DECISION AID METHODOLOGIES IN TRANSPORTATION Lecture 4: Air transportation problem

Chen Jiang Hang

Transportation and Mobility Laboratory

May 17, 2013

Air transportation

Hub and spoke system: Network structure

Hub and spoke system is widely adopted in transportation especially for air transportation. In such a system (taking air transportation as an example), local airports offer air transportation to the central airport where long-distance flights are available.

Time bank for hub and spoke airline

Decision processes in air transportation

- Schedule Design: Estimate itinerary level demands and identify suitable flight legs and time
- Fleet Assignment: Match demand with supply
- Aircraft Routing: Assign individual aircraft to flight legs ensuring consistency and sequence
- Crew Pairing: Form sequence of flight legs satisfying human and labor work rules
- **Crew Rostering**: Assign crew (pilots and/or flight attendants) to flight duty sets

- At this stage, the demand is known, the main task is to assign demand to supply
- Supply: airline companies operate different types of aircraft fleets
- Main question: which aircraft (fleet) type should fly each flight? Boeing 737, Boeing 767, or A380
 - Aircraft too small \rightarrow lost revenue
 - $\bullet\,$ Aircraft too big $\rightarrow\,$ costly and inefficient

- Set \mathcal{F} : a set of available fleets; S(f), $f \in \mathcal{F}$: the number of aircraft available in fleet f
- Set \mathcal{C} : the set of cities served by the schedule
- Set \mathcal{L} : the set of flights in the schedule; (o, d, t), $o, d \in \mathcal{C}$ are OD of the flight and t is the scheduled departure time
- $c_{f,odt}$: the cost for assigning an aircraft from fleet f to the flight (o,d,t)
- Times t_0, t_1, \ldots, t_n : Assume that arrivals and departures only happen at these discrete instances
- t^- : the time preceding t; t^+ : the time following t
- t(f, o, d): the traveling time from o to d for an aircraft of type f
- $O(t_0)$: the set of flights that are flying during the time interval $[t_0, t_0^+]$
- Set \mathcal{H} : a set of pairs of flights that must be performed by an aircraft of the same fleet

Decision variables:

- $x_{f,odt} = 1$, if fleet f is used for the flight from o to d departing at time t; 0, otherwise.
- $y_{f,ot}$ = number of aircraft on the ground from fleet f that stay at city o during the interval $[t, t^+]$.
- $z_{f,ot} =$ number of aircraft from fleet f that arrive at city o at time t.

Obviously,

$$z_{f,ot} = \sum_{\{(d,o,\tau)\in\mathcal{L} \mid \tau+t(f,d,o)=t\}} x_{f,do\tau}$$

min: $\sum \sum c_{f,odt} x_{f,odt}$ $f \in \mathcal{F}(o,d,t) \in \mathcal{L}$ s.t. $\sum x_{f,odt} = 1, \forall (o, d, t) \in \mathcal{F}$ $f \in \mathcal{F}$ $z_{f,ot^-} + y_{f,ot^-} = \sum x_{f,odt} + y_{f,ot}, \forall f, o, t$ $x_{f,odt} = x_{f,dd't'}, \forall f \in \mathcal{F}, ((o,d,t), (d,d',t')) \in \mathcal{H}$ $\sum \quad x_{f,odt} + \sum y_{f,ot_0} \le S(f), \forall f \in \mathcal{F}$ $(o,d,t) \in O(t_0)$ $o \in \mathcal{C}$ $x_{f,odt} \in \{0,1\}, y_{f,ot} \in \mathbb{Z}^+$

- Crew pairing: after the schedule is constructed and fleet are assigned to the flights
- Typically a crew is composed of a pilot, co-pilot and a number of flight attendants
- A crew pairing is one or several days long
- Crew pairing should be checked based on rules and regulations

Some terms:

- Duty period: mostly a working day of a crew, consists of a sequence of flight legs with short rest periods separating them. Also the duty starts with a brief period and ends with a debrief period.
- Pairing: a sequence of duties and each pairing begins and ends at the same crew base.
- Crew base: a city where crews are stationed.
- Deadhead: to reposition a crew from one base to another base. Generally deadheads are used to transport a crew where they are needed to cover a flight or to return to their home base.

