Méthode de Newton

Michel Bierlaire

michel.bierlaire@epfl.ch

Laboratoire Transport et Mobilité

EPFL - ENAC - TRANSP-OR

Conditions nécessaires d'optimalité

$$\nabla f(x) = 0$$

- Il s'agit d'un système d'équations non linéaires.
- Appliquons la méthode de Newton pour les équations.
- Voir Bierlaire (2006), chapitre 7 pour rappel.

Résoudre

$$F(x) = 0$$

avec

$$F(x) = x^2 - 2, \quad \hat{x} = 2$$

Théorème de Taylor

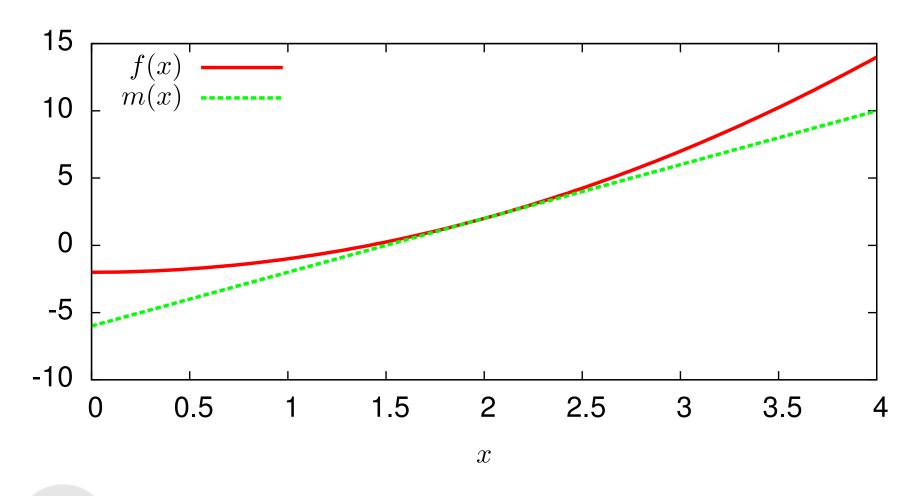
$$F(\widehat{x} + d) = F(\widehat{x}) + dF'(\widehat{x}) + o(|d|)$$
$$= \widehat{x}^2 - 2 + 2\widehat{x}d + o(|d|)$$
$$= 2 + 4d + o(|d|).$$

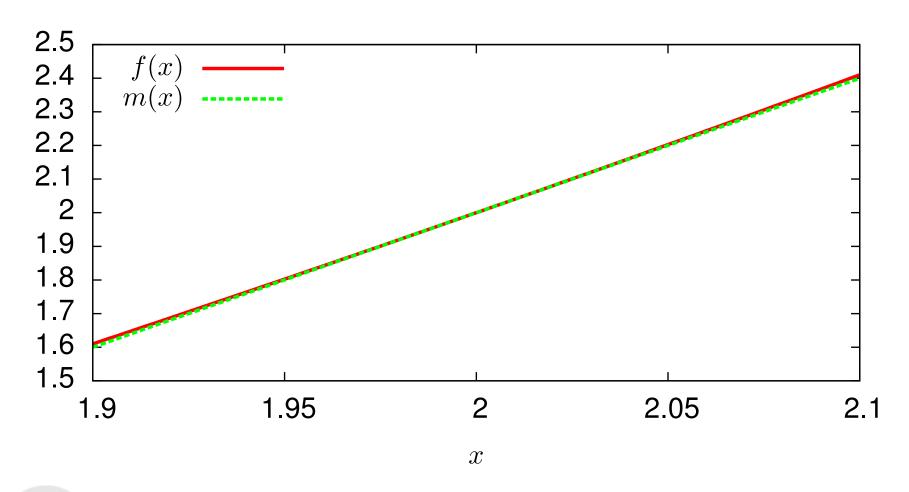
Ignorons le terme d'erreur pour obtenir un modèle :

$$m(\widehat{x} + d) = 2 + 4d.$$

En posant $x = \hat{x} + d$, nous obtenons

$$m(x) = 2 + 4(x - 2) = 4x - 6.$$





Modèle linéaire d'une fonction à une variable

Soit $F: \mathbb{R} \to \mathbb{R}$ une fonction différentiable.

