
CIVIL-557

Decision Aid Methodologies
In Transportation

Transport and Mobility Laboratory TRANSP-OR
École Polytechnique Fédérale de Lausanne EPFL

Virginie Lurkin, Nikola Obrenović

Lecture 6:
Integer programming: Branch and Bound

On the previous lecture…

§ Container Storage Inside a Container Terminal

o Two-phase simplex method

o Duality theory

Suppose 2 new containers are expected to arrive for storage in the next planning
period of a terminal. Suppose there are only 2 blocks in the terminal, each with 20
storage spaces. For the moment, there are 6 containers in block 1 and 12 containers
in block 2.
! = #
B = #
A = #$
%& = &$
%# = '
(= &$)')#

#×#$ = $. ,#,

-./.0.12 34) + 346 + 37) + 376
839:2;< <=

>4−34) + 346 = 0.5
>7−37) + 376 = 1.5
>4+>7 = 2
>4, >7, 34), 346, 37), 376 ≥ 0

What if the situation is different…

Linear programming

&$ '

§ Optimal solution: ($. ,, &. ,, 0, 0, 0, 0)
§ >4 and >7 represent the number of containers to be assigned, respectively, to

block 1 and 2
§ >4 and >7, in reality, should be integer

Linear (mixed) integer programming

Linear integer programming

!" ≤ $
" ≥ 0,

subject to

where ! ∈ ℝ*×,, b ∈ ℝ*, c ∈ ℝ,

/01 23"
" ∈ 1

Pure integer programming (IP):

§ A mixed-integer programming (MIP) problem is one where only some of
the decision variables are constrained to be integer values

Linear (mixed) integer programming

How to solve integer programming problem?

Integer solutions

Objective function

Optimum of LP
relaxation

Nearest integer
(not feasible)

IP optimum

§ Intuitive idea: remove the integer constraints from the IP formulation (LP relaxation)

o Solve the LP relaxation and round to the nearest integer

Not the best idea!

Linear (mixed) integer programming

How to solve integer programming problem?

§ There is no optimality conditions for integer programming problem

§ Explicit enumeration is normally impossible due to the exponentially increasing

number of potential solutions

§ Exact methods can be used to find the optimal solution:

o Two main methods:

o Computing a true optimal solution might be very costly

§ Heuristic methods can be used to find a good solution:

o Does not guarantee optimality

Branch and Bound (B&B) and Cutting planes

Branch and Bound algorithm

Branch and Bound algorithm

General idea

§ Implicit enumeration of the feasible set, by ruling out large sets of feasible

points

§ How ?

o By partitioning the feasible set into smaller subsets

o By using bounds to identify subsets that are guaranteed not to contain an

optimal solution

Branch and Bound algorithm

§ Partitioning the original problem into smaller subproblems

Partitioning:
§ Partitioning the feasible set into smaller subsets

! !"
!#

!"" !"#
!#" !##

Theorem 1:

§ !" is an optimization problem (minimization)

§ # is the feasible set of the optimization problem !
§ # is partitioned into $ subsets: #% ∪ … ∪ S) ∪ S)*% ∪ … ∪ S+

For each , = 1,2, … , $, let 123 4"∗ be an optimal solution of the
optimization problem !"(minimization). Let 6 be such that:

7 48∗ ≤ 7 4"∗ , , = 1,… , $
Then 48∗ is an optimal solution of the optimization problem !

:;; :;<
:<; :<<

Branch and Bound algorithm

Branch and Bound algorithm

§ For each feasible subproblem, we will calculate a lower bound (best possible value)

§ Lower bounds are obtained by solving relaxations of the original subproblems

§ Calculate lower bounds is much easier (simplex algorithm can be used)

Using bounds:
§ Any feasible solution provides an upper bound on the optimal solution (minimization)

§ A feasible solution is a solution that satisfies all the constraints

!"
!#

$

$% $&

$%% $%&

Branch and Bound algorithm

'()

'()* '()+

§ Some subproblems are excluded based on the value of the lower bound

Using bounds:

,(

! If '()+ ≥ ,(If '()* < ,(

§ Branching refers to exploring the subtree of an active node

§ Bounding refers to estimating a lower bound at an active node

For each ! = 1,2, … ,', let ()* +,∗ be an optimal solution of .,.

