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Teaching syllabuses
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Teaching syllabuses

Topics that will cover

Introduction to optimization
1 Polyhedron theory
2 Linear programming (Simplex method, Duality theory, Column

generation)
3 Integer programming (Cutting plane, Branch and Bound)
4 Network problem
5 Approximation methods and heuristics

Optimization in airline transport

Optimization in maritime transport

Optimization in railway transport
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Teaching syllabuses

Software will be used in laboratories

IBM ILOG CPLEX Optimization Studio. You can download the
trail version, free for 90 days. However, it has problem size
limitation. The latest version is V12.5 (platform: Windows, Mac
OS & Linux). Download HERE. Note that you need to create an
IBM account in order to download.
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Decision aid tool and
mathematical model
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Decision aid tool and mathematical model

Do you still remember?

2006 FIFA World Cup (Germany)

Quarter final match: Germany VS Argentina

In the penalty shoot-out, Jens Lehmann (goalkeeper) guessed
the directions correctly 4 out of 4 and saved two goals!

The secret:
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Decision aid tool and mathematical model

Decision aid “tool” — the note

The legendary note was sold for ONE MILLION EUROs!
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Decision aid tool and mathematical model

The steps to build an optimization mathematical model

Understand the system (problem analysis)

Establish objective(s)

Identify the key decision variables

Spot all the boundary conditions (constraints)

Model the problem

Verify the model

Solve the problem

Evaluate the results
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Decision aid tool and mathematical model

The importance of system understanding

Braess’s paradox

building a new road doesn’t always lead to shorter traveling time
experienced by individual driver.

T/100

45 T/100

45

≈ 0S

A

B

E

Suppose all the drivers (4000) are selfish, before A and B are
connected, half of the travelers will take SAE and the other half
take SBE with 65 minutes of traveling time for each driver. After
the road AB is built, all the drivers will take route SABE with 80
minutes of traveling time for each driver.
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Decision aid tool and mathematical model

The importance of system understanding

The case of Seikan Tunnel

Seikan tunnel connects Honshu and Hokkaido in Japan and is both
the longest and the deepest operational rail tunnel in the world.
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Decision aid tool and mathematical model

The importance of system understanding

Why built Seikan tunnel?

“A booming economy saw traffic levels on the JNR-operated
Seikan. Ferry doubled to 4,040,000 persons/year from 1955 to
1965, and cargo levels rose 1.7 times to 6,240,000 tonnes/year.”

After operation in 1988

“However, for passenger transport, 90% of people use air due to
the speed and cost. For example, to travel between Tokyo and
Sapporo by train takes more than ten hours and thirty minutes,
with several transfers. By air, the journey is three hours and thirty
minutes, including airport access times. Deregulation and
competition in Japanese domestic air travel has brought down
prices on the Tokyo-Sapporo route, making rail more expensive in
comparison.”
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Decision aid tool and mathematical model

Establish objective(s)

The objective should be clearly established for the problem.
In practice, one problem with multiple objectives are very
common. Usually, there are two ways to handle
multi-objective problems:

1 Introduce the weights and transform the multi-objective
problem to single objective problem.

2 Use the concept of Pareto optimality

Y

X

Pareto front

A
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Decision aid tool and mathematical model

Model the problem

If possible, always try to build a linear model, i.e., the objective
function and all the constraints only contain linear terms of
decision variables. For example,

min : x21 + x2 (1)

s.t.

x21 + 2x2 ≤ 1 (2)

x1, x2 ≥ 0 (3)

is not a good formulation. Instead, if we substitute x21 by y1, the
resulting formulation is much better since it is a linear one.
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Decision aid tool and mathematical model

An example for practice

A shipping company plans to acquire an aircraft and is
designing a customized interior to carry thermally insulated
and normal products

Temperature controlled products are sold in the market for a
profit of CHF 7 per unit, while normal ones yield a profit of
CHF 5 per unit

Temperature controlled products require 2 kWh electric power
and 2 m3 space for carrying one unit

Normal products requires 1 kWh power and 4 m3 space per
unit

Total power and space availability are 1000 kWh and 2400 m3

Assuming that aircraft will always fly full capacity, how many
units of temperature controlled and normal products should it
be designed for?
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Decision aid tool and mathematical model

An example for practice

Objective: To maximize the profit for the shipping company

Decision variables: x1, units of temperature controlled
products; x2, units of normal products

Mathematical model

max : 7x1 + 5x2 (4)

s.t.

