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Specification Testing: Switzerland mode choice

(OPTIMA)

The topic of this case study is the testing of different hypotheses regarding both
model specifications and structures. The objectives can be summarized as follows:

• Illustration of the market segmentation concept and related testing.

• Testing of non-nested hypotheses using the composite model test.

• Testing of non-linear specifications using the piecewise linear approximation,
the power series expansion and the Box-Cox transformation methods.

Market Segmentation

Files to use with BIOGEME:

Model files: MNL optima age higher 40.mod, MNL optima age less 40.mod,
MNL optima socio economic.mod

Data file: optimaTOT3 valid.dat

We start by defining a new variable called age and categorising it into two groups:
adults and elderly. We have a total of 1906 observations in our sample. For the
group of adults ( age < 40) the total number of observations is 570. For the
group of elderly (age ≥ 40) the number of observations is 1336. We would
like to test if there are taste variations across market segments. We therefore
estimate separate models for each group as well as a model estimated on the
complete data set. We reuse a model from the Multinomial Logit case study
(MNL optima socio economic.mod) which we have already estimated on the com-
plete data set (L(β̂) = −1265.113). The results from the model estimated on the
adults group are presented in Table 1 and the results from the model based on
elderly group in Table 2.

We perform a likelihood ratio test of taste variation or market segmentation.

Null hypothesis: H0 : βadiut = βelderly

Reject H0 if the following inequality applies:

−2

(

LN(β̂−
∑

g∈G

LNg(β̂
g)

)

> χ((1−α),df),
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Table 1: MNL for the adult group
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASCCAR 0.109 0.224 0.49 0.63
2 ASCMD -0.0152 0.545 -0.03 0.98
3 βDIST -0.287 0.0923 -3.11 0.00
4 βLANGUAGE 0.957 0.230 4.16 0.00
5 βTIME CAR -0.0432 0.00873 -4.95 0.00
6 βTIME PT -0.0207 0.00463 -4.46 0.00

Summary statistics
Number of observations = 570

L(0) = −626.209

L(c) = −431.731

L(β̂) = −349.263

−2[L(0) − L(β̂)] = 553.893

ρ2 = 0.442

ρ̄2 = 0.433

where N represents the full sample size, G is the set of all groups, df =
(∑

g Kg

)

−

K are the degrees of freedom, K is the number of parameters and Kg is the number
of parameters in the segment g ( adult=6, elderly=6). The first term is the final
log likelihood the restricted model. The second term is the sum of the final log
likelihood terms for each segment. Putting the value into the formula we have:

−2(−1265.113+ 349.263+ 909.006) = 13.688.

The critical value for χ(0.95,6) = 12.59. As 13.688 > 12.59 and we can therefore
reject the null hypothesis at a 95% level of confidence. This suggests further
exploration of this differences. We shall keep in mind that this is a rejection of
the joint hypothesis, which implies that the two models differ but we have not
established yet on which particular coefficients.

Test of Non-Nested Hypotheses

In discrete choice analysis, we often perform tests based on so-called nested hy-
potheses, which means that we specify two models such that the first one (the
restricted model) is a special case of the second one (the unrestricted model). For
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Table 2: MNL for the elderly group
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASCCAR 0.436 0.116 3.75 0.00
2 ASCMD 0.262 0.353 0.74 0.46
3 βDIST -0.209 0.0596 -3.51 0.00
4 βLANGUAGE 1.33 0.178 7.48 0.00
5 βTIME CAR -0.0303 0.00660 -4.60 0.00
6 βTIME PT -0.0144 0.00320 -4.50 0.00

Summary statistics
Number of observations = 1336

L(0) = −1467.746

L(c) = −1089.505

L(β̂) = −909.006

−2[L(0) − L(β̂)] = 1117.480

ρ2 = 0.381

ρ̄2 = 0.377

this type of comparison, the classical likelihood ratio test can be applied. How-
ever, there are situations, such as non-linear specifications, in which we aim at
comparing models which are not nested, i.e. one model cannot be obtained as a
restricted version of the other. One way to compare two non-nested models is to
build a composite model from which both models can be derived. We can thus
perform two likelihood ratio tests, testing each of the restricted models against
the composite model. This procedure is known as the Cox test of separate families
of hypothesis.

Cox Test

The Cox test is described in detail in Ben-Akiva and Lerman (1985, MIT Press),
pages 171-174, and in the Textbook of the course, section “Tests of Non-Nested
Hypothesis”. Assume that we want to test a model M1 against another model M2

(and one model is not a restricted version of the other). We start by generating
a composite model MC such that both models M1 and M2 are restricted cases of
MC. We then test M1 against MC and M2 against MC using the likelihood ratio
test. There are three possible outcomes of this test:

• One of the two models is rejected. Then we keep the one that is not rejected.
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• Both models are rejected. Then better models should be developed. The
composite model could be used as a new basis for future specifications.

