0 < \beta_1 < \beta_2 < 1$, il existe $\alpha_2 > 0$ tel que les deux conditions de Wolfe soient toutes deux vérifiées.

(p. 271)

Intuitions pour la preuve

- Comme la fonction est bornée inférieurement, la droite définissant la première condition croisera la fonction à un moment donné (pas α_1).
- La première condition est vérifiée pour tout pas plus petit que α_1 .
- Par le théorème de la moyenne, il existe un endroit ($\alpha_2 \le \alpha_1$) où la fonction a la même pente que cette droite.
- Comme $\beta_2 > \beta_1$, on peut montrer que la seconde condition de Wolfe est vérifiée pour α_2 .

Objectif

Trouver un pas α^* tel que les conditions de Wolfe soient vérifiées.

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f: \mathbb{R}^n \to \mathbb{R}^n$;
- Un vecteur $x \in \mathbb{R}^n$;
- Une direction de descente d telle que $\nabla f(x)^T d < 0$;
- Une première approximation de la solution $\alpha_0 > 0$.

Input (suite)

- Des paramètres β_1 et β_2 tels que $0 < \beta_1 < \beta_2 < 1$.
- Un paramètre $\lambda > 1$.

Output

Un pas α^* tel que les conditions de Wolfe soient vérifiées.

Initialisation

$$i=0, \, \alpha_\ell=0, \, \alpha_r=+\infty.$$

Itérations

- Si α_i vérifie les conditions, alors $\alpha^* = \alpha_i$. STOP.
- Si α_i viole Wolfe-1, i.e. $f(x_k+\alpha_k d_k)>f(x_k)+\alpha_k \beta_1 \nabla f(x_k)^T d_k$, alors le pas est trop long et

$$\begin{array}{rcl} \alpha_r & = & \alpha_i \\ \alpha_{i+1} & = & \frac{\alpha_\ell + \alpha_r}{2} \end{array}$$

Itérations

• Si α_i ne viole pas Wolfe-1 et viole Wolfw-2, i.e.

$$\nabla f(x + \alpha_i d)^T d < \beta_2 \nabla f(x)^T d$$

alors le pas est trop court et

• i = i+1

$$f(x) = \frac{1}{2}x_1^2 + \frac{9}{2}x_2^2 \quad x = \begin{pmatrix} 10 \\ 1 \end{pmatrix} \quad d = \begin{pmatrix} \frac{-2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix}$$
$$\alpha_0 = 10^{-3} \quad \beta_1 = 0.3 \quad \beta_2 = 0.7 \quad \lambda = 20.$$

α_i	$lpha_\ell$	$lpha_r$	Cond. violée
1.0000000e-03	0.00000000e+00	9.99999000e+05	Wolfe-2
2.00000000e-02	1.0000000e-03	9.99999000e+05	Wolfe-2
4.0000000e-01	2.00000000e-02	9.99999000e+05	Wolfe-2
8.0000000e+00	4.00000000e-01	9.99999000e+05	Wolfe-1
4.2000000e+00	4.00000000e-01	8.00000000e+00	Wolfe-1
2.30000000e+00	4.00000000e-01	4.20000000e+00	

Plus forte pente

- En général, cet algorithme ne devrait pas être utilisé
- Décrivons-le pour pouvoir le comparer par la suite aux autres
- Utilisons la recherche linéaire

Algorithme: Plus forte pente

Objectif

Trouver une approximation de la solution du problème

$$\min_{x \in \mathbb{R}^n} f(x).$$

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme: Plus forte pente

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Algorithme: Plus forte pente

Itérations

- 1. $d_k = -\nabla f(x_k)$,
- 2. Déterminer α_k en appliquant la recherche linéaire avec $\alpha_0 = 1$.
- 3. $x_{k+1} = x_k + \alpha_k d_k$,
- 4. k = k + 1.

Critère d'arrêt

Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

Méthode de Newton

- Combiner les idées de
 - 1. plus forte pente préconditionnée
 - 2. Newton
 - 3. recherche linéaire
- Itération de Newton pure

$$x_{k+1} = x_k - \nabla^2 f(x_k)^{-1} \nabla f(x_k),$$

• Itération de plus forte pente préconditionnée

$$x_{k+1} = x_k - \alpha_k D_k \nabla f(x_k),$$

• Si $\nabla^2 f(x_k)^{-1}$ déf. positive, et $\alpha_k = 1$ acceptable, itérations équivalentes.

Méthode de Newton

- Si $\alpha_k = 1$ non acceptable, algorithme de recherche linéaire
- Si $\nabla^2 f(x_k)^{-1}$ non définie positive, définir

$$D_k = (\nabla^2 f(x_k) + E)^{-1}$$

avec E telle que D_k soit définie positive.