2x1 + x2 ≤ 1000 (5)

3x1 + 4x2 ≤ 2400 (6)

x1, x2 ≥ 0 (7)

In this formulation, (5) reflects the power availability
constraint; (6) is the space constraint; and (7) makes sure the
results are non-negative.
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Decision aid tool and mathematical model

An example for practice

0 200 400 600 800 1000 1200

x1

200

400
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A

Geometric representation of the constraints (the gray part is called
the feasible domain). By the theory of linear programming, we
know that the optimal solution for this example is “corner point”
A.
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Basic polyhedron and convex
theory
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Basic polyhedron and convex theory

Some notations

In this lecture, matrix A has m rows and n columns (A′ is the
transpose of A; A−1 is the inverse of of A if it is a square
matrix). We use Aj to denote its jth column, that is,
Aj = (a1j , a2j , · · · , amj). We also use ai to denote the vector
formed by the entries of the ith row, that is,
ai = (ai1, ai2, · · · , ain). Note that all the vectors are column
vector.

A =

 | | |
A1 A2 · · · An

| | |

 =

 − a′1 −
...

− a′m −



Chen Jiang Hang (Transportation and Mobility Laboratory)Decision Aid Methodologies In TransportationLecture 1: Polyhedra and Simplex method19 / 54



Basic polyhedron and convex theory

Polyhedra

Polyhedron

A polyhedron is a set that can be described in the form
{x ∈ Rn |Ax ≥ b}, where A is an m× n matrix and b is a vector
in Rm.

We call {x ∈ Rn |Ax ≥ b} the general form of a polyhedron;
{x ∈ Rn |Ax = b,x ≥ 0} the standard form of a polyhedron.

Hyperplane and halfspace

Let a be a nonzero vector in Rn and let b be a scalar. Then the
set {x ∈ Rn |a′x = b} is called a hyperplane and the set
{x ∈ Rn |a′x ≥ b} is called a halfspace.

Note that both hyperplane and halfspace are polyhedra and a
hyperplane is the boundary of a corresponding halfspace.
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Basic polyhedron and convex theory

Convex set

Convex set

A set S ⊂ Rn is convex if for any x,y ∈ S, and any λ ∈ [0, 1], we
have λx+ (1− λ)y ∈ S.

Convex combination & convex hull

Let x1, · · · ,xk be vectors in Rn and let λ1, · · · , λk be nonnegative
scalars whose sum is unity. The vector

∑k
i=1 λix

i is said to be a
convex combination of the vector x1, · · · ,xk; The convex hull of
the vector x1, · · · ,xk is the set of all convex combination of these
vectors.
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Basic polyhedron and convex theory

Extreme point of a polyhedron

Extreme point

Let P be a polyhedron. A vector x ∈ P is an extreme point of P
if we cannot find two vectors y, z ∈ P , both different from x, and
a scalar λ ∈ [0, 1], such that x = λy + (1− λ)z.

Geometrically speaking, an extreme point of a polyhedron is the
“corner point” of the polyhedron.

x

v
w

u

z

y
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Basic polyhedron and convex theory

Basic solution and basic feasible solution associated with a
polyhedron

Basic solution & basic feasible solution

Consider a polyhedron P defined by linear equality and inequality
constraints, and let x∗ be an element of Rn. The vector x∗ is a
basic solution if:

1 All equality constraints are active;

2 Out of the constraints that are active at x∗, there are n of
them that are linearly independent.

If x∗ is a basic solution that satisfies all of the constraints, we say
that it is a basic feasible solution.