• Both models are accepted. Then we choose the model with the highest ρ̄2

index.

We present here the expressions of the utility functions used for three different
models M1, M2 and MC developed on the optima case study.

M1 has the following systematic utilities:

VPT = βTIME PT ∗DureeTP1+ βCOST ∗MarginalCost

VCAR = ASCCAR + βTIME CAR ∗DureeAuto+ βCOST ∗ CoutAutoCHF

where the cost related coefficients are linear.

The systematic utilities of M2 are expressed as follows:

VPT = βTIME ∗DureeTP1+ βlogCOST ∗ log(MarginalCost)

VCAR = ASCCAR + βTIME ∗DureeAuto+ βlogCOST ∗ log(CoutAutoCHF)

where the cost related coefficients are logarithmic.

We now define the composite model MC with the following systematic utilities:

VPT = βTIME PT ∗DureeTP1 + βCOST ∗MarginalCost + βlogCOST ∗ log(MarginalCost)

VCAR = ASCCAR + βTIME CAR ∗DureeAuto + βCOST ∗ CoutAutoCHF + βlogCOST ∗ log(CoutAutoCHF)

where we have one generic cost coefficient and one generic cost logarithmic coef-
ficient.

After estimating the three models we can apply the likelihood ratio test for M1

against MC. In this case, the null hypothesis is:

H0 : βLogFare = 0

As usual, −2(L(M1) − L(MC)) is χ
2 distributed with K = 1 degrees of freedom.

If the result of the first test suggests that we can reject the null hypothesis H0: it
means the composite model is better than M1. Then the linear model is rejected.
Then we apply the same test for M2 against MC.

In the case when both models are rejected, better models should be developed: we
cannot keep the composite model with two different cost-related coefficients since
it does not have a behavioral interpretation. If both models had been accepted,
we would choose the one with the highest ρ̄2 index.

4



5

Tests of Non-Linear Specifications

Files to use with Biogeme:

Model files: SpecTest airline piecewise.mod,
SpecTest airline powerseries.mod,
SpecTest airline boxcox.mod

Data file: airline.dat

The models studied previously were specified with linear-in-parameter formula-
tions of the deterministic parts of the utilities (i.e. parameters that remain con-
stant throughout the whole range of the values of each variable). However, in
some cases non-linear specifications may be more justified. In this section, we
test three different non-linear specifications of the deterministic utility functions:
a piecewise linear specification of the time parameter of the non-stop itinerary, a
power series method and Box-Cox transformation.

Piecewise Linear Approximation

In this first example we want to test the hypothesis that the coefficient associated
with travel time for private modes assumes different values for different values of
the variable itself. The full range of values for this variable is [0, 494]. To test this
hypothesis we first generate the following variables:

TimeAuto1 =min{DureeAuto, 30}

TimeAuto2 =max(0,min(DureeAuto− 30, 60))

TimeAuto3 =max(0,DureeAuto− 90)

Such variables can be defined in BIOGEME as follows:

[Expressions]

// Define here arithmetic expressions for name that are not directly

// available from the data

TimeAuto_1 = min( DureeAuto , 30)

TimeAuto_2 = max(0, min( DureeAuto - 30, 60 ) )

TimeAuto_3 = max(0, DureeAuto - 90)

The deterministic utility for private modes is:

VCAR = ASCCAR + βTIME CAR1
∗ TimeAuto1 + βTIME CAR2

∗ TimeAuto2+

βTIME CAR3
∗ TimeAuto3 + βLANGUAGE ∗ FrenchRegion
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Table 3: Piecewise linear model
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASCCAR 0.894 0.176 5.09 0.00
2 ASCMD 0.528 0.388 1.36 0.17
3 βDIST -0.262 0.0617 -4.24 0.00
4 βLANGUAGE 1.09 0.137 7.99 0.00
5 βTIME CAR1

-0.0655 0.0129 -5.09 0.00
6 βTIME CAR2

-0.0436 0.00577 -7.55 0.00
7 βTIME CAR3

-0.0252 0.00673 -3.75 0.00
8 βTIME PT -0.0187 0.00288 -6.49 0.00

Summary statistics
Number of observations = 1906

L(0) = −2093.955

L(c) = −1524.919

L(β̂) = −1245.341

−2[L(0) − L(β̂)] = 1697.227

ρ2 = 0.405

ρ̄2 = 0.401
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The estimation results for this model are reported in Table 3.

All coefficients related to the piecewise linear formulation are negative and statis-
tically significant. When the travel time increases, the related coefficient increases
in magnitude, indicating that the sensitivity for the unit of time decreases at a
certain reasonable extent.

