Aggregation and forecasting

Amanda Stathopoulos amanda.stathopoulos@epfl.ch

Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

イロト イポト イヨト イヨト

- So far, prediction of individual behavior
- In practice, not useful
- Need for forecast of aggregate demand:
 - number of trips
 - number of passengers
 - etc.

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Linear models

$$t_n = \alpha + \beta p_n$$

where

- *t_n*: number of trips from zone *n*
- p_n: population in zone n
- If \bar{p} is the average population
- $\bar{t} = \alpha + \beta \bar{p}$ is the average number of trips

It does not work with choice models, because they are nonlinear

3

ヘロト 人間ト 人間ト 人間ト

• Discrete "Travel/no travel" model, y_n income

No travel $V_1 = 0$ Travel $V_2 = -3 + 3y_n$

	Income	V1	V2	P1	P2
Household 1	1	0	0	50%	50%
Household 2	10	0	27	0%	100%
Avg. income	5.5	0	13.5	0%	100%
Avg. probability H1 & H2				25%	75%

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○

Choice model

 $P(i|x_n)$

where x_n gathers attributes of all alternatives and socio-economic characteristics of n

• If the population is composed of *N* individuals, the total expected number of individuals choosing *i* is

$$N(i) = \sum_{n=1}^{N} P(i|x_n)$$

- Hopeless to know x_n for each and every individual
- The sum would involve a lot of terms.
- The distribution of *x* could be used.

ヘロト 人間ト 人間ト 人目ト

- Assume that the distribution of x is continuous with PDF p(x)
- Then the share of the population choosing *i* is given by

$$\widehat{W}(i) = \int_{x} P(i|x) p(x) dx$$

- In practice, p(x) is also unknown
- The integral may be cumbersome to compute

3

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- If the population is segmented in S homogeneous segments
- If N_s is the number of individuals in segment s
- Then

$$\widehat{N}(i) = \sum_{s=1}^{S} N_s P(i|x_s)$$

3

ヘロト 人間ト 人間ト 人間ト

Illustration

The travel model:

• Discrete "Travel/no travel" model, y_n income

$$P(\mathsf{travel}) = \frac{e^{-3+3y_n}}{1+e^{-3+3y_n}}$$

- Population: N = 200'000 persons
- Sample: S = 500 persons
- Sampling rate: S/N = 1/400 = 0.25%

3

イロト 不得 トイヨト イヨト

Illustration

5	y _s	S_s	Ns	P(travel)	PS_s	PN_s
1	0	150	20000	4.7%	7	949
2	0.5	200	30000	18.2%	36	5473
3	1	40	50000	50.0%	20	25000
4	1.5	10	50000	81.8%	8	40879
5	2	50	30000	95.3%	48	28577
6	2.5	50	20000	98.9%	49	19780
		500	200000		169	120657

 $120657 \neq 400 \times 169 = 67542$

People with low probability of travel are oversampled

3

・ロト ・四ト ・ヨト ・ヨト

Aggregation: sample enumeration

Most practical method: sample enumeration

- Let n be an observation in the sample belonging to segment s
- Let W_s be the weight of segment s, that is

 $W_s = \frac{N_s}{S_s} = \frac{\# \text{ persons in segment } s \text{ in population}}{\# \text{ persons in segment } s \text{ in sample}}$

• The number of persons choosing alt. *i* is estimated by

$$\widehat{N}(i) = \sum_{n \in \text{sample } s} \sum_{s} W_s P(i|x_n) I_{ns}$$

where $I_{ns} = 1$ if individual *n* belongs to segment *s*, 0 otherwise

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We can write

$$\widehat{N}(i) = \sum_{n \in \text{sample}} \sum_{s} W_{s} P(i|x_{n}) I_{ns}$$
$$= \sum_{n \in \text{sample}} P(i|x_{n}) \sum_{s} W_{s} I_{ns}$$

The term $\sum_{s} W_{s}I_{ns}$ is the weight of individuals *n* belonging to segment *s*. The share of alt. *i* is estimated by W(i) =

$$\frac{1}{N}\sum_{n\in \text{sample}} P(i|x_n) \sum_{s} W_s I_{ns} = \sum_{n\in \text{sample}} P(i|x_n) \sum_{s} \frac{N_s}{N} \frac{1}{S_s} I_{ns}$$

(日) (圖) (E) (E) (E)

Procedure

- Modify x_n in the sample to reflect anticipated modifications
- Apply the sample enumeration again and re-calculate market shares

(4 間) トイヨト イヨト

Example: original

S	y _s	Ss	P(travel)	W_s	Trips
1	0	150	4.74%	133.33	949
2	0.5	200	18.24%	150	5473
3	1	40	50.00%	1250	25000
4	1.5	10	81.76%	5000	40879
5	2	50	95.26%	600	28577
6	2.5	50	98.90%	400	19780
					120657

- Increase all salaries by 0.5
- What is the impact on the total number of trips?

3

ヘロト 人間ト 人間ト 人間ト

Example: modification

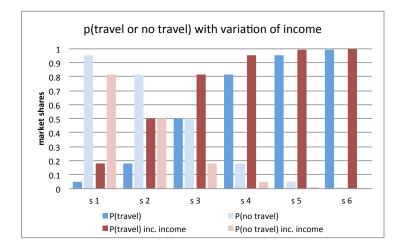
S	y _s	Ss	P(travel)	W_s	Trips
1	0.5	150	18.24%	133.33	3649
2	1	200	50.00%	150	15000
3	1.5	40	81.76%	1250	40879
4	2	10	95.26%	5000	47629
5	2.5	50	98.90%	600	29670
6	3	50	99.75%	400	19951
					156777

- Before: 120657
- After: 156777
- Increase: about 30%

3

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

Example



3

イロト イポト イヨト イヨト

Summary

• Aggregation:

- Sample enumeration.
- Correct for sampling errors using weights
- Enumeration by segments to compare market shares across groups

• Forecasting:

- Forecast the value of the explanatory variables *x*.
- Aggregate.

3

(日) (周) (三) (三)