For example, if P = {x1 + x2 = 1, x1 ≥ 0, x2 ≥ 0}, then (1, 0) and
(0, 1) are basic (feasible) solutions of P .
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Basic polyhedron and convex theory

Extreme point=basic feasible solution

Extreme point and basic feasible solution associated with a
polyhedron are equivalent. That is, if x ∈ P is an extreme point of
P then x is also a basic feasible solution of P , vice versa. For a
polyhedron, extreme point is the geometric interpretation of basic
feasible solution and basic feasible solution is the algebraic
representation of extreme point.
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Basic polyhedron and convex theory

Recession cone of a polyhedron

Consider a nonempty polyhedron

P = {x ∈ Rn |Ax ≥ b}

and let us fix some y ∈ P . We define the recession cone at y as
the set of all directions d along which we can move indefinitely
away from y, without leaving the set P . That is, the recession
cone of P is the set

{d ∈ Rn |A(y + λd) ≥ b, ∀λ ≥ 0}

or more concise
{d ∈ Rn |Ad ≥ 0}
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Basic polyhedron and convex theory

Recession cone of a polyhedron

A polyhedron and its recession cone
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Basic polyhedron and convex theory

Extreme rays of a polyhedron

Intuitively, extreme rays of a polyhedron are the directions
associated with “edges” of the polyhedron that extend to
infinity.

Extreme ray

A nonzero element x of a recession cone C ⊂ Rn is called an
extreme ray if there are n− 1 linearly independent constraints
that are active at x.

An extreme ray of the recession cone associated with a
nonempty polyhedron P is also called an extreme ray of P .
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Basic polyhedron and convex theory

Why to study the extreme points & extreme rays of a
polyhedron?

Consider a linear programming problem

min : c′x

s.t. Ax ≥ b

Let {x1, · · · ,xp} be the extreme points of the polyhedron
P = {Ax ≥ b} and {w1, · · · ,wq} be the set of extreme rays of
P . The we have the following theorem:

Optimality of extreme points

If c′wi ≥ 0,∀1 ≤ i ≤ q, there exists an extreme point in
{x1, · · · ,xp} which is optimal;

Otherwise (i.e., there exists i, c′wi < 0), the optimal value is
equal to −∞.
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Basic polyhedron and convex theory

Why to study the extreme points & extreme rays of a
polyhedron?

Besides, we have the following famous theorom:

Resolution theorem

Let {x1, · · · ,xp} be the extreme points of the polyhedron
P = {Ax ≥ b} and {w1, · · · ,wq} be the set of extreme rays of
P . The polyhedron P can also be expressed as

P =


p∑

i=1

λix
i +

q∑
j=1

θjw
j |λi ≥ 0, θj ≥ 0,

p∑
i=1

λi = 1


Therefore, a polyhedron can be expressed as (1) intersection of
finite number of halfspaces (2) the sum of convex combination of
extreme points and nonnegative combination (also call conic
combination) of extreme rays.
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Linear programming and
Simplex method
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Linear programming and Simplex method

General form to standard form

How to transform an LP in general form to standard form?

1 a′x ≤ b: Introduce a slack variable s ≥ 0 and a′x+ s = b.

2 a′x ≥ b: Introduce a surpass variable p ≥ 0 and a′x− p = b.

3 xi is a free variable: Introduce two new variables y, z ≥ 0 and
xi = y − z.
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Linear programming and Simplex method

Why standard form?

min : c′x

s.t. Ax = b

x ≥ 0

Without loss of generality, we can assume that matrix A has m
linearly independent rows and n� m (in reality, this is usually the
case). Question: how to obtain a basic solution quickly?

A =

 | | | |
A1 A2 A3 · · · An

| | | |


A1, A3, · · · , An are linearly independent and we call them the
base and their associated m variables (x1, x3, · · · , xn) basic
variables.
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Linear programming and Simplex method

The basic idea of Simplex method

A

B

C

D

?

