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Question 1:

a) The gradient of the function can be written as:
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By solving the above equations we obtain (−2, 0), (0, 0), (2, 0) as stationary points.
Therefore for each point we check the hessian matrix. For (−2, 0) the hessian
matrix is positive therefore it is a local minimum. with the same reasoning (0, 0)
is a saddle point and (2, 0) is a local minimum.

b) The same procedure as (a), in this case, (0, 0) is a saddle point.

Question 2:

a)

∇f(x, y) =

(

4x3 − 4x
3y2 − 3

)

∇f2(x, y) =

(

12x2 − 4x 0
0 6y

)

(2, 2) is not a minimum, (−1, 1) is minimum and (0,−1) is maximum.

b) x0 =

(

2
2

)

x1 = x0− (∇2f(2, 2))−1∇f(2, 2) =

(

16/11
5/4

)

x2 = x1 − (∇2f(x1))
−1
∇f(x1) =

(

1.151
1.025

)
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Question 3: we calculate the gradient

∇f(xk) =

(

2x1 + 2x2
2x1 + 4x2

)

the Hessian :

H(xk) =

(

2 2
2 4

)

and its inverse:

H−1(xk) =

(

1 −1/2
−1/2 1/2

)

We know that we have

H−1(xk)∇f(xk) =

(

1 −1/2
−1/2 1/2

)(

2x1 + 2x2
2x1 + 4x2

)

=

(

x1
x2

)

= xk

Also, for xk ∈ R
2 we have:

xk+1 = xk −H−1(xk)∇f(xk) = xk − xk = (0, 0)

Therefore, for one iteration and independent of intial point (xk) Newton method converge
toward minimum of the function.
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