Choice Theory

Amanda Stathopoulos amanda.stathopoulos@epfl.ch

Transport and Mobility Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne

Outline

- Choice theory foundations
- Consumer theory
- Simple example
- Random utility theory

Choice theory

Choice: outcome of a sequential decision-making process

- Definition of the choice problem: How do I get to EPFL?
- Generation of alternatives: Car as driver, car as passenger, train
- Evaluation of the attributes of the alternatives: Price, time, flexibility, comfort
- Choice: Decision rule
- Implementation: Travel

Building the theory

A choice theory defines

- Decision maker
- Alternatives
- Attributes of alternatives
- Decision rule

Decision maker

Unit of analysis

- Individual
 - Socio-economic characteristics: age, gender, income, education, etc.
- A group of persons (we ignore internal interactions)
 - Household, firm, government agency
 - Group characteristics
- Notation: n

Alternatives

Choice set

- Mutually exclusive, finite, exhaustive set of alternatives
- Universal choice set (C)
- Individual n: choice set $(C_n) \subseteq C$
- Availability, awareness, feasibility

Example: Choice of transport mode

- $C = \{car, bus, metro, walk\}$
- ...traveller has no drivers licence, trip is 12km long
- $C_n = \{bus, metro\}$

Swait, J. (1984) Probabilistic Choice Set Formation in Transportation Demand Models Ph.D. dissertation, Department

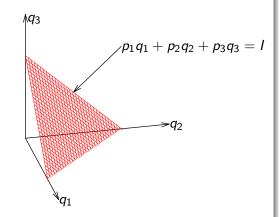
of Civil Engineering, MIT, Cambridge, Ma.

Continuous choice set

Microeconomic demand analysis

Commodity bundle

- q₁: quantity of milk
- q₂: quantity of bread
- q₃: quantity of butter
- Unit price: p_i
- Budget: I

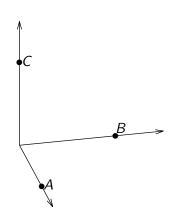


Discrete choice set

Discrete choice analysis

List of alternatives

- Brand A
- Brand B
- Brand C



Alternative attributes

Characterize each alternative *i* for each individual *n*

- → cost
- → travel time
- → walking time
- → comfort
- → bus frequency
- → etc.

Nature of the variables

- ✔ Generic or specific
- Quantitative or qualitative
- ✓ Measured or perceived

Decision rules

Economic man

Grounded in global rationality

- Relevant knowledge of options/environment
- Organized and stable system of preferences
- Evaluates each alternative and assigns precise pay-off (measured through the utility index)
- Selects alternative with highest pay-off

Utility

- Captures attractiveness of alternative
- Allows ranking (ordering) of alternatives
- What decision maker optimizes

A matter of viewpoints

- Individual perspective
 - Individual possesses perfect information and discrimination capacity

- Modeler perspective
 - Modeler does not have full information about choice process
 - Treats the utility as a random variable
 - At the core of the concept of 'random utility'

Consumer theory

Neoclassical consumer theory

- Underlies mathematical analysis of preferences
- Allows us to transform 'attractiveness rankings'...
- into an operational demand functions

Keep in mind

- Utility is a latent concept
- It cannot be directly observed

Figure: Jeremy Bentham

Consumer theory

Continuous choice set

Consumption bundle

$$Q = \begin{pmatrix} q_1 \\ \vdots \\ q_L \end{pmatrix}; p = \begin{pmatrix} p_1 \\ \vdots \\ p_L \end{pmatrix}$$

Budget constraint

$$\sum_{\ell=1}^{L} p_{\ell} q_{\ell} \leq I.$$

No attributes, just quantities

Preferences

Operators \succ , \sim , and \succsim

- $Q_a \succ Q_b$: Q_a is preferred to Q_b ,
- $Q_a \sim Q_b$: indifference between Q_a and Q_b ,
- $Q_a \succeq Q_b$: Q_a is at least as preferred as Q_b .

To ensure consistent ranking

• Completeness: for all bundles a and b,

$$Q_a \succ Q_b$$
 or $Q_a \prec Q_b$ or $Q_a \sim Q_b$.

• Transitivity: for all bundles a, b and c,

if
$$Q_a \succsim Q_b$$
 and $Q_b \succsim Q_c$ then $Q_a \succsim Q_c$.

• "Continuity": if Q_a is preferred to Q_b and Q_c is arbitrarily "close" to Q_a , then Q_c is preferred to Q_b .