?
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Linear programming and Simplex method

The basic idea of Simplex method

4♣ K♠ Q♠ 10♦ 10♣ 3♥

The objective of this card game is to increase the sum of card
numbers in your hand (at most 4 cards). Which two cards you will
switch?
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Linear programming and Simplex method

Simplex method in math form

Let x be a basic feasible solution to the standard form problem, let
B(1), B(2), · · · , B(m) be the indices of the basic variables, and
let B = [AB(1) · · ·AB(m)] be the corresponding basis matrix. In
particular, we have xi = 0 for every nonbasic variable, while the
vector xB = (xB(1), · · · , xB(m)) of basic variables is given by

xB = B−1b

We consider the possibility of moving away from x, to a new
vector x+ θd (θ > 0). Here we choose a special direction d:
select a nonbasic variable xj (which is initially at zero level) and
try to increase it to a positive value while keep the remaining
nonbasic variables at zero. Algebraically, dj = 1, and di = 0 for
every nonbasic index i other than j. At the same time, the vector
xB of basic variables changes to xB + θdB, where
dB = (dB(1), dB(2), . . . , dB(m)) is the vector with those
components of d that correspond to the basic variables.
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Linear programming and Simplex method

Simplex method in math form

Since x+ θd should be a feasible solution, we have
A(x+ θd) = Ax+ θAd = b. That is Ad = 0. Thus, we have:

0 = Ad =

n∑
i=1

Aidi =

m∑
i=1

AB(i)dB(i) +Aj = BdB +Aj

Since the basis matrix B is invertible, we have

dB = −B−1Aj

The obtained direction d is called the jth basic direction.
Question: how many basic directions are there?
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Linear programming and Simplex method

Simplex method in math form

What would be the effects on the cost function if we move along a
basic direction? If d is the jth basic direction, then the rate c′d of
cost change along the direction d is given by c′BdB + cj , where
cB = (cB(1), . . . , cB(m)). This is the same as

cj − c′BB
−1Aj

The above value is defined as the reduced cost cj of the variable
xj .

Reduced costs for basic variables?!

The reduced cost for any basic variable is always 0.
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Linear programming and Simplex method

The importance of reduced costs

Consider a basic feasible solution x associated with a basis matrix
B, and let c be the corresponding vector of reduced costs. If
c ≥ 0, then x is optimal.

Proof:
Assume that c ≥ 0 and let y be an arbitrary feasible solution, and
define d = y − x. Feasibility implies that Ax = Ay = b and,
therefore, Ad = 0. The latter equality can be rewritten in the
form BdB +

∑
i∈N Aidi = 0, where N is the set of indices

corresponding to the nonbasic variables under the given basis.
Since B is invertible, we have dB = −

∑
i∈N B−1Aidi and

c′d = c′BdB +
∑
i∈N

cidi =
∑
i∈N

(ci − c′BB
−1Ai)di =

∑
i∈N

cidi

Since, ∀i ∈ N , xi = 0, yi ≥ 0. Thus, di ≥ 0 and cidi ≥ 0 and
c′d = c′(y − x) ≥ 0. x is optimal.
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Linear programming and Simplex method

The pivot process

At a basic feasible solution x and we have computed the reduced
cost vector c. If c ≥ 0, we can stop since x is optimal. If cj < 0,
then the jth basic direction d is a feasible and profitable
direction. While moving along d, the nonbasic variable xj
becomes positive and all other nonbasic variables remain at 0 (i.e.,
xj is brought into the basis). Since costs decrease along the
direction d, it is desirable to move as far as possible (Greedy!).

θ∗ = max{θ ≥ 0|x+ θd ≥ 0}

If di < 0 for some i, the largest possible value of θ is

θ∗ = min
{i|di<0}

(
−xi
di

)
If θ is chosen as θ∗, then at least one of the basic variables, say, xi
will become 0 (i.e., xi leaves the basis).
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Linear programming and Simplex method

Simplex method essential steps

1 Start with a basis consisting of the basic columns
AB(1), . . . ,AB(m), and an associated basic feasible solution x.

2 Compute the reduced costs cj = cj − c′BB
−1Aj for all

nonbasic indices j. If they are all nonnegative, the current
basic feasible solution is optimal, and the algorithm
terminates; else, choose some j for which cj < 0.