Le modèle linéaire de F en \widehat{x} est une fonction $m_{\widehat{x}}:\mathbb{R}\to\mathbb{R}$ définie par

$$m_{\widehat{x}}(x) = F(\widehat{x}) + (x - \widehat{x})F'(\widehat{x}).$$

Algorithme:

1. Calculer le modèle linéaire en \hat{x} :

$$F(\widehat{x}) + (x - \widehat{x})F'(\widehat{x}) = 0,$$

2. Calculer sa racine x^+

$$x^{+} = \widehat{x} - \frac{F(\widehat{x})}{F'(\widehat{x})},$$

3. Si x^+ n'est pas une racine du problème de départ, considérer x^+ comme nouvelle approximation, et recommencer.

Critère d'arrêt:

- En théorie $F(x^+) = 0$.
- En pratique, arithmétique finie.
- On définit une précision ε , et la condition est

$$|F(x^+)| \le \varepsilon$$
.

Objectif

Trouver une approximation de la solution de l'équation

$$F(x) = 0.$$

Input

- La fonction $F: \mathbb{R} \to \mathbb{R}$;
- La dérivée de la fonction $F': \mathbb{R} \to \mathbb{R}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Output

Une approximation de la solution $x^* \in \mathbb{R}$

Initialisation

$$k = 0$$

Itérations

- 1. $x_{k+1} = x_k F(x_k)/F'(x_k)$,
- 2. k = k + 1.

Critère d'arrêt

Si
$$|F(x_k)| \le \varepsilon$$
, alors $x^* = x_k$.

Objectif

Trouver une approximation de la solution du système d'équations

$$F(x) = 0.$$

Input

- La fonction $F: \mathbb{R}^n \to \mathbb{R}^n$;
- La matrice jacobienne de la fonction $J: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Output

Une approximation de la solution $x^* \in \mathbb{R}^n$

Initialisation

$$k = 0$$

Itérations

- 1. Calculer d_{k+1} solution de $J(x_k)d_{k+1} = -F(x_k)$.
- 2. $x_{k+1} = x_k + d_{k+1}$.
- 3. k = k + 1.

Critère d'arrêt

Si
$$||F(x_k)|| \le \varepsilon$$
, alors $x^* = x_k$.

Convergence de la méthode de Newton — n variables Soit un ensemble convexe ouvert $X\subseteq \mathbb{R}^n$, et une fonction $F:X\to \mathbb{R}^n$. Supposons qu'il existe $x^*\in X$, une boule $B(x^*,r)$ centrée en x^* de rayon r, et une constante $\rho>0$ tels que $F(x^*)=0$, $B(x^*,r)\subset X$, $J(x^*)$ est inversible,

$$||J(x^*)^{-1}|| \le \frac{1}{\rho},$$

et J est continue au sens de Lipschitz sur $B(x^{\ast},r)$, la constante de Lipschitz étant M.

(suite...)

Convergence de la méthode de Newton — n variables (suite)

Alors, il existe $\eta > 0$ tel que si

$$x_0 \in B(x^*, \eta),$$

alors la suite $(x_k)_k$ définie par

$$x_{k+1} = x_k - J(x_k)^{-1} F(x_k)$$
 $k = 0, 1, ...$

est bien définie et converge vers x^* . De plus,

$$||x_{k+1} - x^*|| \le \frac{M}{\rho} ||x_k - x^*||^2.$$

(p. 204)

Rappel: Méthode de Newton

Performance de la méthode de Newton

- Si la fonction n'est pas trop non-linéaire;
- Si la dérivée de f à la solution n'est pas trop proche de 0;
- Si x_0 n'est pas trop éloigné de la racine;
- Alors la méthode de Newton converge très vite vers la solution.

Algorithme: Newton locale

Objectif

Trouver une approximation de la solution du système

$$\nabla f(x) = 0.$$

Input

- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Algorithme: Newton locale

Output

Une approximation de la solution $x^* \in \mathbb{R}^n$

Initialisation

$$k = 0$$

Algorithme: Newton locale

Itérations

- 1. Calculer d_{k+1} solution de $\nabla^2 f(x_k) d_{k+1} = -\nabla f(x_k)$,
- 2. $x_{k+1} = x_k + d_{k+1}$,
- 3. k = k + 1.

