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1 Market Segmentation

Files to use with Biogeme:
Model files: SpecTest SM male.mod,

SpecTest SM female.mod,
SpecTest SM full.mod,

Data file: swissmetro.dat

In this example, the segmentation is made on the gender variable. We first create
two market segments as follows:

• Male: all observations where MALE=1 belong to this subgroup.

• Female: all observations where MALE=0 belong to this subgroup.

Following the procedure described in Ben-Akiva and Lerman (1985) (pages 194-
204), we estimate a model on the full data set. Then we run the same model for
each gender group separately. Note that we make use of the [Exclude] section in
the model specification file to define which observations should be excluded for
the estimation. We obtain the values shown in Table 1. The expressions of the
utility functions are the same for all models. Note that we define the dummy
variable SENIOR which takes the value 1 for individuals with age above 65 and 0
otherwise.

Vcar = ASCcar + βtimeCAR TT + βcar costCAR CO+ βseniorSENIOR

Vtrain = βtimeTRAIN TT + βtrain costTRAIN COST + βheTRAIN HE +

βgaGA

VSM = ASCSM + βtimeSM TT + βSM costSM COST + βheSM HE +

βseniorSENIOR + βgaGA
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Model Log likelihood Number of coefficients

Male -3680.002 9
Female -1110.618 9
Restricted model -4927.167 9

Table 1: Values for the market segmentation test

The null hypothesis is of no taste variation across the market segments:

H0 : βMale = βFemale

Note that in the above equation Male and Female refer to market segments and
not to variables in the dataset.

The likelihood ratio test (with 18-9=9 degrees of freedom) yields

LR = −2(LN (β̂)−
G∑

g=1

LNg
(β̂g))

= −2(−4927.167 + 3680.002 + 1110.618) = 273.094

χ2

0.95,9 = 16.920

and we can therefore reject the null hypothesis at a 95% level of confidence.

2 Test of Non-Nested Hypotheses

Files to use with Biogeme:
Model files: SpecTest SM M1.mod, SpecTest SM M2.mod,

SpecTest SM MC.mod
Data file: swissmetro.dat

In discrete choice analysis, we often perform tests based on the so-called nested
hypotheses, which means that we specify two models such that the first one (the
restricted model) is a special case of the second one (the unrestricted model). For
this type of comparison, the classical likelihood ratio test can be applied. However,
there are situations in which we aim at comparing models which are not nested,
meaning that one model cannot be obtained as a restricted version of the other.
One way to compare two non-nested models is to build a composite model from
which both models can be derived. We can thus perform two likelihood ratio tests
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for each of the restricted models against the composite model. This procedure is
known as the Cox test of separate families of hypothesis.

2.1 Cox Test

The Cox test is described in detail in the textbook and in the slides of the course,
in section “Tests of Non-Nested Hypothesis”. Assume that we want to test a
model M1 against another model M2 (and one model is not a restricted version of
the other). We start by generating a composite model MC such that both models
M1 and M2 are restricted cases of MC . We then test M1 against MC and M2

against MC using the likelihood ratio test. There are three possible outcomes of
this test:

• One of the two models is rejected. Then we keep the one that is not rejected.

• Both models are rejected. Then better models should be developed. The
composite model could be used as a new basis for future specifications.

• Both models are accepted. Then we choose the model with the higher ρ̄2

index.

We show next the expressions of the utility functions used for the three different
models M1, M2 and MC . M1 has the following systematic utilities

Vcar = ASCcar + βcar timeCAR TT + βcar costCAR CO

Vtrain = βtrain timeTRAIN TT + βtrain costTRAIN CO

VSM = ASCSM + βSM timeSM TT + βSM costSM CO

where both the time and cost related coefficients are alternative specific. The
systematic utilities of M2 are

Vcar = ASCcar + βtimeCAR TT + βcar costCAR CO

Vtrain = βtimeTRAIN TT + βtrain costTRAIN CO +

βheTRAIN HE + βgaGA

VSM = ASCSM + βtimeSM TT + βSM costSM CO + βheSM HE

+βgaGA

where only the cost related coefficient is assumed to be alternative specific, head-
way of train and SM has been added, and one socio-economic variable has been
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added to the model. We now define the composite model MC with the following
systematic utilities