3 Calculate θ∗ = min{i|di<0}

(
−xi
di

)
and determine the variable

to leave the basis.
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Linear programming and Simplex method

An example for practice

max : 7x1 + 5x2

s.t. 2x1 + x2 ≤ 1000

3x1 + 4x2 ≤ 2400

x1, x2 ≥ 0

min : −7x1 − 5x2

s.t. 2x1 + x2 + x3 = 1000

3x1 + 4x2 + x4 = 2400

x1, x2, x3, x4 ≥ 0

A =

[
2 1 1 0
3 4 0 1

]
c =

[
−7 −5 0 0

]
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Linear programming and Simplex method

An example for practice

1 B1 =

[
1 0
0 1

]
,x1 = [0, 0, 1000, 2400],c1 =

c− [0, 0]B−11 A = [−7,−5, 0, 0], d1 = [1, 0,−2,−3],
θ∗1 = min{1000/2, 2400/3}, x3 will be out of basis.

2 B2 =

[
2 0
3 1

]
,x2 = [500, 0, 0, 900],c2 = c− [−7, 1]B−12 A =

[0,−1.5, 3.5, 0], d2 = [−0.5, 1, 0,−2.5],
θ∗2 = min{500/0.5, 900/2.5}, x4 will be out of basis.

3 B3 =

[
2 1
3 4

]
,x3 = [320, 360, 0, 0],c3 =

c− [−7,−5]B−13 A = [0, 0, 2.6, 0.6], x3 is optimal.
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Linear programming and Simplex method

Tabular implementation of Simplex

−c′BB−1b c′ − c′BB
−1A

B−1b B−1A

In more detail,

−c′BxB c1 · · · cn
xB(1) | |

... B−1A1 · · · B−1An

xB(m) | |
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Linear programming and Simplex method

Tabular implementation of Simplex

min −7x1 −5x2
s.t. 2x1 +x2 +x3 = 1000

3x1 +4x2 +x4 = 2400
x1, x2, x3, x4 ≥ 0

It is easy to observe that initially, we can choose B =

[
1 0
0 1

]
. In

the tabular form:

0 -7 -5 0 0

x3 = 1000 2 1 1 0
x4 = 2400 3 4 0 1
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
0 −7∗ -5 0 0

x∗3 = 1000 2∗ 1 1 0 1000
2 = 500

x4 = 2400 3 4 0 1 2400
3 = 800
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
0 −7∗ -5 0 0

500 1 0.5 0.5 0

2400 3 4 0 1
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
0 −7∗ -5 0 0

500 1 0.5 0.5 0

900 0 2.5 -1.5 1
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
3500 0 -1.5 3.5 0
500 1 0.5 0.5 0

900 0 2.5 -1.5 1
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
3500 0 -1.5 3.5 0

x1 = 500 1 0.5 0.5 0

x4 = 900 0 2.5 -1.5 1
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
3500 0 −1.5∗ 3.5 0

x1 = 500 1 0.5 0.5 0 500
0.5 = 1000

x∗4 = 900 0 2.5∗ -1.5 1 900
2.5 = 360
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
3500 0 -1.5 3.5 0
500 1 0.5 0.5 0

360 0 1 -0.6 0.4
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
3500 0 -1.5 3.5 0
320 1 0 0.3 -0.2

360 0 1 -0.6 0.4
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
4040 0 0 2.6 0.6
320 1 0 0.3 -0.2

360 0 1 -0.6 0.4
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Linear programming and Simplex method

Tabular implementation of Simplex

c1 c2 c3 c4
4040 0 0 2.6 0.6

x1 = 320 1 0 0.3 -0.2

x2 = 360 0 1 -0.6 0.4
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