CIVIL-557

Decision-aid methodologies in transportation

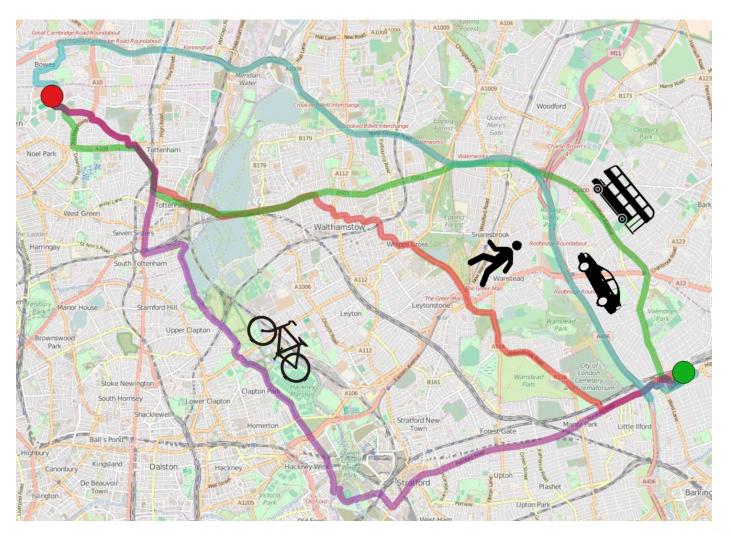
Lecture 4: Ensemble methods and hyperparameter search

Tim Hillel

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

Case study

Mode choice



Last week

- Feature processing
 - Missing values
 - Categorical variables
- Theory of probabilistic classification
- Probabilistic metrics
- Probabilistic classifiers
 Logistic regression

Today

- 1. Mid-term feedback
- 2. Logistic regression recap/feedback
- 3. Ensemble method theory
- 4. Hyperparameter selection theory
- 5. Practical class work

Mid-term feedback

Overall, well done!

- 3 problem questions
 - Dictionary comprehension
 - k-Nearest Neighbours
 - Sampling bias

Logistic regression

Probabilistic classifier:

$$f(x) = \sigma(\sum_{k=1}^{K} \beta_k x_k + \beta_o)$$

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^J e^{z_i}}$$

Evaluate with cross-entropy loss (CEL)

Logistic regression homework

Discussion of worked example

Ensemble methods

Wisdom of crowds

Wisdom of crowds

- You go to see two doctors about some worrying symptoms
- Both doctors say the symptoms are nothing to worry about
 - Doctor A is right 60% of the time
 - Doctor B is right 75% of the time

How confident are you?

Wisdom of crowds

Case 1

- Doctors went to same medical school
- Used same tests/information/questions
- Doctors guesses are correlated (identical mistakes)
- Case 2
 - Doctors went to different medical schools
 - Use different tests/info/questions
 - Doctors guesses are independent

Ensemble learning

\Box Feature vector \boldsymbol{x}

Individual model (classifier/regressor): $\hat{y} = h(x)$

□ Set of *weak learners:*

$$D = \{h_1, \dots, h_T\}$$

Prediction of ensemble:

$$\hat{y} = H(h_1, \dots, h_T)$$

Weak learners

- □ To benefit from wisdom of crowds, ensemble must contain weak and diverse learners $h_i(x)$
 - Weak learners need to be better than random guessing (more right than wrong!)
 - Diverse learners make mistakes independently on different data points

Ensemble learning classifiers

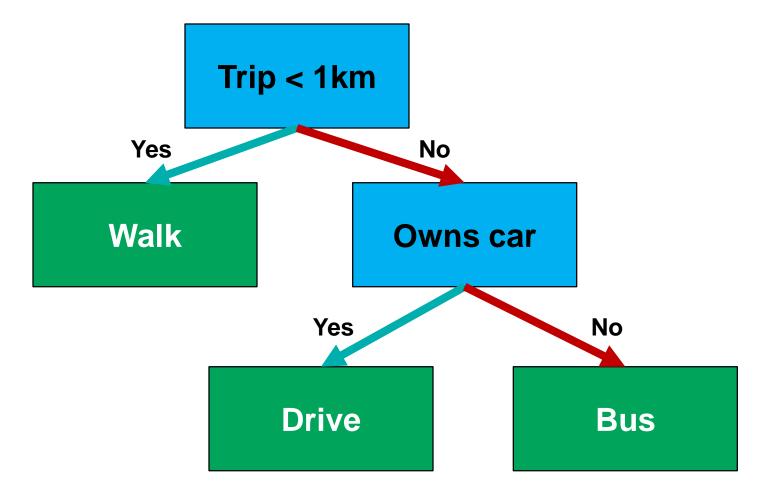
- Three questions:
 - Which classifiers are suitable for weak learners?
 - How to make them diverse?
 - How to aggregate classifiers?