Critère d'arrêt

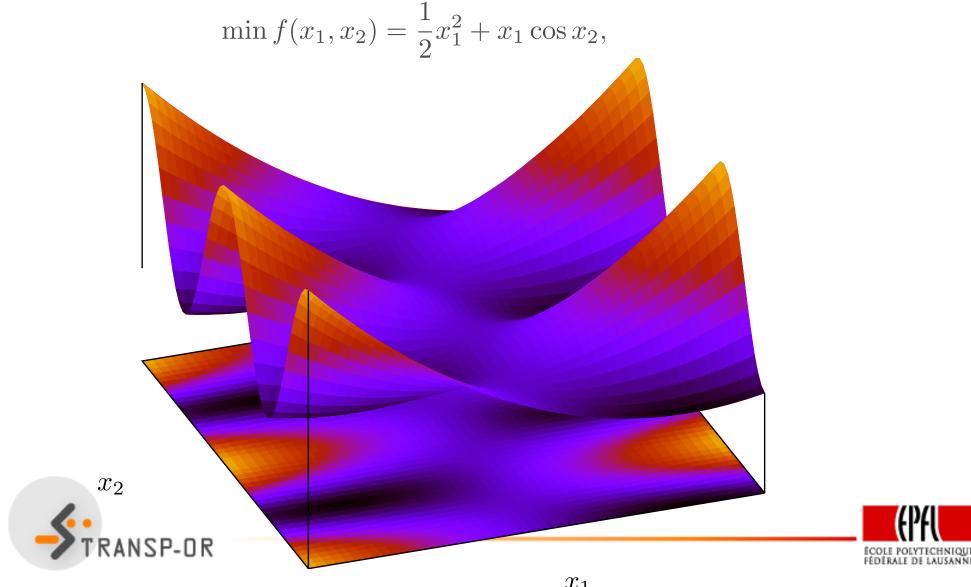
Si $\|\nabla f(x_k)\| \le \varepsilon$, alors $x^* = x_k$.

Mêmes propriétés que pour les équations

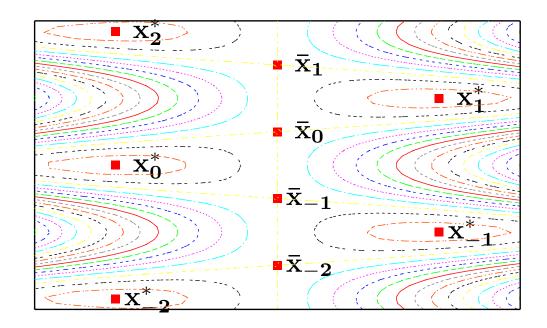
- 1. convergence *q*-quadratique dans les conditions favorables
- 2. divergence possible si le point de départ est trop éloigné de la solution,
- 3. méthode non définie si $\nabla^2 f(x_k)$ n'est pas inversible.

Inconvénient supplémentaire :

incapacité à distinguer minimum, maximum et point de selle



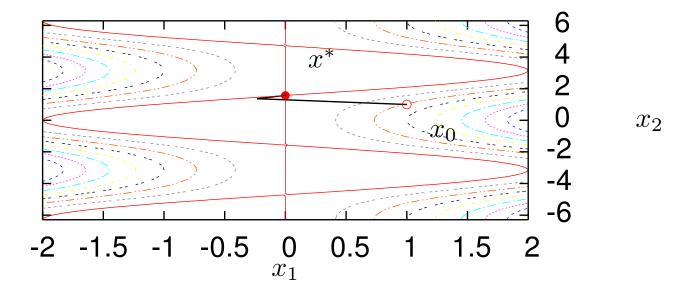
$$\min f(x_1, x_2) = \frac{1}{2}x_1^2 + x_1 \cos x_2,$$



Point de départ $x_0 = (1 \ 1)^T$. Convergence rapide.