We can perform a likelihood ratio test where the restricted model is the one with
linear travel time and the unrestricted model is the piecewise linear specification.
The null hypothesis is given as follows:

H0 : βTimeCAR1
= βTimeCAR2

= βTimeCAR3

And then we test if we can reject the null hypothesis of a linear travel time for
the car alternative at a 95% level of confidence.

The Power Series Expansion

We introduce here a power series expansion for the travel time for car alternative.
Other polynomial expressions could be tried as well, but in the following example,
we only specify a squared term.

VCAR = ASCCAR + βTIME CARLIN
∗DureeAuto+ βTIME CARSQ

∗ TimeAutoSQ+

βLANGUAGE ∗ FrenchRegion,

in which TimeAutoSQ = DureeAuto2. We report in Table 4 the estimation
results for this model. This model has in general a better goodness-of-fit than
the model with linear coefficients. However, the coefficient of the squared term,
though statistically significant, has a very small value. It may be noted that the
coefficient of the squared term is positive while the coefficient of the linear term is
negative and the coefficient of the linear term is greater than that of the squared
term. However, since the squared term is very small in magnitude, the total effect
is expected to remain negative in the cost range.

In order to see if the power series specification is better than the linear one, we
perform a likelihood ratio test. Here, the restricted model is the one with linear
travel time and the unrestricted model is the one with the power series expansion.
The null hypothesis is given by

H0 : βTIME CARSQ
= 0.

And then we test if we can reject the null hypothesis at a 95% level of confidence.
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Table 4: Power Series model
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASCCAR 0.621 0.121 5.14 0.00
2 ASCMD 0.339 0.318 1.07 0.29
3 βDIST -0.244 0.0536 -4.55 0.00
4 βLANGUAGE 1.13 0.139 8.10 0.00
5 βTIME CARLIN

-0.0508 0.00677 -7.50 0.00
6 βTIME CARSQ

6.76e-05 1.99e-05 3.40 0.00
7 βTIME PT -0.0180 0.00262 -6.87 0.00

Summary statistics
Number of observations = 1906

L(0) = −2093.955

L(c) = −1524.919

L(β̂) = −1247.979

−2[L(0) − L(β̂)] = 1691.952

ρ2 = 0.404

ρ̄2 = 0.401

The Box-Cox Transformation

Files to use with BIOGEME:

Model file: MNL boxcox.mod

Data file: optimaTOT3 valid.dat

In this section, we specify a Box-Cox transformation, which is a non-linear trans-
formation of a variable that also depends on an unknown parameter λ.

Precisely, a Box-Cox transformation of a variable x is given as follows:

xλ − 1

λ
, where x ≥ 0.

We apply this transformation to the travel time variable for the car alternative.
The utilities are the same as the previous models, apart from the one relative to
the car alternative, which we report below:

[Utilities]

// Id Name Avail linear-in-parameter expression (beta1 * x1 + beta2 * x2 + ... )
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Table 5: Box-Cox model
Robust

Parameter Coeff. Asympt.
number Description estimate std. error t-stat p-value

1 ASCCAR 0.879 0.177 4.98 0.00
2 ASCMD 0.516 0.386 1.34 0.18
3 βDIST -0.262 0.0626 -4.18 0.00
4 βLANGUAGE 1.12 0.137 8.17 0.00
5 βTIME CAR -0.128 0.0350 -3.65 0.00
6 βTIME PT -0.0181 0.00281 -6.46 0.00
7 λ 0.708 0.0656 10.80 0.00

Summary statistics
Number of observations = 1906

L(0) = −2093.955

L(c) = −1524.919

L(β̂) = −1250.472

−2[L(0) − L(β̂)] = 1686.965

ρ2 = 0.403

ρ̄2 = 0.399

0 PT one BETA_TIME_PT * DureeTP1

1 CAR one ASC_CAR * one + BETA_LANGUAGE * FrenchRegion

2 MD one ASC_MD * one + BETA_DIST * distance_km

[GeneralizedUtilities]

1 BETA_TIME_CAR * ( ( ( DureeAuto ) ^ LAMBDA - 1)/ LAMBDA )

Let us note that in this specification, we have one more unknown parameter, λ.
The parameter λ is estimated along with the other parameters (its starting value
needs to be specified as value other than zero, since λ 6= 0). In this case we need
to introduce an extra tab for the Generalized Utilities.

Let us remark that the Box-Cox transformation reduces to a linear function as a
special case when the parameter λ is equal to 1. The estimate of λ is significantly
different from 1 at a 95 % level of confidence, with a t-test equal to −3.36.

We perform a likelihood ratio test between the linear model and the Box-Cox
model. The null hypothesis is given by:

H0 : λ = 1
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