Flight 1:	City A–City B	08:00-09:00
Flight 2:	City B–City C	10:00-11:00
Flight 3:	City C–City D	13:00-14:00
Flight 4:	City C–City A	07:00-08:00
Flight 5:	City D–City A	07:00-08:00
Flight 6:	City A–City B	17:00-18:00
Flight 7:	City B–City C	11:00-12:00

The the possible pairings can be:

$$P_1 = \{F_1, F_2, F_4\} \qquad c_1 = 4 P_2 = \{F_1, F_3, F_5, F_7\} \qquad c_2 = 3 P_3 = \{F_2, F_3, F_5, F_6\} \qquad c_3 = 5$$

- \mathcal{F} : the set of all flights
- \mathcal{P} : the set of all possible pairings
- \mathcal{P}^i : the set of pairing which cover the flight $i, i \in \mathcal{F}$
- c_j : the cost of pairing $j \in \mathcal{P}$

min:
$$\sum_{j \in \mathcal{P}} c_j x_j$$

s.t.
$$\sum_{j \in \mathcal{P}^i} x_j = 1, \forall i \in \mathcal{F}$$
$$x_j \in \{0, 1\}, \forall j \in \mathcal{P}$$

Basically, it is a **set covering problem**! Question: if the $|\mathcal{P}|$ is huge, what kind of technique can be used to speed up the the solving?

Network flow problem

Undirected graphs

An undirected graph $G = (\mathcal{N}, \mathcal{E})$ consists of a set \mathcal{N} of nodes and a set \mathcal{E} of undirected edges, where an edge e is an unordered pair of distinct nodes, that is, a two-element subset $\{i, j\}$ of \mathcal{N} .

- Walk: a finite sequence of nodes i_1, i_2, \cdots, i_t such that $\{i_k, i_{k+1}\} \in \mathcal{E}$, $k = 1, 2, \cdots, t-1$
- Path: a walk without repeated nodes
- Cycle: a walk i_1, i_2, \cdots, i_t such that nodes $i_1, i_2, \cdots, i_{t-1}$ are distinct and $i_t = t_1$
- Connected undirected graph

Directed graphs

An directed graph $G = (\mathcal{N}, \mathcal{A})$ consists of a set \mathcal{N} of nodes and a set \mathcal{A} of directed arcs, where an arc a is an ordered pair of distinct nodes, that is, a two-element subset (i, j) of \mathcal{N} .

- Walk: a finite sequence of nodes i_1, i_2, \cdots, i_t such that $(i_k, i_{k+1}) \in \mathcal{A}$ or $(i_{k+1}, i_k) \in \mathcal{A}$; directed walk
- Path: a walk without repeated nodes; directed Path
- Cycle: a walk i_1, i_2, \cdots, i_t such that nodes $i_1, i_2, \cdots, i_{t-1}$ are distinct and $i_t = t_1$; directed cycle
- Connected directed graph

Tree

An undirected graph $G = (\mathcal{N}, \mathcal{E})$ is called a tree if it is connected and has no cycles.

Properties of a tree

- An undirected graph is a tree if and only if it is connected and has $|\mathcal{N}| 1$ edges
- If we start with a tree and add a new arc, the resulting graph contains exactly one cycle

Network flow problem

A network is a directed graph $G = (\mathcal{N}, \mathcal{A})$ together with some additional numerical information.

- b_i : external supply to node i
- u_{ij} : capacity of arc (i, j)
- c_{ij} : cost per unit of flow along arc (i, j)

Let f_{ij} be the amount of flow through arc (i, j) and we call a node *i* source (sink) if $b_i > 0(b_i < 0)$.