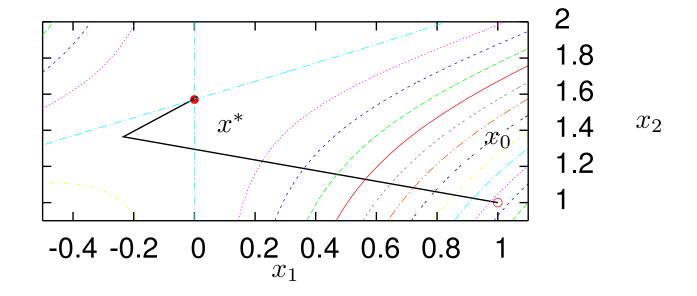
Solution:

$$x^* = \begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$



Solution:

$$x^* = \begin{pmatrix} 0 \\ \frac{\pi}{2} \end{pmatrix} \quad \nabla f(x^*) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \nabla^2 f(x^*) = \begin{pmatrix} 1 & -1 \\ -1 & 0 \end{pmatrix}$$



- Méthode rapide mais peu fiable
- Interprétation géométrique
 - Equations : modèle linéaire à chaque itération
 - Optimisation : modèle quadratique

Modèle quadratique d'une fonction

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable.

Le modèle quadratique de f en \widehat{x} est une fonction $m_{\widehat{x}}:\mathbb{R}^n\to\mathbb{R}$ définie par

$$m_{\widehat{x}}(x) = f(\widehat{x}) + (x - \widehat{x})^T \nabla f(\widehat{x}) + \frac{1}{2} (x - \widehat{x})^T \nabla^2 f(\widehat{x}) (x - \widehat{x}),$$

où $\nabla f(\widehat{x})$ est le gradient de f en \widehat{x} et $\nabla^2 f(\widehat{x})$ est la matrice hessienne de f en \widehat{x} .

En posant $d=x-\widehat{x}$, on obtient la formulation équivalente:

$$m_{\widehat{x}}(\widehat{x}+d) = f(\widehat{x}) + d^T \nabla f(\widehat{x}) + \frac{1}{2} d^T \nabla^2 f(\widehat{x}) d.$$

$$\min_{x} m_{\widehat{x}}(x) = f(\widehat{x}) + (x - \widehat{x})^{T} \nabla f(\widehat{x}) + \frac{1}{2} (x - \widehat{x})^{T} \nabla^{2} f(\widehat{x}) (x - \widehat{x})$$

Condition suffisante d'optimalité (premier ordre)

$$\nabla m_{\widehat{x}}(\widehat{x}+d) = \nabla f(\widehat{x}) + \nabla^2 f(\widehat{x})d = 0$$

c'est-à-dire

$$d = -\nabla^2 f(\widehat{x})^{-1} \nabla f(\widehat{x}),$$

ou encore

$$x = \widehat{x} - \nabla^2 f(\widehat{x})^{-1} \nabla f(\widehat{x}),$$

Condition suffisante d'optimalité (second ordre)

 $abla^2 f(\widehat{x})$ définie positive

Lorsque la matrice hessienne de la fonction est définie positive en x_k , une itération de la méthode de Newton locale revient à minimiser le modèle quadratique de la fonction en x_k , et ainsi définir

$$x_{k+1} = \operatorname{argmin}_{x \in \mathbb{R}^n} m_{x_k}(x).$$

Objectif

Trouver une approximation de la solution du système

$$\nabla f(x) = 0. \tag{1}$$

Input

- Le gradient de la fonction $\nabla f : \mathbb{R}^n \to \mathbb{R}^n$;
- Le hessien de la fonction $\nabla^2 f: \mathbb{R}^n \to \mathbb{R}^{n \times n}$;
- Une première approximation de la solution $x_0 \in \mathbb{R}^n$;
- La précision demandée $\varepsilon \in \mathbb{R}$, $\varepsilon > 0$.