For each ! = ' + 1,… , 0, let ((.,) be a lower bound on ., :

(., ≤ 4 +, ∀! ∈ 7,
Let 8 be such that:

4 +9∗ ≤ 4 +,∗ , ! = 1,… ,'
and

4 +9∗ ≤ (., , ! = ' + 1,… , 0
Then +9∗ is an optimal solution of the optimization problem .

Branch and Bound algorithm

Theorem 2:

Branch and Bound algorithm

Branching:

!

!" !#
$%&

'%

§ Select a variable () that has a fractional value:

* < () < * + 1, with * integer

§ Create two new LP-subproblems:

1. Previous LP-subproblem + constraint () ≤ * (* = ())

2. Previous LP-subproblem + constraint () ≥ * + 1 (* + 1 = ())

How to branch?

Algorithm

Solve the relaxation ! "# and denote $%∗ the optimal value
' "# ≔)($%∗)
, " > ' "# ?

$%∗ integer?

no

" ≔ ".
, " ≔ +∞

, " , Upper Bound for "

no
Discard "# from " yes

' "# ,Lower Bound for "#

no

yes
) $%∗ < ,(")?

" empty?

no

$∗ = ($%∗)
, " ≔) $%∗

yes

end
4∗, 5∗= 6 7

yes

Select 8 such that ($%∗)9 is not integer
Create "#: by adding the constraint $9 ≤ ($%∗)9 to "#
Create "#< by adding the constraint $9 ≥ ($%∗)9 to "#

" ≔ " ∪ "#: , "#< \P#

Select a problem "# in ". "# infeasible?

yes

no

Branch and Bound algorithm

Exploration of the search tree:

!

!" !#

!"" !"#

$%&

$%&' $%&(

)%

If $%&(≥)%If $%&' <)%

!"## !"#,

!"#,#!"#,"

!"#"

§ Depth-first search (DFS): explores as far as possible along each branch before backtracking

Branch and Bound algorithm

Exploration of the search tree:

!

!" !#

!"" !"#

$%&

$%&' $%&(

)%

If $%&(≥)%If $%&' <)%

!"## !"#,

§ Breadth-first search (BFS): explores nodes level by level

!"#"

§ Depending on the problem at hand, either DFS or BFS could be advantageous

Branch and Bound algorithm

Back to our case:

Branch and Bound algorithm

!"#"$"%& '() + '(+ + ',) + ',+
-'./&01 12

3(−'() + '(+ = 0.5
3,−',) + ',+ = 1.5
3(+3, = 2
3(, 3,, '(), '(+, ',), ',+ ≥ 0

§ 3=∗ = 0.5, 1.5, 0, 0, 0, 0 and ? 3=∗ = 0

@A

' @ = +∞

@AC@AD

3(≤ 0 3(≥ 1§ ' @ > G @A

§ G @A = 0

§ 3(, 3, are not integers

§ Select 3(for branching

G(@A) = 0

J(KL)

Back to our case:

Branch and Bound algorithm

§ !"
∗ = 0, 2, 0, 0.5, 0.5, 0 and * !"

∗ = 1

,-

. , = +∞

,-
1,-

2

!3 ≤ 0 !3 ≥ 1§ . , > 7 ,-

§ 7 ,-
2 = 1

§ !3, !8 are integers à . , = 1

§ Discard ,-
2

7(,-) = 0

;<=<><?@ .3
A + .3

B + .8
A + .8

B

C.DE@FG GH
!3−.3

A + .3
B = 0.5

!8−.8
A + .8

B = 1.5
!3+!8 = 2
!3≤ 0
!3, !8, .3

A, .3
B, .8

A, .8
B ≥ 0

J(KL
M)

7(,-
2) = 1

. , = 1

Back to our case:

Branch and Bound algorithm

§ !"
∗ = 1, 1, 0.5, 0, 0, 0.5 and * !"

