CIVIL-557

Decision-aid methodologies in transportation

Lecture 2: Deterministic methods and discrete metrics

Tim Hillel

Transport and Mobility Laboratory TRANSP-OR École Polytechnique Fédérale de Lausanne EPFL

How to **aid** informed **decisions** for **transportation** network management and investment?

Understand how people interact with a transport network

Case study

Mode choice

Last week

Introduce and use tools

- Including:
 - Python
 - Jupyter
 - Numpy
 - Matplotlib
 - Pandas

Today

- Data science process
- Dataset
- Deterministic methods
 - K-Nearest Neighbours (KNN)
 - Decision Tree (DT)
- Discrete metrics

Data science

Data science

Visualised last week in Pandas

Thoughts?

Tim Hillel, Mohammed Z E B Elshafie, and Ying Jin (2018). "Recreating Passenger Mode Choice-Sets for Transport Simulation: A Case Study of London, UK". in: *Proceedings of the Institution of Civil Engineers - Smart Infrastructure and Construction* 171.1, pp. 29–42

Dataset building process

London Travel Demand Survey (LTDS)

- Annual rolling household travel survey
- Each household member fills in trip diary
- 3 years of data (2012/13-2014/15)
- ~130,000 trips

Historical trip data

Dataset building process

Dataset building process

Dataset

 82,350 trips and alternatives for each major mode – walking, cycling, public transport (combined), rail, bus, driving:

- Path
- Duration
- Traffic variability
- Journey purpose
- Socio-economic class
- Departure time

Dataset

Feature vector

- Start time
- Journey purpose
- Vehicle ownership
- Fare type
- Alternative specific constants:
 - Duration
 - Cost
 - Typical traffic
 - Congestion charge

Mode taken!

Machine learning

Supervised learning

Unsupervised learning

Reinforcement learning

□ …and more:

- Semi-supervised learning
- Generative models
- Active learning etc.

Supervised learning

Regression – Continuous value

Classification - Discrete class

Supervised classification

 \square Predict, for a feature vector *x*, the class label *y*

Start with **binary** case

- Was a trip made by car or not?
- Discrete classification
 - Predict 1 or 0

General approach

Fit model on some data (train set):

- □ *N* instances (rows), comprising of:
 - Features x (columns)
 - Labels y
- Predict for unseen data:
 - -y (unknown) from x (known)

General approach

y = f(x)

y = f'(x)

How do we predict how model will **perform** on unseen data?

Evaluate the model on an unseen **test set**!

Bias-variance trade-off

Model complexity

How do we define the **train** and **test** sets?

For now, we will use **random sampling** with 80:20 train:test split

How do we assess model performance?

For now, we consider classification accuracy:

What **proportion** did we get **right**?

K-Nearest Neighbours

 x_1

In words...

- 1. Compute distance between the **candidate** point and all other neighbours in the **train** set:
 - For now, Euclidean distance:

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- 2. Select the *k*-nearest neighbours
- 3. Determine the candidate class from the knearest neighbours
 - For now, take the majority vote!

Notebook I: Implementing k-NN

Areas for improvement

Ideas?

Areas for improvement

- Data preparation
 - Scaling the data
- Model optimisation
 - Choice of k
 - Distance metric
 - Improvements on majority vote
- Model evaluation
 - Alternatives to accuracy

Data scaling

Data scaling

Model optimisation

- Introduced three model hyperparameters
 - **– k**
 - Distance metric
 - Decision rule
- All of these can be modified to improve out-ofsample performance
 - **k** = 1,2,3, ..., 100 ? Bigger?
 - Manhattan distance? Minkowski distance?
 - Distance based weighting?

How to select model **hyperparameters**?

Evaluate different values on **unseen data**!

Model evaluation

Is accuracy the best policy?

Consider the **confusion matrix**

Confusion Matrix

Accuracy = (TP+TN) / (TP+TN+FP+FN)

Confusion Matrix

	PREDICTED CLASS			
ACTUAL CLASS		1	0	
	1	990	0	
	0	10	0	

Accuracy = 99% !

Known as accuracy paradox

	PREDICTED CLASS			
ACTUAL CLASS		1	0	
	1	TP	FN	
	0	FP	TN	

Precision (+ve) = TP / TP+FP Recall (+ve) = TP / TP+FN

	PREDICTED CLASS			
ACTUAL CLASS		1	0	
	1	990	0	
	0	10	0	

Precision (+ve) = 0.99% Recall (+ve) = 100%

Precision (-ve) = TN / TN+FN Recall (-ve) = TN / TN+FP

	PREDICTED CLASS			
ACTUAL CLASS		1	0	
	1	990	0	
	0	10	0	

Precision (-ve) = 0% Recall (-ve) = 0%

Multinomial case - Precision

	PREDICTED CLASS					
ACTUAL CLASS		0	1	2	3	
	0		10			
	1	20	100	40	10	30
	2		5			
	3		15			
			20			

Precision = TP / TP+FP = 100/150 = 67%

Multinomial case - Recall

	PREDICTED CLASS					
ACTUAL CLASS		0	1	2	3	
	0		10			
	1	20	100	40	10	30
	2		5			
	3		15			
			20			

Recall = TP / TP+FP = 100/200 = 50%

Machine learning in Python

Notebook 2: k-NN in scikit-learn

Decision trees

Decision trees

Recursive hierarchical structure of *binary* splits

To fit (each split):

□ For every feature:

- Sort the data over the feature
- For every possible split point:

Calculate the gain in seperation

Choose the split with the highest gain
Repeat

Separation

- Separation is the reduction in the shuffeledness of the data
- Two common metrics
 - GINI impurity
 - Entropy

GINI Impurity

$$G(p) = \sum_{i=1}^{J} p_i (1 - p_i) = 1 - \sum_{i=1}^{J} p_i^2$$

where p_i is the **proportion** of class *i*

$$H(p) = -\sum_{i=1}^{J} p_i \log_2 p_i$$

where p_i is the **proportion** of class *i*

When to stop splitting

- Maximum depth
- Minimum leaf node size
- Minimum split size
- Minimum gain from split
- Maximum number of leaf nodes
- □ Etc…

Lots of hyperparameters!

Homework assignment

Notebook 3: Decision trees