Vcar = ASCcar + βcar timeCAR TT + βcar costCAR CO

Vtrain = βtrain timeTRAIN TT + βtrain costTRAIN CO +

βheTRAIN HE + βgaGA

VSM = ASCSM + βSM timeSM TT + βSM costSM CO +

βheSM HE + βgaGA

Models used for the Cox test

Model Parameters Description
M1 8 two ASC’s, three alternative specific time coef-

ficients and three alternative specific cost coef-
ficients

M2 8 two ASC’s, one generic time coefficient, three
alternative specific cost coefficients, one generic
headway coefficient and one socio-economic co-
efficient

MC 10 two ASC’s, three alternative specific time co-
efficients, three alternative specific cost coeffi-
cients, one generic headway coefficient and one
socio-economic coefficient

Table 2: Summary of the different model specifications

In Table 2, we summarize the differences between the various models, and we
show in Tables 3, 4 and 5 the estimation results for the M1, M2 and MC models,
respectively.

At this point, we can apply the likelihood ratio test for M1 against MC . In this
case, the null hypothesis is:

H0 : βhe = βga = 0

As usual, −2(L(M1)− L(MC)) is χ
2 distributed with K = 2 degrees of freedom.

In this case, we have:

−2(−5065.901 + 5047.205) = 37.392 > 5.991
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M1 model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -0.260 0.138 -1.89
2 ASCSM 0.113 0.106 1.06
3 βcar cost -0.00785 0.00149 -5.26
4 βtrain cost -0.0308 0.00193 -15.98
5 βSM cost -0.0113 0.000790 -14.24
6 βcar time -0.0129 0.00163 -7.91
7 βtrain time -0.00870 0.00118 -7.34
8 βSM time -0.0112 0.00178 -6.25

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5065.901
ρ̄2 = 0.271

Table 3: Estimation results for the M1 model

M2 model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -0.872 0.140 -6.24
2 ASCSM -0.410 0.103 -3.99
3 βcar cost -0.00934 0.00116 -8.02
4 βtrain cost -0.0284 0.00176 -16.08
5 βSM cost -0.0104 0.000743 -13.99
6 βtime -0.0111 0.00120 -9.22
7 βhe -0.00533 0.00102 -5.25
8 βga 0.521 0.191 2.72

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5055.843
ρ̄2 = 0.272

Table 4: Estimation results for the M2 model
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MC model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -0.529 0.158 -3.35
2 ASCSM -0.126 0.116 -1.08
3 βcar cost -0.00776 0.00150 -5.18
4 βtrain cost -0.0300 0.00200 -14.97
5 βSM cost -0.0108 0.000828 -12.99
6 βcar time -0.0129 0.00162 -7.94
7 βtrain time -0.00866 0.00120 -7.22
8 βSM time -0.0111 0.00179 -6.19
9 βhe -0.00535 0.00101 -5.31
10 βga 0.513 0.193 2.65

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5047.205
ρ̄2 = 0.273

Table 5: Estimation results for the MC model
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The result of this first test is that we can reject the null hypothesis. Applying the
same test for M2 against MC , we have

H0 : βcar time = βtrain time = βSM time.

In this case, the likelihood ratio test with K = 2 degrees of freedom gives

−2(−5055.843 + 5047.215) = 17.276 > 5.991

and we can therefore reject the null hypothesis in this case as well. Since both
models are rejected, better models should be developed. If both models were
accepted, we would choose the one with the higher ρ̄2 index.