Classifiers

Computationally simple to fit/predict with

High variance – enables diversity in classifiers

Decision trees



Ensuring diversity

Two approaches (meta-algorithms):

1. Bagging (Bootstrap Aggregating)

Random Forest

2. Boosting

Gradient Boosting

The bootstrap

Sample:

 $0,\, \bm{1},\, 2,\, 3,\, 4,\, 5,\, 6,\, 7,\, 8,\, 9$

Bootstrap:

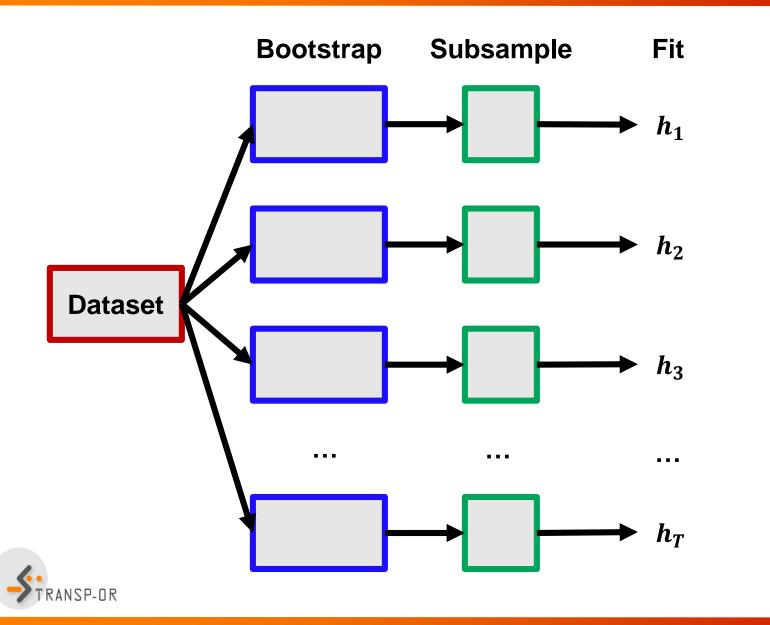
0, 7, 4, 6, 1, 7, 9, 5, 1, **1**

Random forest

- Bootstrapping: Create statistically similar versions of the dataset by sampling observations (rows) with replacement
- Subsampling: Randomly subsample features (columns)