∗ = 1

+,

- + = +∞

+,
0+,

1

!2 ≤ 0 !2 ≥ 1§ - + > 6 +,

§ 6 +,
0 = 1

§ !2, !7 are integers

§ Discard +,
0

6(+,) = 0

:;<;=;>? -2
@ + -2

A + -7
@ + -7

A

B-CD?EF FG
!2−-2

@ + -2
A = 0.5

!7−-7
@ + -7

A = 1.5
!2+!7 = 2
!2≥ 1
!2, !7, -2

@, -2
A, -7

@, -7
A ≥ 0

6(+,
1) = 1

- + = 1

* !"
∗ = 1

end

!"
∗ = 0, 2, 0, 0.5, 0.5, 0 or !"∗ = 1, 1, 0.5, 0, 0, 0.5

J(KL
M)

Linear (mixed) integer programming

Some integer programming tricks

Integer programming tricks

Example 1

Fixed costs

Suppose that a manager must decide which of ! warehouses to use for meeting the
demands of " customers for a good. The decisions to be made are which warehouses
to operate and how much to ship from any warehouse to any customer

o There is a fixed operating cost associated to each warehouse

o Decisions must be made about tradeoffs between transportation costs and costs
for operating distribution centers

o Very common issue in modeling distribution systems

Integer programming tricks

§ We introduce an indicator variable

§ Data:

Fixed costs

!" = $10
if warehouse ' is opened
if warehouse ' is not opened

(") = amount to be sent from warehouse ' to customer *

§ Other decisions variables:

+" = fixed operating cost for warehouse '
," = per-unit operating cost at warehouse '
-") = transportation cost for shipping from warehouse ' to customer *

Integer programming tricks

§ Model:

Fixed costs

min $
%&'

(
$
)&'

*
(,%+.%))0%) +$

%&'

(
1%2%

s. t. $
%&'

(
0%) = 7) , ∀: = 1,2, … , >

$
)&'

*
0%) ≤ @2%, ∀A = 1,2, … ,B @ is a big number

0%) ≥ 0, ∀A = 1,2, … ,B, ∀: = 1,2, … , >
2% ∈ 0,1 , ∀A = 1,2, … ,B

Integer programming tricks

Example 2

Suppose that a company has to choose among two modes of operation for the
manufacturing process of its products on a single machine

o Very common issue in modeling manufacturing process

o Each mode has its own performance (number of units produced by minute)

Either… or …

o A mode of operation might better suit to some products

Integer programming tricks

§ We introduce an indicator variable

§ Data:

Either… or …

!" = $10
if process 1 is chosen for product '
if process 2 is not chosen for product '

)" = number of units of product ' produced by the company

§ Other decisions variables:

*+" = per-unit time needed (in minutes) to produce product ' using process ,
-+ = maximum amount of time the machine can be used if process , is used

Integer programming tricks

§ Constraints:

Either… or …

s. t. $
%&'

(
)'%*% ≤ ,' if process 1 is chosen for product ., i.e. if /% = 1

or

s. t. $
%&'

(
)1%*% ≤ ,1 if process 2 is chosen for product ., i.e. if /% = 0

*% ≥ 0, ∀. = 1,2, … , 8
/% ∈ {0,1}

s. t. $
%&'

(
)'%*%/% ≤ ,'

$
%&'

(
)1%*%(1 − /%) ≤ ,1

Integer programming tricks

§ Constraints:

If… then …

!" ≥ 0, ∀' = 1,2, … , ,
-" ∈ {0,1}

s. t. 4
"56

7
86"!"-" ≤ :6

4
"56

7
8;"!"(1 − -") ≤ :;

o If process 1 is applied to product 1, it has to be applied to product 2

if -6 = 1, then -; = 1

-; ≥ -6

Integer programming tricks

§ Data:

!"# = per-unit cost to produce product % using process &

Elimination of products of variables

§ Objective function:

min *
#+,

-
(!,#/# 0# + c34/#(1 − 0#))

nonlinear

*
#+,

-
((!,#−!3#)/# 0# + c34/#)

min $
%&'

(
((*'%−*,%).% /% + c,2.%)

Integer programming tricks

Elimination of products of variables

o In general, a product of two variables can be replaced by one variable,

o A number of new constraints is imposed on the new variable

continuous variables
binary variables

Product of a binary variable and a continuous variable

3% ≤ 5/%
3% ≤ .%
3% ≥ .% − u(1 − y2)
3% ≥ 0

0 ≤ .% ≤ 5Upper bound on .%
New variable 3% 3%= .%×/%

Integer programming tricks

Product of two binary variables

!"#$
binary variables binary variables

Product of two continuous variables

New variable %" %"= !"×#"

%" ≤ !"
%" ≤ #"
%" ≥ !" + #" − 1
%" ∈ {0,1}

!"#$
continuous variables continuous variables

%" =
1
2 (!" + #")

5" =
1
2 (!" − #")

New variables %" and 5" %"6−5"6 = !"×#"
Quadratic function

Heuristics

Heuristics

Algorithms and complexity measures

§ An algorithm is a finite set of instructions that when executed on an input can

produce an output after finitely many steps.