3 Tests of Non-Linear Specifications

Files to use with Biogeme:
Model files: SpecTest SM piecewise.mod,

SpecTest SM powerseries.mod,
SpecTest SM boxcox.mod

Data file: swissmetro.dat

In the previous case study, the models were specified with linear in parameter for-
mulations of the deterministic parts of the utilities (i.e. parameters that remain
constant throughout the whole range of the values of each variable). However,
in some cases non-linear specifications may be more justified. In this section,
we test three different non-linear specifications of the deterministic utility func-
tions (see Ben-Akiva and Lerman(1985), pages 174-179). Namely, piecewise linear
approximation, power series method and Box-Cox transformation are used below.

3.1 Piecewise Linear Approximation

In this first example, we want to test the hypothesis that the value of the travel
time related parameter for the train alternative assumes different values for dif-
ferent ranges of values of the variable itself. We split the range of values for travel
time t (which is t ∈ [35, 1022] , expressed in minutes) into four different intervals:
traintt1 ∈ [0, 90], traintt2 ∈ ]90, 180], traintt3 ∈ ]180, 270] and traintt4 > 270. We
show in Figure 1 the corresponding Biogeme code.
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[Expressions]

TRAIN_TT1 = min( TRAIN_TT , 90)

TRAIN_TT2 = max(0,min( TRAIN_TT - 90, 90))

TRAIN_TT3 = max(0,min( TRAIN_TT - 180 , 90))

TRAIN_TT4 = max(0,TRAIN_TT - 270)

Figure 1: Biogeme snapshot concerning the piecewise variables definition

The systematic utility expressions used in this model are

Vcar = ASCcar + βcar timeCAR TT + βcar costCAR CO

Vtrain = βtrain time1TRAIN TT1 + βtrain time2TRAIN TT2 +

βtrain time3TRAIN TT3 + βtrain time4TRAIN TT4 +

βtrain costTRAIN CO + βheTRAIN HE + βGAGA

VSM = ASCSM + βSM timeSM TT + βSM costSM CO + βheSM HE + βGAGA

We can see from the estimation results shown in Table 6 that all time coefficients
related to the piecewise linear expression are negative. The coefficient associated
with very long trips is the largest in magnitude in an absolute sense, meaning that
trips longer than 4 hours and a half are more penalizing the utility function of the
train alternative.

We perform the likelihood ratio test where the restricted model is the one with
linear train travel time (the MC model from the previous section) and the unre-
stricted model is the piecewise linear specification. The χ2 statistic for the null
hypothesis is given by

H0 : βtrain time1 = βtrain time2 = βtrain time3 = βtrain time4 (1)

The test yields

−2(−5047.205 + 5041.952) = 10.506

and since χ2

0.95,3 = 7.815, we can reject the null hypothesis of a linear train travel
time at a 95% level of confidence.

3.2 The Power Series Expansion

We introduce here a power series expansion for the train travel time variable. In
principle, we could add a polynomial expression but here we introduce just the

8



Piecewise linear model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -0.991 0.434 -2.28
2 ASCSM -0.584 0.421 -1.39
3 βcar cost -0.00776 0.00150 -5.18
4 βtrain cost -0.0301 0.00204 -14.78
5 βSM cost -0.0107 0.000828 -12.97
6 βcar time -0.0129 0.00162 -7.94
7 βtrain time1 -0.0135 0.00508 -2.65
8 βtrain time2 -0.0109 0.00180 -6.05
9 βtrain time3 -0.00208 0.00224 -0.93
10 βtrain time4 -0.0179 0.00551 -3.25
11 βSM time -0.0112 0.00179 -6.24
12 βhe -0.00534 0.00101 -5.30
13 βga 0.515 0.193 2.67

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5041.952
ρ̄2 = 0.274

Table 6: Estimation results for the piecewise linear model
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squared term. The subsequent model specification is practically the same as the
MC model, with the exception of the train alternative:

Vtrain = βtrain timeTRAIN TT + βtrain time sqTRAIN TT SQ+

βtrain costTRAIN CO + βheTRAIN HE +

βGAGA

Power series model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -0.693 0.190 -3.65
2 ASCSM -0.289 0.149 -1.94
3 βcar cost -0.00776 0.00150 -5.18
4 βtrain cost -0.0299 0.00201 -14.86
5 βSM cost -0.0108 0.000828 -12.99
6 βcar time -0.0129 0.00162 -7.95
7 βtrain time -0.0109 0.00190 -5.72
8 βtrain time sq 0.00000628 0.00000282 2.23
9 βSM time -0.0111 0.00178 -6.23
10 βhe -0.00537 0.00101 -5.31
11 βga 0.515 0.194 2.65

