

Introduction à l'optimisation Fall 2014 - 2015

Enseignant: M. Bierlaire

Heuristiques

Question 1:

(À résoudre sur le tableau par le chargé de cours)

Suppose we have a set of courses that must take place in a lecture hall. The lecture hall can be used only by one course at a time. Each course *i* has a start time s_i and a finish time f_i , where $s_i \leq f_i$. If selected, course *j* takes place during the half-open time interval $[s_j, f_j)$. Courses *i* and *j* are compatible if the intervals $[s_j, f_j), [s_i, f_i)$ do not overlap (i.e., *i* and *j* are compatible if $s_i \geq f_j$ or $s_j \geq f_i$).

- a) Propose a greedy algorithm to find maximum-size of mutually compatible courses. Use course duration as a selection criterion.
- b) For the same problem sort courses based on the start time and find the maximum-size of mutually compatible course.
- c) Repeat the above step, this time use the ending time as selection criterion.
- d) Extend the above algorithm to minimize the number of required lecture-hall.

Course (i)	Start time (s_i)	End time (f_i)
1	1	4
2	8	12
3	0	6
4	2	13
5	5	7
6	5	9
7	6	10
8	3	5
9	8	11
10	12	14
11	3	8

Enseignant: M. Bierlaire

Heuristiques

Question 2:

(À résoudre par les étudiants en classe)

Assume that you are applying simulated annealing to the traveling salesman problem.

- a) What is the main difference between 2-opt and simmulated annealing search strategy?
- b) Considering the pseudo-code of simulated annealing algorithm (presented in the course). Indicate how you could change it so that the algorithm only accepts better solutions?
- c) Fill out the following table:

$f(x_c)$	f(y)	Т	Random r	$e^{-\delta/T}$	Decision
15	16	20	0.34		
13	25	25	0.67		
75	76	276	0.91		
1378	1256	100	0.82		

Question 3:

(À résoudre par les étudiants en classe s'il y a le temps, sinon à résoudre à la maison)

Mr. Jones drives an automobile from Lausanne to Amsterdam. His car gas tank, when full, holds enough gas to travel n kilometers, and his map gives the distances between gas stations on his route. He wishes to make as few gas stops as possible along the way.

- a) Give a lower bound on the minimum number of stops.
- b) Give an efficient method by which he can determine at which gas stations he should stop.