## My very own experience in solving optimization problems

Alessandro Zanarini - EPFL - 26 March 2019

## Automated tools vs Optimization

- Shift from "manual" to "automated tool" is seen as the holy grail
  - Underlying problem can be tough
- Optimization seen as cherry on the cake... but the cake is needed first
- Optimization expert needs to educate the customer about "optimization potential/capabilities" for managing expectations
- Very often customers do not know what they want to optimize
  - Possibly conflicting objectives
- Optimization can unleash considerable potential savings

• Optimization may threaten jobs. No-optimization may threaten entire companies

## **Optimization development phases**

#### 1. Discovery

– Understanding the revenue and costs drivers, size of the problem

30%

10%

30%

30%

– Define the problem, its constraints, its objective function(s)

2. Designing and implementing an optimization model/algorithm

 All models are wrong but some are useful (cit. George Box)
 Understand necessary assumptions/approximations

- 3. Integrating with existing IT system / workflow
  - Fetching and preparing input to optimization model/algorithm
  - Feeding back the (sub) optimal solution
- 4. Testing Verifying constraint satisfaction, hypothesis, etc...

#### Business case/model needs to be defined!!!

#### **Optimization technologies**

#### An incomplete list for discrete optimization



# E-bus deployment optimization

#### **Electrical buses - the TOSA case**





#### myTOSA



Optimal deployment of control solutions



#### Multirate control systems



#### Context



Hardware

- SoC (2 cores + FPGA)



#### **Problem Definition**

- Set of homogeneous resources R
- Set of *cyclic applications* 
  - $\circ$   $\;$  with fixed priority  $\;$
  - with different periods
- Apps composed from *activities* 
  - $\circ$  with fixed duration
  - $\circ$  and precedences

 $A = \{a_0, \dots, a_{n-1}\}$   $prio(a_0) > \dots > prio(a_{n-1})$   $\lambda_{i+1} = \eta_i \lambda_i \quad (\lambda_{max} = \lambda_{n-1})$   $V_i = \{x_j^i\}$   $d(x_j^i)$   $x_j^i < x_k^i$ 

**Objective function** 

Minimize makespan of  $a_0$  then  $a_1$  then ...

min  $lexico(makespan(a_0), ..., makespan(a_{n-1}))$ 

#### **Experimental evaluation - CP**

|                                  | Avg #act | MRC | T&E     | DJ      |
|----------------------------------|----------|-----|---------|---------|
| Real 1 (η <sub>tot</sub> = 36)   | 2353     | 5   | 521     | 496     |
| Real 2 (η <sub>tot</sub> = 2000) | 177646   | 159 | 1827187 | 2468504 |

Solution time (ms)

|                                  | MRC  | T&E    | DJ     |
|----------------------------------|------|--------|--------|
| Real 1 (η <sub>tot</sub> = 36)   | 14.9 | 27.4   | 29.25  |
| Real 2 (η <sub>tot</sub> = 2000) | 34.4 | 1258.3 | 1253.8 |

Memory Consumption (MB)

Underground mining fleet optimization









## Undeground mining operations



#### **Automated Cyclic Scheduling**



Stator Winding Design Optimization



#### **Gearless Mill Drives**









# Main Intuition



#### **Different** approaches

|       | Decomposed MIP+CP |                |            | Decomposed MIP |             |                | MIP                      |      |       |                |                          |      |
|-------|-------------------|----------------|------------|----------------|-------------|----------------|--------------------------|------|-------|----------------|--------------------------|------|
| $n_s$ | t (µ)             | t ( $\sigma$ ) | $Obj_{CP}$ | %Sol           | t ( $\mu$ ) | t ( $\sigma$ ) | Obj<br>Obj <sub>CP</sub> | %Sol | t (µ) | t ( $\sigma$ ) | Obj<br>Obj <sub>CP</sub> | %Sol |
| 102   | 4.4               | 1.0            | 12.18      | 100%           | 2.4         | 1.2            | 100.0%                   | 100% | 177.6 | 112.2          | 98.2%                    | 90%  |
| 264   | 28.6              | 28.7           | 23.57      | 100%           | 26.0        | 28.9           | 100.0%                   | 95%  | 340.7 | 2.0            | 101.7%                   | 5%   |
| 384   | 23.2              | 19.5           | 25.39      | 100%           | 19.4        | 19.4           | 99.9%                    | 95%  | 342.1 | 3.2            | -                        | 0%   |
| 480   | 42.0              | 35.6           | 32.34      | 100%           | 38.8        | <b>34</b> .8   | 100.1%                   | 100% | 339.8 | 2.2            | -                        | 0%   |
| 576   | 65.0              | 33.4           | 43.56      | 70%            | 60.4        | 32.7           | 99.8%                    | 30%  | 341.2 | 2.4            |                          | 0%   |

Optimal Stock Sizing in a Cutting Stock Problem with Stochastic Demands

Case Study 1

## **Production of plastic pieces**



#### **Initial Input**

- A mold creates a piece with 16 discs
- Orders in year 2018



#### **Discovery Phase**

- What are the cost drivers?
  - Total time of production, waste, total plastic used, overproduction, cutting costs
- Is there a possibility to build a new mold?
- Will different molds have the same yield?
- Will different molds have the same throughput?
- Are the production requirements constant or they may vary on subsequent years (i.e. stochastic)?
- Is the yield of the cutting procedure constant?

• Size of the problem?

#### **Actual Problem**

#### **Decision variables**

- Which investment to build a set of molds to use subject to stochastic production requirements
- Which cutting patterns to use subject to given production requirements

#### **Objective function**

• Minimize: Waste, Over-production, Number of cuts

## Models for operational optimization

#### Item-based formulation (Kantorovich)





# High level model for (stochastic) planning





Container Terminal Optimization

Case Study 2



#### **Container Terminal**



#### **Container Trade Growth**

Container logistics throughput grows significantly faster than global trade



2010 volumes higher than 2008 , 2011 increase 6-8%

#### **End-loaded terminal operations**





#### **Berth Crane and Allocation**



Alessandro Zanarini - 26th March 2019

Quay

## **Quay Crane Allocation and Scheduling**



#### Stowing sequence and allocation



## Yard Management / Planning



#### **Automated Stacking Cranes**



#### **Horizontal Transportation**



# Conclusions

#### Conclusions

- Real challenge is understanding domain-specific knowledge and translate it into abstractions and mathematical formulations
- Getting access to data is key
  - Baseline for comparing optimized solution vs current solution
  - Understanding problem features and size
- Educate the customer about
  - Optimization potentials (setting expectations right)
  - Trade-off between performance vs quality
- Fail fast
  - Short feedback cycle with customer
  - Post-processing tool for verifying solution (better if customer developed)
- Technology mastery is required to understand strengths and weaknesses of each technology and figure out which technology is suited for which problem