Flow conservation constraints

$$b_i + \sum_{j \in I(i)} f_{ji} = \sum_{j \in O(i)} f_{ij}, \forall i \in \mathcal{N}$$

Flow capacity constraints

$$0 \le f_{ij} \le u_{ij}, \forall (i,j) \in \mathcal{A}$$

Incidence matrix of a network

A matrix associated with a network and its (i, k)th entry a_{ik} is associated with the *i*th node and the *k*th arc.

$$a_{ik} = \begin{cases} 1, & \text{if } i \text{ is the start node of the } k\text{th arc;} \\ -1, & \text{if } i \text{ is the end node of the } k\text{th arc;} \\ 0, & \text{otherwise.} \end{cases}$$

Flow conservation and circulations

Given the incidence matrix \mathbf{A} , the flow conservation constraints can be written in a concise way:

$$Af = b$$

Let's examine the nullspace of matrix \mathbf{A} , $N(\mathbf{A}) = \{\mathbf{f} \mid \mathbf{A}\mathbf{f} = \mathbf{0}\}$. We call any flow $\mathbf{f} \in N(\mathbf{A})$ a circulation of the network. Now consider a cycle C of the network, let F and B be the set of forward and backward arcs of the cycle. The flow vector \mathbf{h}^C with components

$$h_{ij}^C = \begin{cases} 1, & \text{if } (i,j) \in F; \\ -1, & \text{if } (i,j) \in B; \\ 0, & \text{otherwise.} \end{cases}$$

is called the simple circulation associated with the cycle C. Obviously, $\mathbf{h}^C \in N(\mathbf{A})$, i.e., $\mathbf{A}\mathbf{h}^C = \mathbf{0}.$

Given the network:

Ignore directions of arcs and find a spanning tree:

Recover the direction & flow information:

Use flow conservation constraint to obtain a tree solution:

The importance of tree solutions

Tree solution is equivalent to basic solution! Feasible tree solution is the basic feasible solution of the network optimization problem $\min\{\mathbf{c'f} \,|\, \mathbf{Af} = \mathbf{b}, \mathbf{f} \geq \mathbf{0}\}!$

Pivoting process

- Creating cycle: add an arc not in the tree with **zero** flow to the current tree and a cycle *C* will be created (Why?!).
- Construct a simple circulation \mathbf{h}^C associated with cycle C. Note that if the positive value θ is small enough, then $\mathbf{A}(\mathbf{f}_T + \theta \mathbf{h}^C) = \mathbf{b}$ and $\mathbf{f}_T + \theta \mathbf{h}^C \ge \mathbf{0}$. That is, $\mathbf{f}_T + \theta \mathbf{h}^C$ is a feasible flow (Why?!).
- Calculate the reduced cost for the selected arc.

$$ar{c}_{ij} = \sum_{(k,l)\in F} c_{kl} - \sum_{(k,l)\in B} c_{kl}$$

- Select one arc with negative reduced cost and try to "push" flow around the cycle C as much as possible (greedy!).
- Determine the arc in the current tree who carries zero flow now after the flow "pushing".
- A new and better tree solution has been found.

We have following network and suppose $c_{ij} = 1$ $(i, j) \in \mathcal{A}$ except that $c_{42} = 0.5$ and $c_{43} = 2$.

Let's start from the following feasible tree solution:

Let's try to bring arc $\left(4,2\right)$ into the basis:

The reduced cost associated with arc (4, 2) is equal to $c_{42} + c_{23} - c_{43} = 0.5 + 1 - 2 = -0.5$.

After pushing 1 flow around the cycle:

Let's try to bring arc (3,1) into the basis:

However, the reduced cost associated with arc (3, 1) is equal to $c_{31} + c_{12} + c_{23} = 1 + 1 + 1 = 3 > 0.$