Utility

Utility function

Parametrized function:

$$\widetilde{U} = \widetilde{U}(q_1, \ldots, q_L; \theta) = \widetilde{U}(Q; \theta)$$

• Consistent with the preference indicator:

$$\widetilde{U}(Q_a;\theta) \geq \widetilde{U}(Q_b;\theta)$$

is equivalent to

$$Q_a \succsim Q_b$$
.

• Unique up to an order-preserving transformation

Optimization problem

Optimization

Decision-maker solves the optimization problem

$$\max_{q \in \mathbb{R}^L} U(q_1, \dots, q_L)$$

subject to the budget (available income) constraint

$$\sum_{i=1}^{L} p_i q_i = I.$$

Demand

Quantity is a function of prices and budget

$$q^* = f(I, p; \theta)$$

Optimization problem

$$\max_{q_1,q_2} U = eta_0 q_1^{eta_1} q_2^{eta_2}$$

subject to

$$p_1q_1 + p_2q_2 = I.$$

Lagrangian of the problem:

$$L(q_1, q_2, \lambda) = \beta_0 q_1^{\beta_1} q_2^{\beta_2} - \lambda (p_1 q_1 + p_2 q_2 - I).$$

Necessary optimality condition

$$\nabla L(q_1,q_2,\lambda)=0$$

where λ is the Lagrange multiplier and β 's are the Cobb-Douglas preference parameters

Framework

Optimality conditions

Lagrangian is differentiated to obtain the first order conditions

$$\begin{array}{rclcrcl} \partial L/\partial q_1 &= \beta_0 \beta_1 q_1^{\beta_1 - 1} q_2^{\beta_2} & - & \lambda p_1 &= & 0 \\ \partial L/\partial q_2 &= \beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2 - 1} & - & \lambda p_2 &= & 0 \\ \partial L/\partial \lambda &= p_1 q_1 + p_2 q_2 & - & I &= & 0 \end{array}$$

We have

$$\beta_0 \beta_1 q_1^{\beta_1} q_2^{\beta_2} - \lambda p_1 q_1 = 0$$

$$\beta_0 \beta_2 q_1^{\beta_1} q_2^{\beta_2} - \lambda p_2 q_2 = 0$$

Adding the two and using the third optimality condition

$$\lambda I = \beta_0 q_1^{\beta_1} q_2^{\beta_2} (\beta_1 + \beta_2)$$

Framework

Equivalent to

$$eta_0 q_1^{eta_1} q_2^{eta_2} = rac{\lambda I}{\left(eta_1 + eta_2
ight)}$$

As $\beta_0\beta_2q_1^{\beta_1}q_2^{\beta_2}=\lambda p_2q_2$, we obtain (assuming $\lambda\neq 0$)

$$q_2^* = \frac{I\beta_2}{p_2(\beta_1 + \beta_2)}$$

Similarly, we obtain

$$q_1^* = \frac{I\beta_1}{p_1(\beta_1 + \beta_2)}$$

Demand functions

Product 1

$$q_1^* = \frac{I}{p_1} \frac{\beta_1}{\beta_1 + \beta_2}$$

Product 2

$$q_2^* = \frac{I}{p_2} \frac{\beta_2}{\beta_1 + \beta_2}$$

Comments

- Demand decreases with price
- Demand increases with budget
- Demand independent of β_0 , which does not affect the ranking

Marginal rate of substitution

Factoring out λ from first order conditions we get

$$\frac{p_1}{p_2} = \frac{\partial U(q^*)/\partial q_1}{\partial U(q^*)/\partial q_2} = \frac{MU(q_1)}{MU(q_2)}$$

MRS

- Ratio of marginal utilities (right) equals...
- ratio of prices of the 2 goods (left)
- Holds if consumer is making optimal choices

Discrete goods

Discrete choice set

Calculus cannot be used anymore

$$U = U(q_1, \ldots, q_L)$$

with

$$q_i = \left\{ egin{array}{ll} 1 & ext{if product } i ext{ is chosen} \ 0 & ext{otherwise} \end{array}
ight.$$

and

$$\sum_i q_i = 1.$$

Framework

- Do not work with demand functions anymore
- Work with utility functions
- *U* is the "global" utility
- Define U_i the utility associated with product i.
- It is a function of the attributes of the product (price, quality, etc.)
- We say that product *i* is chosen if

$$U_i \geq U_i \quad \forall j.$$

Attributes

	Attributes	
Alternatives	Travel time (t)	Travel cost (c)
Car (1)	t_1	c_1
Train (2)	t_2	<i>c</i> ₂

Utility

$$\widetilde{U} = \widetilde{U}(y_1, y_2),$$

where we impose the restrictions that, for i = 1, 2,

$$y_i = \begin{cases} 1 & \text{if travel alternative i is chosen,} \\ 0 & \text{otherwise;} \end{cases}$$

and that only one alternative is chosen: $y_1 + y_2 = 1$.

