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Question 1:

a) The gradient of the function can be written as:
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By solving the above equations we obtain (—2,0), (0,0), (2,0) as stationary points.
Therefore for each point we check the hessian matrix. For (—2,0) the hessian
matrix is positive therefore it is a local minimum. with the same reasoning (0, 0)
is a saddle point and (2,0) is a local minimum.

b) The same procedure as (a), in this case, (0,0) is a saddle point.

Question 2:
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(2,2) is not a minimum, (—1,1) is minimum and (0, —1) is maximum.
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Question 3: we calculate the gradient
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We know that we have
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Also, for z;, € R? we have:

the Hessian :

and its inverse:

Thyl = T — H’l(a;k)Vf(a:k) =ux, —x = (0,0)

Therefore, for one iteration and independent of intial point (x) Newton method converge
toward minimum of the function.