Fit classifier on each subsampled bootstrap

Random forest

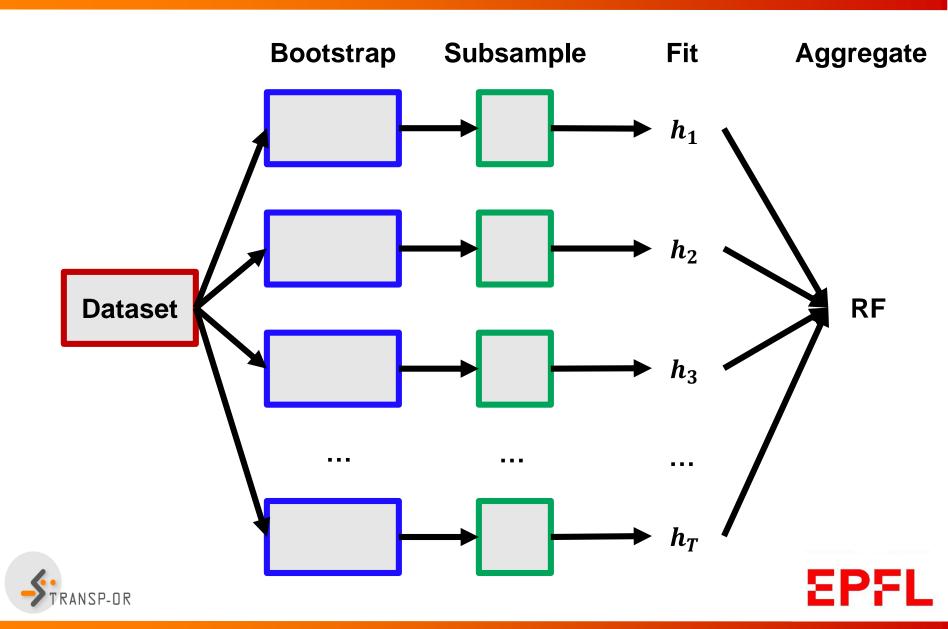


Aggregation

Discrete classification: majority vote

Probabilistic classification: proportion of each class (need large ensemble for reliable values)

Random forest



Random forest

- Trivial to parallelise
- Can model complex non-linear relationships
- □ Can measure *feature importance*
 - Total gain of each feature over each split
- However, more difficult to interpret than single DT

When to stop splitting

- Maximum depth
- Minimum leaf node size
- Minimum split size
- Minimum gain from split
- Maximum number of leaf nodes
- □ Etc…

Also

- Number of trees (bootstrap samples)
- Subsample rate
 - Per tree
 - Per level in tree

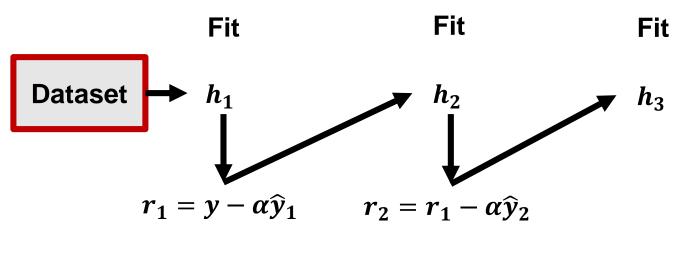
Even more hyperparameters!

Notebook I: Random forests

Start with regression

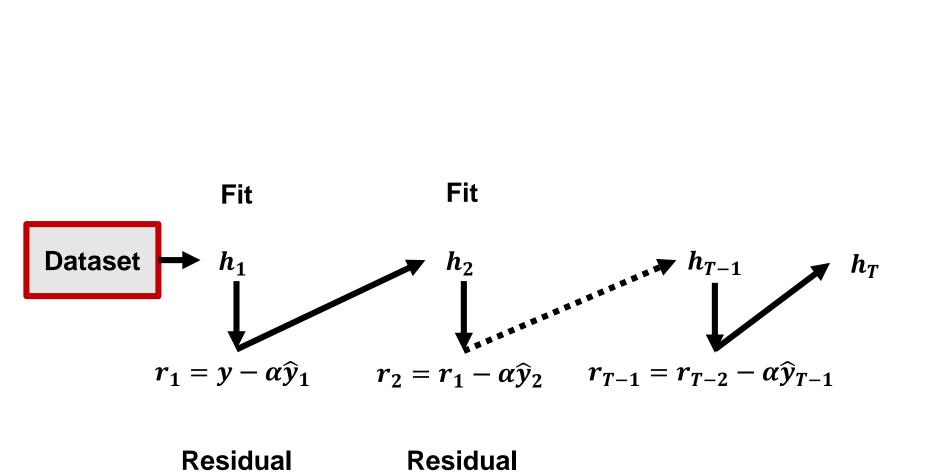
Train sequential trees on residuals from previous guesses