§ The input encodes an instance of the problem that the algorithm is supposed to

solve, and the output encodes a solution for the given problem instance.

§ The computation of an algorithm on an input is the sequence of steps it performs.

§ Algorithms do not always terminate; they may perform an infinite computation for

some, or any, input.

Heuristics

Algorithms and complexity measures

§ There are problems that can be easily and precisely defined in mathematical terms,

yet that cannot be solved by any algorithm (untrackable / uncomputable problems).

§ In practice, we cannot expect to be able to solve real world problem instances of

arbitrary size to optimality.

§ Depending on the size of an instance or depending on the available CPU time we will

often have to be satisfied with computing approximate solutions.

Heuristics

Algorithms and complexity measures

§ The term heuristic is used for algorithms which find solutions among all possible

ones, but they do not guarantee that the best will be found.

§ A good heuristic algorithm should fulfil the following properties:

o A solution can be obtained with reasonable computational effort.

o The solution should be near optimal (with high probability).

o The likelihood for obtaining a bad solution (far from optimal) should be low.

How can we evaluate the performance of an heuristic algorithm ?

1. Rearrange blocks so that !" increases with #

2. Determine $" in increasing order of # using:

$% = min{+,max 0, 0×F − !% }
$" = m#5{max 0, 0×F − !" , + −6

78%

"9%
$7} ∀# ≥ 2

Heuristics

A concrete example for our container storage problem

Linear (mixed) integer programming

IP and MIP have extremely wide applications in practice

Knapsack problem

Which containers should be loaded in the vessel?

Knapsack problem

!": weight if container #
$": price of container #

o Data

If container # is selected
Otherwise

%" = '10

o Decision variables

*+,-
"
$"%"

o Objective function

-
"
!"%" ≤ /

o Constraints

/: capacity of the vessel

Which boxes should be loaded in the container in order to maximize the revenue?

Related problems deal with the loading of containers in trains or aircrafts

Knapsack problems

Facility location problem

Where to locate inland container depots?

§ Inland container depots: storage area for shipping containers situated at inland
points away from sea ports

!: set of # alternative facility locations
J: set of $ customer zones

o Data

%&' : per-unit cost for supplying customer zone (by using the facility at)

Facility location problem

*& : fixed cost of establishing a facility location)
+& : capacity of facility location)

If a facility is established at location)
Otherwise

,& = .10

o Decision variables

1&' = Units of customer zone (’s demand satisfied by facility at location)

2' : total demand for customer zone (

Facility location problem

!"#$
%&'

(
$
)&'

*
+%),%) +$

%&'

(
.%/%

o Objective function

$
%&'

(
,%) = 1), ∀4 = 1,… , 7

o Constraints

$
)&'

*
,%) ≤ 9%/%, ∀: = 1,… ,;

,%) ≥ 0, ∀: = 1,2, … ,;; ∀4 = 1,2, … , 7
/% ∈ 0,1 , ∀: = 1,2, … ,;

Assignment problem

Berth allocation problem

§ The berth allocation problem consists of assigning incoming ships to berthing
position

!: set of # berths
$: set of % vessels

o Data

ℎ'(: handling time of vessel) at berth *

If a vessel * is allocated to berth)
Otherwise

+'(= -10

o Decision variables

Assignment problem

0123
'45

6
3
(45

7
ℎ'(+'(

o Objective function

o Constraints

!
"#$

%
&"' ≤ 1, ∀, = 1,… , /

!
'#$

0
&"' = 1, ∀1 = 1,… ,2

&"' ∈ 0,1 , ∀1 = 1,2, … ,2

Assignment problem

Summary

§ Making Branch and Bound work well in practice requires lots of good ideas

§ Heuristics are often used to find good initial solutions

§ An idea for speeding up Branch and Bound is to add valid inequalities (Gomory

cuts)

« Divide ut imperes »

Main references

• Murty, K. G. (2015). Intelligent Modeling Essential to Get Good Results: Container Storage Inside a
Container Terminal. In Case Studies in Operations Research (pp. 1-15). Springer NewYork.

• Bierlaire, M. (2015).Optimization: principles and algorithms. EPFL Press, Lausanne, Switzerland.