Output

Une approximation de la solution $x^* \in \mathbb{R}^n$

Initialisation

$$k = 0$$

Itérations

1. Construire le modèle quadratique

$$m_{\widehat{x}}(\widehat{x}+d) = f(\widehat{x}) + d^T \nabla f(\widehat{x}) + \frac{1}{2} d^T \nabla^2 f(\widehat{x}) d,$$

2. Calculer

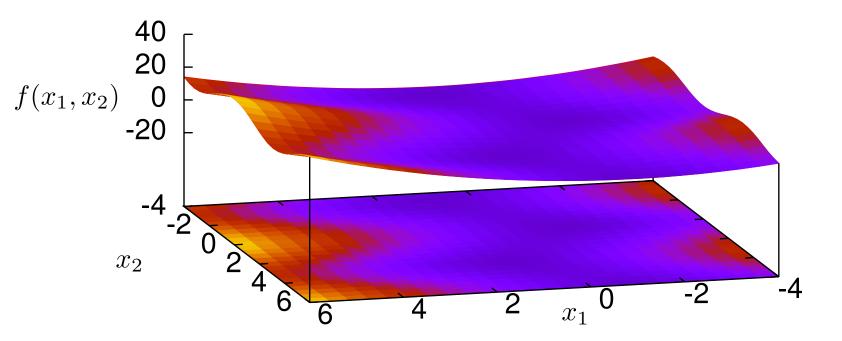
$$d_{k+1} = \operatorname{argmin}_d m_{\widehat{x}}(\widehat{x} + d)$$

- 3. $x_{k+1} = x_k + d_{k+1}$,
- 4. k = k + 1.

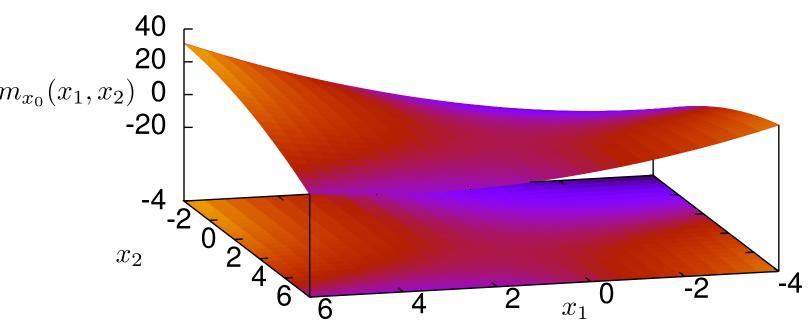
Critère d'arrêt

Si
$$\|\nabla f(x_k)\| \le \varepsilon$$
, alors $x^* = x_k$.

Attention : si $\nabla^2 f(x_k)$ n'est pas définie positive,...



Attention : si $\nabla^2 f(x_k)$ n'est pas définie positive, le modèle n'est pas borné inférieurement

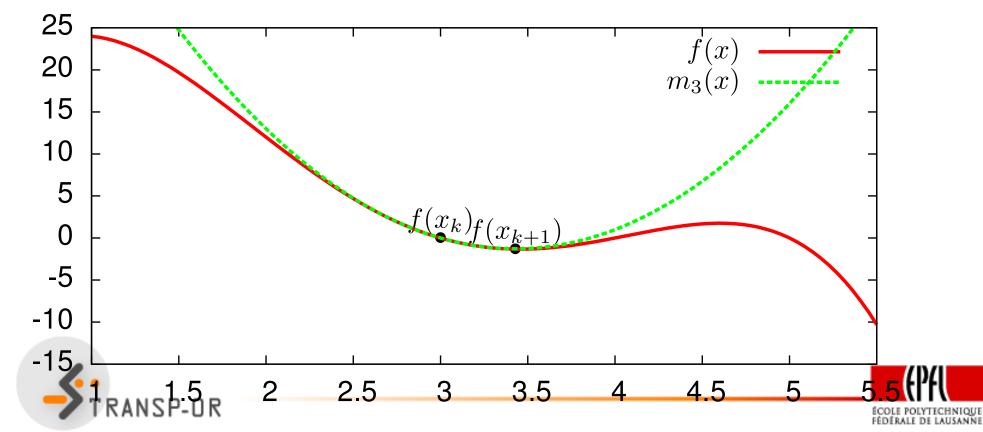


Dans ce cas, l'algorithme ne peut être appliqué.