Utility functions

$$U_1 = -\beta_t t_1 - \beta_c c_1,$$

$$U_2 = -\beta_t t_2 - \beta_c c_2,$$

where $\beta_t > 0$ and $\beta_c > 0$ are parameters.

Equivalent specification

$$U_1 = -(\beta_t/\beta_c)t_1 - c_1 = -\beta t_1 - c_1$$

$$U_2 = -(\beta_t/\beta_c)t_2 - c_2 = -\beta t_2 - c_2$$

where $\beta > 0$ is a parameter.

Choice

- Alternative 1 is chosen if $U_1 \geq U_2$.
- Ties are ignored.

Choice

Alternative 1 is chosen if

$$-\beta t_1 - c_1 \ge -\beta t_2 - c_2$$

Alternative 2 is chosen if

$$-\beta t_1 - c_1 \le -\beta t_2 - c_2$$

or

or

$$-\beta(t_1-t_2)\geq c_1-c_2$$

$$-\beta(t_1-t_2)\leq c_1-c_2$$

Dominated alternative

- If $c_2 > c_1$ and $t_2 > t_1$, $U_1 > U_2$ for any $\beta > 0$
- If $c_1 > c_2$ and $t_1 > t_2$, $U_2 > U_1$ for any $\beta > 0$

Trade-off

- Assume $c_2 > c_1$ and $t_1 > t_2$.
- Is the traveler willing to pay the extra cost $c_2 c_1$ to save the extra time $t_1 t_2$?
- Alternative 2 is chosen if

$$-\beta(t_1-t_2)\leq c_1-c_2$$

or

$$\beta \geq \frac{c_2 - c_1}{t_1 - t_2}$$

• β is called the willingness to pay or value of time

Dominated choice example

Obvious cases:

- $c_1 \ge c_2$ and $t_1 \ge t_2$: 2 dominates 1.
- $c_2 \ge c_1$ and $t_2 \ge t_1$: 1 dominates 2.
- Trade-offs in over quadrants

Illustration

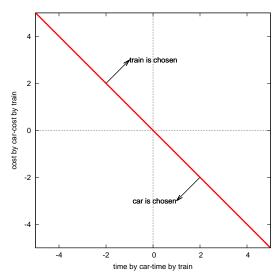
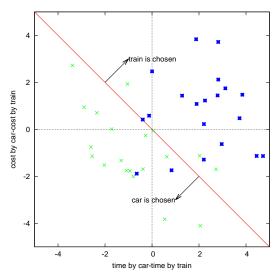


Illustration with real data



Is utility maximization a behaviorally valid assumption?

Assumptions

Decision-makers

- are able to process information
- have perfect discrimination power
- have transitive preferences
- are perfect maximizer
- are always consistent

Relax the assumptions

Use a probabilistic approach: what is the probability that alternative i is chosen?

Introducing probability

Constant utility

- Human behavior is inherently random
- Utility is deterministic
- Consumer does not maximize utility
- Probability to use inferior alternative is non zero

Random utility

- Decision-maker are rational maximizers
- Analysts have no access to the utility used by the decision-maker
- Utility becomes a random variable

Niels Bohr "Nature is stochastic"

Einstein "God does not throw dice"

Assumptions

Sources of uncertainty

- Unobserved attributes
- □ Unobserved taste variations
- Measurement errors
- Instrumental variables

Manski 1973 The structure of Random Utility Models *Theory and Decision* 8:229–254

Random utility model

Probability model

$$P(i|\mathcal{C}_n) = \Pr(U_{in} \geq U_{jn}, \text{ all } j \in \mathcal{C}_n),$$

Random utility

$$U_{in} = V_{in} + \varepsilon_{in}$$
.

Random utility model

$$P(i|\mathcal{C}_n) = \Pr(V_{in} + \varepsilon_{in} \ge V_{jn} + \varepsilon_{jn}, \text{ all } j \in \mathcal{C}_n),$$

or

$$P(i|\mathcal{C}_n) = \Pr(\varepsilon_{jn} - \varepsilon_{in} \leq V_{in} - V_{jn}, \text{ all } j \in \mathcal{C}_n).$$

Over to the lab: CM1 112

Further Introduction to Biogeme Binary Logit Model Estimation http://biogeme.epfl.ch/