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5046.573
ρ̄2 = 0.273

Table 7: Estimation results for the power series model

The estimation results for this specification are shown in Table 7. The estimated
parameter associated with the linear term of the power series expansion is nega-
tive while the estimated parameter associated with the squared term is positive.
However, the cumulative effect of the travel time variable on the utility is still
negative, as can be easily verified by a plot of utility versus travel time for a
reasonable range of rail travel time.

We perform the likelihood ratio test where the restricted model is the one with
linear train travel time (the MC model from the previous section) and the unre-
stricted model is the power series expansion specification. The χ2 statistic for the
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[GeneralizedUtilities]

1 B_TRAIN_TIME * ( ( ( TRAIN_TT ) ^ LAMBDA - 1 ) / LAMBDA )

Figure 2: Biogeme snapshot of Box-Cox transformation

null hypothesis is given by:

H0 : βtrain time2 = 0 (2)

The test yields

−2(−5047.205 + 5046.573) = 1.264

and since χ2

0.95,1 = 3.841, we can not reject the null hypothesis of a linear rail
travel time at a 95% level of confidence.

3.3 The Box-Cox Transformation

In this section, we analyze the possibility of testing non-linear transformations of
variables that are non-linear in the unknown parameters. One possible transfor-
mation is the Box-Cox, expressed as

xλ − 1

λ
, where x ≥ 0. (3)

We apply this transformation to the train time variable. The utilities remain
exactly the same, with the substitution of such a variable with its Box-Cox trans-
formation. This introduces one more unknown parameter, λ. We show in Figure
2 a Biogeme snapshot from the model specification file to visualize how non-linear
in parameters utility functions are implemented.

The results related to the Box-Cox transformed model are shown in Table 8.
The Box-Cox transformation reduces to a linear function as a special case when
the parameter λ is equal to 1. Looking at the estimated values, we see that λ

is significantly different from 1 at a 95 % level of confidence (t-stat = -2.13).
Note though that the parameter βtrain time associated with train travel time is not
significant.

We can also perform a likelihood ratio test as follows. The null hypothesis is given
by:

H0 : λ = 1
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The χ2 statistic for this null hypothesis is as follows:

−2(L(β̂L)− L(β̂BC)) = −2(−5047.205 + 5045.420) = 3.570
χ2

0.95,1 = 3.841 > 3.570

Therefore, the null hypothesis of a linear specification can not be rejected at a 95
% level of confidence. Note that the t-test and the likelihood ratio test for testing
one restriction are asymptotically equivalent. Here the t-stat with respect to 1 is
equal to -2.13, so λ is close to being insignificant (w.r.t. 1). In small samples,
the likelihood ratio test is preferred to the t-test. Therefore, we prefer the linear
specification over the Box-Cox transformation in this case.

Box-Cox transformed model: estimation results

Parameter Parameter Parameter Robust Robust
number name estimate standard error t statistic

1 ASCcar -1.72 1.01 -1.71
2 ASCSM -1.32 1.01 -1.31
3 βcar cost -0.00776 0.00150 -5.18
4 βtrain cost -0.0298 0.00200 -14.90
5 βSM cost -0.0107 0.000828 -12.98
6 βcar time -0.0129 0.00162 -7.95
7 βtrain time -0.128 0.160 -0.80
8 βSM time -0.0111 0.00178 -6.23
9 βhe -0.00535 0.00101 -5.30
10 βga 0.508 0.194 2.62
11 λ 0.465 0.251 1.85

Summary statistics

Number of observations = 6759
L(0) = −6958.425

L(β̂) = −5045.420
ρ̄2 = 0.273

Table 8: Estimation results for the Box-Cox transformed model
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