Algorithme: Cholesky modifiée

Objectif

Modifier une matrice afin de la rendre définie positive.

Input

Une matrice symétrique $A \in \mathbb{R}^{n \times n}$

Output

Une matrice triangulaire inférieure L et $\tau \geq 0$ tels que $A + \tau I = LL^T$.

Initialisation

- 1. k=0;
- 2. Si $\min_{i} a_{ii} > 0$, alors $\tau_k = 0$. Sinon, $\tau_k = \frac{1}{2} ||A||_F$;

Algorithme: Cholesky modifiée

Itérations

- 1. Calculer la factorisation de Cholesky de $LL^T = A + \tau I$.
- 2. Si factorisation réussie, STOP.
- 3. Sinon, $\tau_{k+1} = \max(2\tau_k, \frac{1}{2} ||A||_F)$
- 4. k = k + 1.

Algorithme: Newton avec recherche linéaire

Objectif

Trouver une approximation d'un minimum local du problème

$$\min_{x \in \mathbb{R}^n} f(x).$$

Input

- La fonction $f: \mathbb{R}^n \to \mathbb{R}$ différentiable;
- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme : Newton avec recherche linéaire

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Algorithme: Newton avec recherche linéaire

Itérations

• Calculer une matrice triangulaire inférieure L_k et τ tels que

$$L_k L_k^T = \nabla^2 f(x_k) + \tau I,$$

en utilisant l'algorithme précédent

- Trouver z_k en résolvant le système triangulaire $L_k z_k = \nabla f(x_k)$.
- Trouver d_k en résolvant le système triangulaire $L_k^T d_k = -z_k$.

Algorithme: Newton avec recherche linéaire

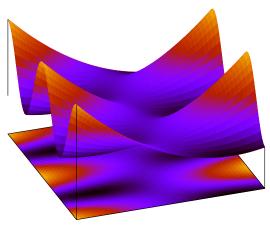
Itérations (suite)

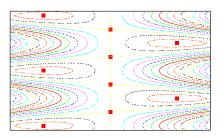
- Déterminer α_k en appliquant la recherche linéaire avec $\alpha_0 = 1$.
- $\bullet \ x_{k+1} = x_k + \alpha_k d_k.$
- k = k + 1.

Critère d'arrêt

Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

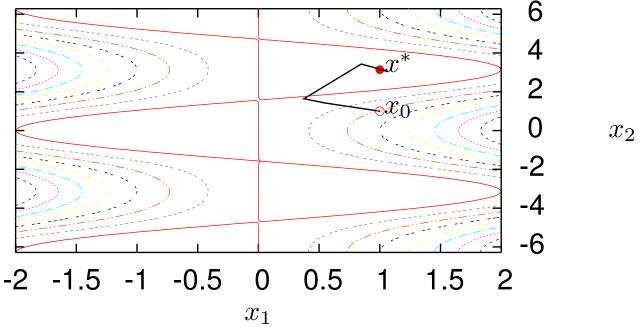
$$\min f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2,$$





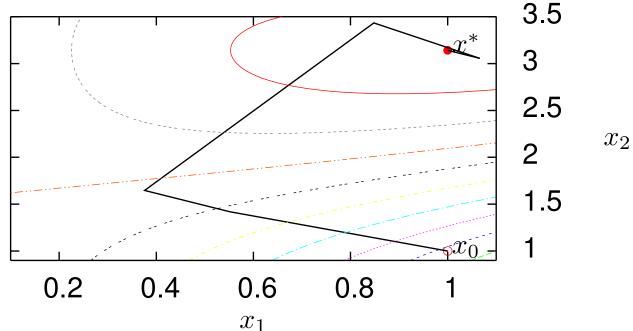
Solution:

$$x^* = \begin{pmatrix} 1 \\ \pi \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



Solution:

$$x^* = \begin{pmatrix} 1 \\ \pi \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$



k	$f(x_k)$	$\ \nabla f(x_k)\ $	α_k	au
0	1.04030231e+00	1.75516512e+00		
1	2.34942031e-01	8.88574897e-01	1	1.64562250e+00
2	4.21849003e-02	4.80063696e-01	1	1.72091923e+00
3	-4.52738278e-01	2.67168927e-01	3	8.64490594e-01
4	-4.93913638e-01	1.14762780e-01	1	0.00000000e+00
5	-4.99982955e-01	5.85174623e-03	1	0.00000000e+00
6	-5.00000000e-01	1.94633135e-05	1	0.00000000e+00
7	-5.00000000e-01	2.18521663e-10	1	0.00000000e+00
8	-5.00000000e-01	1.22460635e-16	1	0.00000000e+00