$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 3$$

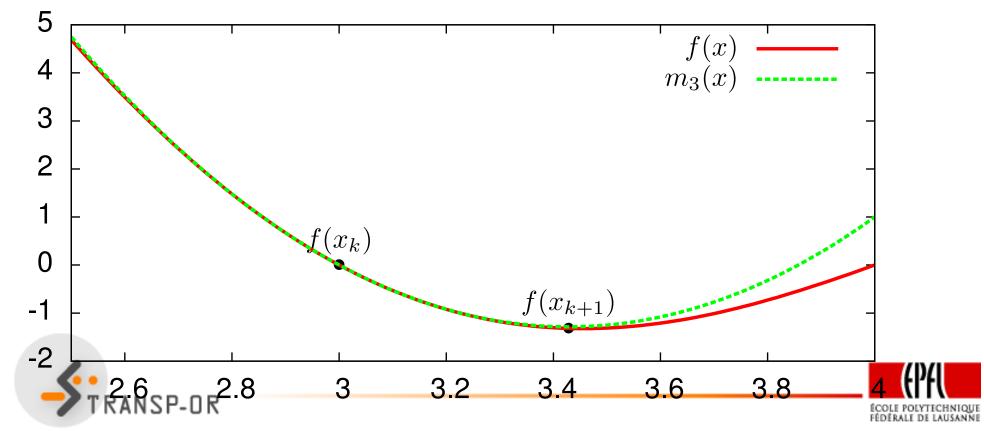
$$m_3(x) = 7x^2 - 48x + 81$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 3$$

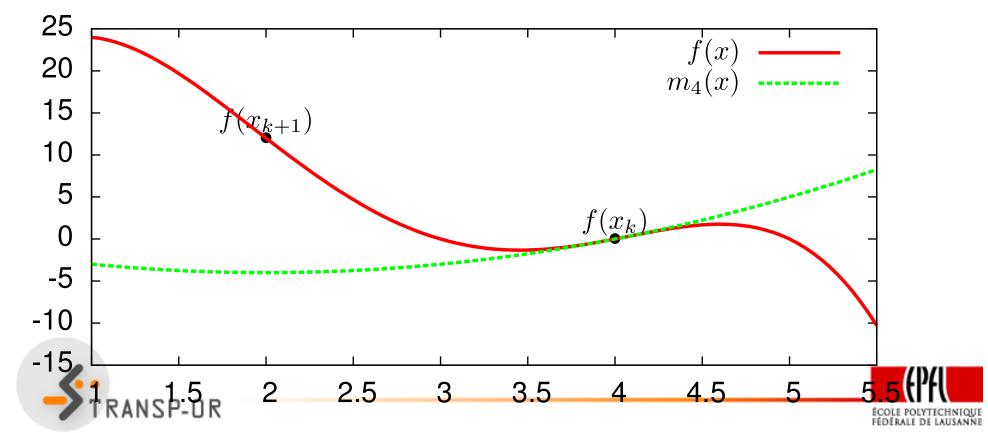
$$m_3(x) = 7x^2 - 48x + 81$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 4$$

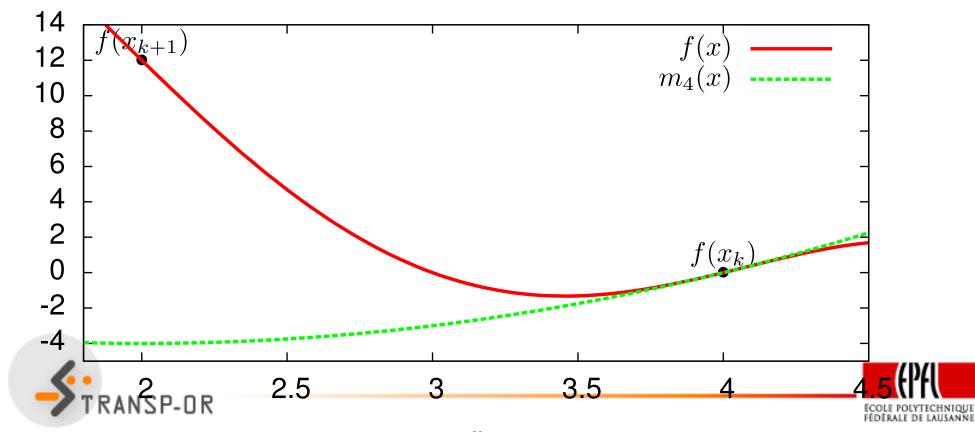
$$m_4(x) = x^2 - 4x$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