\square Regularise using learning rate α



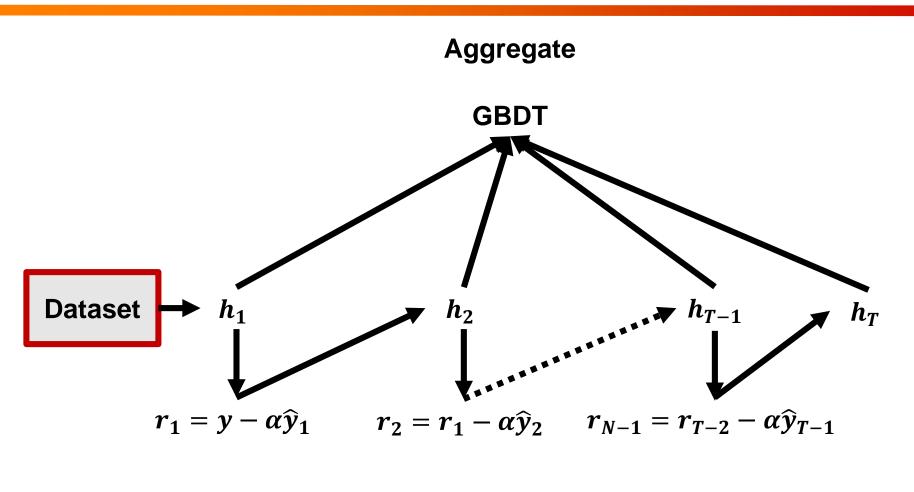
Residual

Residual



Aggregate

 Sum up the predictions of the decision trees (multiplied by learning rate!)



Residual

Residual

Classification

So far only considered regression

How to turn regression values into probabilities?

Softmax!

$$\sigma(z)_i = \frac{e^{z_i}}{\sum_{j=1}^J e^{z_i}}$$

- Number of trees (boosting iterations)
- Learning rate
- Subsample rate
 - Per tree
 - Per level in tree

Even more hyperparameters!

Notebook 2: Gradient boosting

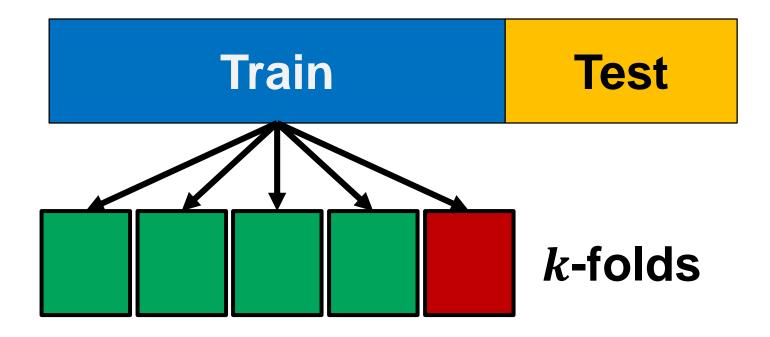
Hyperparameter selection

- How to select optimal hyperparameters for model algorithm?
- Previously used train-validate-test split with trial and error

Hyperparameter selection

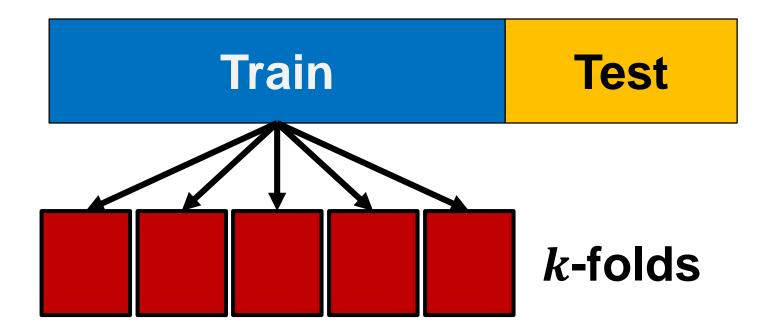
- Test set must be kept separate, leaving finite data for train-validation
 - Should represent external validation where possible
- Is there a better way of evaluating model performance on finite data?

Cross-validation



Train onTest onk - 1 foldsremaining fold

Cross-validation



Average k scores

Grid-search

Predefine search values for each hyperparameter
 Search all combinations in exhaustive grid-search

□ Simple to understand, implement, and parallelise

Inefficient:

- Lots of time evaluating options which are likely to be low performing
- Few unique values for each hyperparameter tested

Early-stopping

Gradient boosting

- Most important hyperparameters are *learning* rate and number of boosting rounds
- These hyperparameters are linked
- Sequential model number of boosting rounds can be set heuristically
- Early stopping
 - Fix learning rate < 0.1 (e.g. 0.01)
 - Perform boosting until performance does not increase for *n* iterations

Homework

Notebook 3: Hyperparameter search