 $x_k = 4$

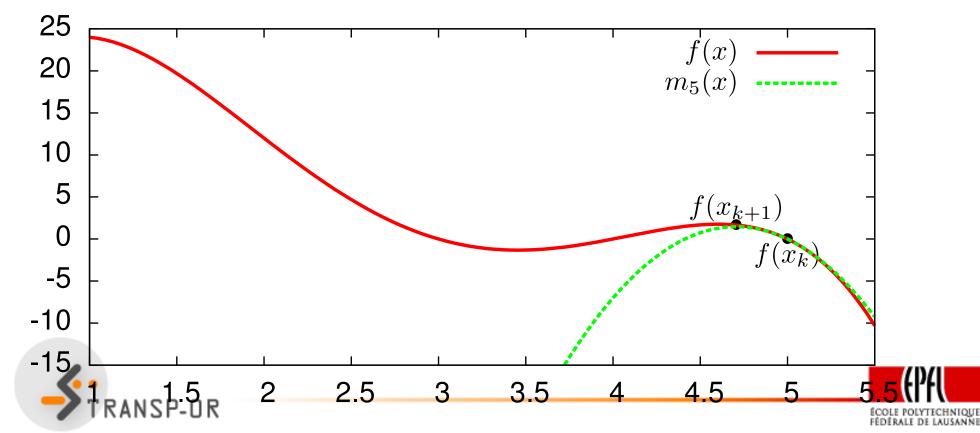
$$m_4(x) = x^2 - 4x$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 5$$

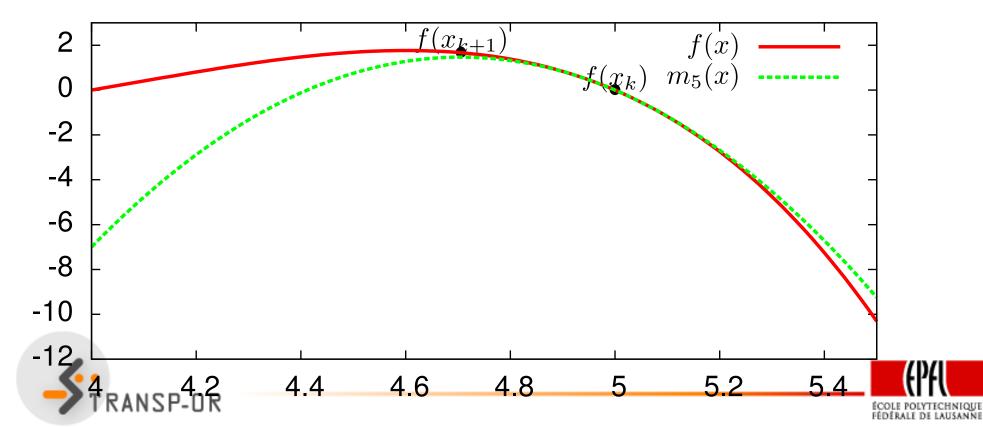
$$m_5(x) = -17x^2 + 160x - 375.$$



$$f(x) = -x^4 + 12x^3 - 47x^2 + 60x.$$

$$x_k = 5$$

$$m_5(x) = -17x^2 + 160x - 375.$$



Point de Newton

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable, et soit $x_k \in \mathbb{R}^n$. Le point de Newton de f en x_k est le point

$$x_N = x_k + d_N$$

où d_N est solution du système d'équations

$$\nabla^2 f(x_k) d_N = -\nabla f(x_k).$$

Ce système est souvent appelé équations de Newton.

Point de Cauchy

Soit $f: \mathbb{R}^n \to \mathbb{R}$ une fonction deux fois différentiable, et soit $x_k \in \mathbb{R}^n$. Le point de Cauchy de f en x_k est le point x_C qui minimise le modèle quadratique de f dans la direction de la plus forte descente, c'est-à-dire

$$x_C = x_k - \alpha_C \nabla f(x_k)$$

οù

$$\alpha_C = \operatorname{argmin}_{\alpha \in \mathbb{R}_0^+} m_{x_k} (x_k - \alpha \nabla f(x_k))$$

ou encore

$$\alpha_C = \frac{\nabla f(x_k)^T \nabla f(x_k)}{\nabla f(x_k)^T \nabla^2 f(x_k) \nabla f(x_k)}.$$

